首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The systemic activity of simeconazole (RS-2-(4-fluorophenyl)-1-(1H-1,2,4-triazol-1-yl)-3-trimethylsilylpropan-2-ol) in plants was compared with those of eight other sterol demethylation inhibitor (DMI) fungicides. Simeconazole prevented the infection of Blumeria graminis (DC) Speer f sp hordei Marchal on barley leaves within a radius of several centimeters from the edge of local treatment on the leaves when the compound was separated from the leaves by glass coverslips. This reveals that simeconazole has prominent vapour-phase activity. Simeconazole showed excellent curative activity against barley powdery mildew when treated 1-3 days after inoculation. Furthermore, this indicates that simeconazole has notable translaminar activity because, when the compound was applied onto either the adaxial or abaxial leaf surface, it showed excellent efficacy against powdery mildew on the opposite side of the leaf surface of barley and cucumber. Simeconazole also showed excellent efficacy against barley powdery mildew by soil drench 24h after inoculation. This suggests that simeconazole was absorbed very quickly into the barley plant after treatment. The permeability of the compound through cuticular membranes prepared from tomato fruits was about 20% at 22 h after the treatment and was much superior to that of the other DMI fungicides tested.  相似文献   

2.
A spray inoculation of the first leaf of 2-leaf stage cucumber plants with a non-pathogenic isolate of Alternaria cucumarina or Cladosporium fulvum before a challenge inoculation with the pathogen Sphaerotheca fuliginea induced systemic resistance to powdery mildew on leaves 2–5. Systemic resistance was expressed by a significant (p < 0.05) reduction in the number of powdery mildew colonies produced on each leaf of the induced plants, as compared with water-sprayed plants. Systemic resistance was evident when a prior inoculation with each of the inducing fungi was administered 1, 3 or 6 days before the challenge inoculation with S. fuliginea. Increasing the inoculum concentration of A. cucumarina or C. fulvum enhanced the systemic protection and provided up to 71.6% or 80.0% reduction, respectively, in the number of colonies produced on upper leaves, relative to controls. Increasing the inoculum concentration of S. fuliginea used for challenge inoculation, increased the number of powdery mildew colonies produced on both induced and non-induced plants. Pre-treated plants, however, were still better protected than controls, indicating that the level of systemic protection was related to the S. fuliginea inoculum concentration. The induction of systemic resistance against powdery mildew by biotic agents, facilitates the development of a wide range of disease management tools.  相似文献   

3.
Two cucumber ( Cucumis sativus ) cultivars differing in their resistance to powdery mildew, Ningfeng No. 3 (susceptible) and Jinchun No. 4 (resistant), were used to study the effects of foliar- and root-applied silicon on resistance to infection by Podosphaera xanthii (syn. Sphaerotheca fuliginea ) and the production of pathogenesis-related proteins (PRs). The results indicated that inoculation with P. xanthii significantly suppressed subsequent infection by powdery mildew compared with noninoculation, regardless of Si application. Root-applied Si significantly suppressed powdery mildew, the disease index being lower in Si-supplied than in Si-deprived plants, regardless of inoculation treatment. The resistant cultivar had a more constant lower disease index than the susceptible cultivar, irrespective of inoculation or Si treatment. Moreover, with root-applied Si, activities of PRs (for example peroxidase, polyphenoloxidase and chitinase) were significantly enhanced in inoculated lower leaves or noninoculated upper leaves in inoculated plants of both cultivars. Root-applied Si significantly decreased the activity of phenylalanine ammonia-lyase in inoculated leaves, but increased it in noninoculated upper leaves. However, Si treatment failed to change significantly the activity of PRs in plants without fungal attack. Compared to the control (no Si), foliar-applied Si had no effects either on the suppression of subsequent infection by P. xanthii or on the activity of PRs, irrespective of inoculation. Based on the findings in this study and previous reports, it was concluded that foliar-applied Si can effectively control infections by P. xanthii only via the physical barrier of Si deposited on leaf surfaces, and/or osmotic effect of the silicate applied, but cannot enhance systemic acquired resistance induced by inoculation, while continuously root-applied Si can enhance defence resistance in response to infection by P. xanthii in cucumber.  相似文献   

4.
In laboratory tests, treatment of the first leaves of barley (Hordeum vulgare L cv Golden Promise) with potassium phosphate led to significant reduction in infection of the second leaves with the powdery mildew fungus Blumeria graminis f sp hordei Marchal, with a 25 mM treatment giving 89% reduction in infection. Although the optimal interval between phosphate treatment of the first leaves and mildew inoculation of the second leaves was 2 days, significant protection was still obtained if the interval was increased to 12 days. Protection against powdery mildew infection was not as effective when the potassium phosphate was applied as a seed treatment or root drench. Phosphate treatment of the first leaves led to significant increases in activities of phenylalanine ammonia lyase (PAL), peroxidase and lipoxygenase in second leaves. Enzyme activities, especially PAL and peroxidase, were increased further when second leaves of phosphate-treated plants were inoculated with powdery mildew. Phosphate treatment of the first leaves did not adversely affect plant growth and, in a field trial, 25 mM potassium phosphate provided 70% control of mildew and gave a small increase in grain yield.  相似文献   

5.
为明确公主岭霉素在草莓生产中的防病诱抗效应,于大田采用五点取样法调查公主岭霉素对草莓白粉病的防控效果及对植株生长性状的影响,并于室内采用生测法测定其对草莓叶片防御酶活性和根际土壤酶活性的影响。结果显示,以公主岭霉素水浸提液100倍稀释液进行灌根并协同叶面喷雾对草莓白粉病的预防效果为71.90%;单独叶面喷雾对草莓白粉病的治疗效果为69.90%;灌根协同叶面喷雾预防与叶面喷雾治疗的综合防控处理对草莓白粉病的防治效果可达85.37%。公主岭霉素水浸提液100倍稀释液灌根后草莓幼苗的株高、叶柄长、叶长、叶宽、叶数、径冠等方面均优于清水对照;叶面喷施可提升叶片中多酚氧化酶和超氧化物歧化酶的活性,喷雾后1 d内即较清水对照显著提高;5 d后过氧化氢酶活性显著高于清水对照。灌根后根际土壤中蔗糖酶的活性在用药后15 d内均显著高于清水对照。表明合理施用公主岭霉素可实现对草莓白粉病的有效防控,并诱导提升草莓植株的抗病性,改善草莓生长环境,促进其生长。  相似文献   

6.
A single spray of solutions of 0.005M H3BO3, 0.0025M CuSO4, and 0.0025 MnCl2, on the upper surface of the first true leaf of cucumber plants 2 h before inoculation with a conidial suspension of Sphaerotheca fuliginea, induced systemic protection against powdery mildew in leaves 2 and 3 without causing any damage on the induced leaf (first leaf). A similar level of systemic protection was observed when plants were induced by micronutrients, 2, 24 and 72 h before challenge with S. fuliginea. The level of protection induced by various concentrations varied from solution to solution. In general, the systemic protection induced by K2HPO4 was similar to that by the microelements. Spraying of a 1:1 mixture of phosphate and micronutrient solutions did not improve the systemic protection over that obtained with each of the solutions alone. Increasing the inoculum concentration of S. fuliginea increased the number of powdery mildew colonies produced on both induced and non-induced plants and has relatively affected the systemic protection on induced plants. A single foliar spray of micronutrient solutions, as a prophylactic treatment, on the upper surface of all the leaves of 3-leaf stage cucumber plants significantly inhibited powdery mildew development. A single spray of MnCl2 on leaf 1 elevated peroxidase activity in the soluble fraction and caused an enhancement of -1,3-glucanase content in the ionically bound fractions of leaf 2 of non-inoculated plants. Forty-eight hours after inoculation, the level of both fractions of the enzymes increased in non-treated plants and decreased (-1,3-glucanase) or remained unchanged (peroxidase) in treated (induced) plants as compared to non-treated plants. The possible mechanism for this protection, and the use of microelements and phosphate solutions as inducers for systemic protection and as agents for disease control are discussed.  相似文献   

7.
Various film-forming anti-transpirants effectively controlled leaf rust and powdery mildew on wheat in the field. Two applications of anti-transpirant emulsions applied after flag leaf emergence were sufficient to suppress leaf rust and powdery mildew on wheat leaves. When applied before, but not after, inoculation anti-transpirant polymers also reduced leaf rust on seedling plants in a growth room experiment.  相似文献   

8.
Treatment of barley ( Hordeum vulgare ) with 3 m m saccharin, applied as a foliar treatment to the first leaf or as a soil drench, provided significant control of powdery mildew ( Blumeria graminis f.sp. hordei ) on first and second leaves. This was unlikely to be the result of a direct effect of saccharin on the fungus, as application of the chemical to first leaves 2 h before inoculation did not affect conidial germination or formation of appressoria. Saccharin treatment had no significant effect on plant growth, except for a reduction in total leaf area in plants treated with a saccharin drench 14 days before inoculation with mildew. Phenylalanine ammonia-lyase activity was reduced significantly in second leaves 18 and 48 h after inoculation in plants treated with saccharin 14 days earlier. Peroxidase activity increased significantly in plants challenged with mildew within 6 days of saccharin application, although changes were not apparent until 48 h after pathogen challenge. On these occasions, treatment with saccharin resulted in a 33% increase in peroxidase activity compared with controls. In plants inoculated 10 or 14 days after saccharin application, cinnamyl alcohol dehydrogenase (CAD) activity increased prior to, and 18, 24 and 48 h after, inoculation of the barley plants with mildew. CAD activity increased approximately twofold compared with controls. However, in contrast to peroxidase, CAD activity was significantly higher in saccharin-treated plants prior to and after inoculation with powdery mildew, suggesting that saccharin primes CAD activity prior to pathogen challenge.  相似文献   

9.
BACKGROUND: Physcion is a key active ingredient of the ethanol extract from roots of Chinese rhubarb (Rheum officinale Baill.) that has been commercialised in China for controlling powdery mildews. The biological mechanism of action of physcion against the barley powdery mildew pathogen was studied using bioassay and microarray methods. RESULTS: Bioassay indicated that physcion did not directly affect conidial germination of Blumeria graminis Speer f. sp. hordei Marchal, but significantly inhibited conidial germination in vivo. Challenge inoculation indicated that physcion induced localised resistance rather than systemic resistance against powdery mildew. Gene expression profiling of physcion‐treated barley leaves detected four upregulated and five downregulated genes (ratio ≥ 2.0 and P‐value < 0.05) by using an Affymetrix Barley GeneChip. The five upregulated probe sequences blasted to the same barley leaf‐specific thionin gene, with significant changes varying from 4.26 to 19.91‐fold. All downregulated genes were defence‐related, linked to peroxidase, oxalate oxidase, bsi1 protein and a pathogenesis‐related protein. These changes varied from ? 2.34 to ? 2.96. Quantitative real‐time PCR data confirmed that physcion enhanced the gene expression of leaf‐specific thionin of barley. CONCLUSION: Results indicated that physcion controls powdery mildew mainly through changing the expression of defence‐related genes, and especially enhancing expression of leaf‐specific thionin in barley leaves. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The effects of silicon (Si) supplied in the form of potassium silicate (PS) were evaluated on epidemic components of powdery mildew of melon under greenhouse conditions. The PS was applied to the roots or to leaves. In the first experiment, epidemic components were evaluated after inoculation with Podosphaera xanthii. In the second experiment, the disease progress rate was evaluated on plants subjected to natural infection. The area under the disease progress curve was reduced by 65% and 73% in the foliar and root treatments, respectively, compared to control plants, as a consequence of reductions in infection efficiency, colony expansion rate, colony area, conidial production and disease progress rate. However, root application of PS was more effective than foliar application in reducing most of the epidemic components, except for infection efficiency. This can be explained by the high Si concentration in leaf tissues with root application, in contrast to the foliar treatment where Si was only deposited on the external leaf surfaces. The effects of PS reported in this study demonstrated that powdery mildew of melon can be controlled, and that the best results can be achieved when PS is supplied to the roots.  相似文献   

11.
To establish control thresholds for chemical control of powdery mildew (Erysiphe cruciferarum) on Brussels sprouts, mildew intensity on leaves and buds was observed on the cultivars Lunet, Tardis and Asgard during three years in unsprayed plots. Mildew infection on the leaves was observed from late August onwards, increasing to moderate or high levels. In one year light infestation of the buds was observed, but no reduction in quality occurred. These preliminary results indicate, that from late August onwards the following levels of leaf injury by powdery mildew can be tolerated: T=5+0.42*(Julian date — 235), in which T is the tolerable leaf injury in percentage leaf area covered. When sampling the crop to assess powdery mildew infection, care must be taken that leaves are sampled from all stem positions, as top leaves tend to be much less infected.  相似文献   

12.
The effects of rain on different stages of powdery mildew development were investigated quantitatively for Erysiphe graminis on barley, Erysiphe pisi on pea and Sphaerotheca pannosa on rose. Water drops 4 mm in diameter released from a height of 2·5 m onto target leaves reduced the numbers of conidia on the impacted surfaces and inhibited subsequent mildew development, the effects declining as the interval between inoculation and impaction increased. Simulated rainfall applied after inoculation reduced the numbers of conidia on leaves and inhibited mildew development, the effect declining as the interval between inoculation and treatment lengthened. Simulated rainfall applied to infected plants reduced their capacity to inoculate other plants, the effect declining as the interval between treatment and use as inoculum lengthened. Controlled exposure of infected peas and roses to natural rain reduced the numbers of conidia on leaves and inhibited subsequent mildew development, especially on upper leaf surfaces.  相似文献   

13.
Cuticular wax on the plant epidermis inhibits or enhances prepenetration events of powdery mildew (Erysiphe necator Schwein). We examined the role of cuticular leaf and berry waxes as a resistance mechanism in four grapevine genotypes (Italia?×?Mercan-174, Gürcü, Isabella, Özer Karas?) resistant to powdery mildew after natural infection and inoculation. To understand cuticular wax properties, we determined the amount of wax and antifungal effects of thin layer chromatography (TLC) fractions from cuticular leaf and berry waxes, then assessed the chemical composition of fractions with different antifungal activities using gas chromatography/mass spectrometry (GC/MS). Susceptible genotypes Cabernet Sauvignon and Italia were used for comparison. Resistant and sensitive genotypes did not differ significantly in the total amount of wax on leaves and berries; however, 27 fatty acids, 26 alkanes, 6 terpenes, 4 indole derivatives and 4 ketones, and 3 amides, 3 phenols and 3 steroids were detected in fractions with high antifungal activity (≥75% inhibition of germination) in leaf and/or berry cuticular waxes of resistant genotypes only. These compounds may be evaluated as markers for powdery mildew resistance during genotype selection in a grapevine breeding program.  相似文献   

14.
Conidia ofSclerospora sorghi, obtained from either systemically-infected or local-lesion-infected leaves of sorghum (cv. Vidan), were capable of inducing typical downy mildew systemic infection, including oospore formation, in sorghum and corn hybrids. Very young inoculated seedlings displayed chlorotic systemic symptoms already on the first leaf, and often died at fourth-leaf stage. Systemic infection was induced by conidia on sorghum 1–14 days old at inoculation. Incidence of infection was much higher and symptoms less delayed when the shoot rather than coleorhizas of young sorghum and corn seedlings were inoculated; in two-week-old sorghum with three leaves, inoculation of the coleoptile or of the base of the second and third blades resulted in systemic infection; with coleoptile inoculation partial leaf chlorosis was delayed until the fourth-or fifth-leaf stage, showing that penetration without symptoms had occurred as far as the meristematic tissues of young leaves still within the leaf tube. Conidial inoculation of young sorghum tillers sprouting after cutting down healthy mother shoots resulted in systemic infection. Conidial inoculum is deemed to be the probable major means for systemic infection of corn and sorghum sown in fields in which oospores are not present; inoculation of new tillers of forage sorghum by conidia from infected plants in a neighboring field can explain the rise in numbers of plants systemically stricken. Two sweet corn hybrids — one considered resistant in the field, the other very susceptible — proved equally susceptible when inoculated with conidia at 5 days of age.  相似文献   

15.
Three closely related fungicides, thiophanate (NF 35), thiophanate methyl (NF 44) and NF 48 have been found to be active against a wide range of diseases including the powdery mildews of apple, cucumber and barley; apple and pear scab and grey mould of soft fruit. This paper deals with the preliminary experiments to compare their relative mobilities and biological persistence in crop plants, using the powdery mildews as indicator infections. NF 44 and NF 48 in particular showed a high degree of systemic activity by root uptake and persistence of action against barley and cucumber mildew but very little systemic activity against apple mildew on potted rootstocks. They have also displayed trans-laminar and localised movement towards the leaf apex in sprayed cucumber and barley leaves but movement was not so marked in sprayed apple leaves. NF 48 was also active as a seed dressing against loose smut of barley.  相似文献   

16.
The effects of infection by the powdery mildew fungusErysiphe graminisf.spavenaewere studied in one line of wild oat (Avena fatua), and two cultivars, Lustre and Peniarth, of cultivated oat (A. sativa) to determine if the wild oat was more tolerant of infection than the two cultivated oats. Seven weeks after inoculation, when the plants were 10-weeks-old with fully expanded flag leaves, the fungus had colonized approx. 40% of the leaf surfaces of wild oat and cv. Lustre but only about 30% of the leaf surfaces of cv. Peniarth. The lower leaves of cv. Peniarth were at least as susceptible, if not more so, than those of the other two lines but the upper leaves, including the flag leaf, were much more resistant. Although cv. Peniarth supported the production of about half the number of mildew conidia as the wild oat and cv. Lustre its total dry weight and grain yield were reduced to the greatest extent. The wild oat was clearly much more tolerant of mildew infection than cv. Peniarth and slightly more tolerant than cv. Lustre. The greater tolerances of the wild oat and cv. Lustre compared to cv. Peniarth appeared to be due to the lower sensitivities of their metabolism to the activities of the mildew fungus.  相似文献   

17.
D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml−1) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The highest level of suppression of fungal development was obtained at 3 days after inoculation. The contents of chlorophyll, total phenolics, flavonoid, and gallic acid and its derivatives (GAD); the activities of phenylalanine ammonialyase (PAL), polyphenoloxidase (PPO), peroxidase (POX), and superoxide dismutase (SOD); and the expression of the genes encoding for PR-1, peroxidase (POX), lipoxygenase (LOX1), chitinase (Chit1) were higher in the cucumber leaves treated with D-pinitol and inoculated than in the leaves either treated with D-pinitol or inoculated with the pathogen. These results suggest that D-pinitol triggers several plant defense responses in cucumber leading to pathogen suppression and resistance to powdery mildew.  相似文献   

18.
内吸杀菌剂烯唑醇对小麦条锈菌和白粉菌发育影响的研究   总被引:7,自引:0,他引:7  
 小麦幼苗分别用小麦条锈菌和白粉菌接种3天后,用内吸杀菌剂烯唑醇喷雾施药。电镜观察烯唑醇对条锈菌和白粉菌在寄主上发育的影响,结果表明,烯唑醇引起两种病菌和寄主细胞发生一系列变化。小麦条锈菌和白粉菌菌丝细胞壁的内层普遍不规则地加厚,菌丝细胞的隔膜发育受阻而成为畸形;两病菌的吸器外间质变宽,并沉积有电子致密度较高的物质。小麦条锈菌的部分吸器母细胞产生的畸形入侵栓,不能穿透寄主细胞壁,部分吸器不能正常发育,吸器体呈分枝状,不能完全扩张、膨大。此外,被侵小麦细胞所分泌的物质可将条锈菌吸器完全包围起来。小麦条锈菌和白粉菌以上的细胞学变化可能导致了它们进一步发育受阻。  相似文献   

19.
ABSTRACT Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a major disease to wheat (Triticum aestivum) worldwide. Use of adult-plant resistance (APR) is an effective method to develop wheat cultivars with durable resistance to powdery mildew. In the present study, 432 molecular markers were used to map quantitative trait loci (QTL) for APR to powdery mildew in a doubled haploid (DH) population with 107 lines derived from the cross Fukuho-komugi x Oligoculm. Field trials were conducted in Beijing and Anyang, China during 2003-2004 and 2004-2005 cropping seasons, respectively. The DH lines were planted in a randomized complete block design with three replicates. Artificial inoculation was carried out in Beijing with highly virulent isolate E20 of B. graminis f. sp. tritici and the powdery mildew severity on penultimate leaf was evaluated four times, and the maximum disease severity (MDS) on penultimate leaf was investigated in Anyang under natural inoculation in May 2004 and 2005. The heritability of resistance to powdery mildew for MDS in 2 years and two locations ranged from 0.82 to 0.93, while the heritability for area under the disease progress curve was between 0.84 and 0.91. With the method of composite interval mapping, four QTL for APR to powdery mildew were detected on chromosomes 1AS, 2BL, 4BL, and 7DS, explaining 5.7 to 26.6% of the phenotypic variance. Three QTL on chromosomes 1AS, 2BL, and 7DS were derived from the female, Fukuho-komugi, while the one on chromosome 4BL was from the male, Oligoculm. The QTL on chromosome 1AS showed high genetic effect on powdery mildew resistance, accounting for 19.5 to 26.6% of phenotypic variance across two environments. The QTL on 7DS associated with the locus Lr34/Yr18, flanked by microsatellite Xgwm295.1 and Ltn (leaf tip necrosis). These results will benefit for improving powdery mildew resistance in wheat breeding programs.  相似文献   

20.
Field and glasshouse observations of Lolium spp. grasses indicated that the lower, abaxial, leaf surface was rarely infected by powdery mildew ( Erysiphe graminis ) even when the upper, adaxial, surface was densely colonized. Experiments showed that conidia of two strains of E. graminis , one from Lolium and one from Avena , germinated equally well on both surfaces of Lolium and Avena leaves, but that the subsequent growth and development of germlings was impaired on the lower surface of Lolium leaves, so that most formed only multiple short germ tubes or an abnormal long tube, and only c. 25% or fewer formed infection structures. This contributes to the apparent resistance of the lower Lolium leaf surface to powdery mildew and may help to explain why the disease is relatively unimportant in UK ryegrass crops, since infection structures develop at a high frequency on only 50% of the leaf area, i.e. the upper surface. Scanning electron microscopy showed that the epicuticular waxes on the lower Lolium leaf surface form amorphous sheets. This contrasts with the crystalline plate waxes seen on the upper surface of Lolium leaves and on both surfaces of oat leaves. However, when the lower Lolium leaf surface was washed with chloroform to remove epicuticular wax, normal germling and infection structure development was obtained on the wax-free surface. This suggests that the sheet waxes prevent the pathogen gaining access to features of the cuticular membrane which trigger normal germling development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号