首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
5种脑炎人兽共患病病毒多重RT-PCR检测方法的建立   总被引:3,自引:0,他引:3  
为建立同时检测流行性乙型脑炎病毒(JEV)、森林脑炎病毒(TBEV)、东方马脑炎病毒(EEEV)、西方马脑炎病毒(WEEV)和基孔肯雅病毒(CHIKV)5种人兽共患脑炎病病毒的多重RT-PCR方法,本研究根据GenBank登录的相关病毒基因序列设计特异引物,通过优化引物组合及PCR反应条件,建立可同时检测5种病毒的方法,扩增片段长度分别为411 bp(JEV)、945 bp(TBEV)、193 bp(EEEV)、545 bp(WEEV)和769 bp(CHIKV);该方法具有良好的特异性,对病毒核酸最低检测拷贝数分别为7.1×103、3.6×103、2.2×103、5.6×103和5.1×103.该方法具有特异性强、灵敏度高、操作简便等优点,为以上5种人兽共患脑炎病病毒提供快速检测手段.  相似文献   

2.
Three arthropod‐borne alphaviruses, western equine encephalitis viruses (WEEV), eastern equine encephalitis viruses (EEEV) and Venezuelan equine encephalitis viruses are the aetiological agents of a sometimes severe encephalomyelitis in equines and humans in the New World. With regard to the different ecology and epidemiology of these viruses, a method applied in serological screening should be able to distinguish between them as well as other related members of the genus Alphavirus in the American continent. However, this has been hampered in the past by (a) the close antigenic relationship between alphaviruses in traditional serological assays, especially in the routinely used haemagglutination‐inhibition, and (b) the need of biosafety level 3 facilities to grow the viral antigens. An epitope blocking assay using an EEEV glycoprotein E1‐expressing recombinant Sindbis virus and virus‐specific monoclonal antibodies (mAbs) binding to the E1 of EEEV (strain NJ/60) and the E1 of Sindbis virus was established using automated flow cytometry. The test was evaluated using sera of infected and vaccinated rabbits. A cut‐off value of 30% inhibition for antigenic complex‐specific seroconversion was found to be sufficient for the detection of the respective infection. By using three different mAbs in parallel, we were able to detect alphavirus genus‐, EEEV‐ and WEEV‐complex‐specific serum antibodies. As this test is based on the inhibition of binding of virus‐specific mAbs, sera of every origin other than mouse can be tested. Thus, this assay may prove useful in the serological screening of a variety of animal species during an outbreak investigation.  相似文献   

3.
Eastern equine encephalitis and Venezuelan equine encephalitis are endemic neglected tropical diseases in the Americas, causing encephalitis in both horses and humans. In 2013, a cross-sectional study was performed in 243 horses located in the highlands and lowlands throughout Costa Rica. Serum samples were analyzed with an IgG ELISA and confirmed by the plaque-reduction neutralization test (PRNT80). Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) overall seroprevalences by the PRNT80 were 36% (95% confidence interval [CI]: 29.9–42.5; 78/217 horses) and 3% (95% CI: 1.3–5.9; 6/217 horses), respectively. Both the viruses occurred in the lowlands and highlands. Rainfall and altitude were associated with VEEV seropositivity in the univariate analysis, but only altitude <100 meters above sea level was considered a risk factor in the multivariate analysis. No risk factors could be identified for the EEEV in the multivariate analysis. This is the first study that estimates the seroprevalence of the EEEV and VEEV in Costa Rican horses. The VEEV is widely distributed, whereas the EEEV occurs at a much lower frequency and only in specific areas. Clinical cases and occasional outbreaks of both viruses are to be expected.  相似文献   

4.
A serosurvey of antibodies against selected flaviviruses and alphaviruses in 384 bats (representing 10 genera and 14 species) was conducted in the Caribbean island of Trinidad. Sera were analysed using epitope‐blocking enzyme‐linked immunosorbent assays (ELISAs) specific for antibodies against West Nile virus (WNV), Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV), all of which are zoonotic viruses of public health significance in the region. Overall, the ELISAs resulted in the detection of VEEV‐specific antibodies in 11 (2.9%) of 384 bats. Antibodies to WNV and EEEV were not detected in any sera. Of the 384 sera, 308 were also screened using hemagglutination inhibition assay (HIA) for antibodies to the aforementioned viruses as well as St. Louis encephalitis virus (SLEV; which also causes epidemic disease in humans), Rio Bravo virus (RBV), Tamana bat virus (TABV) and western equine encephalitis virus (WEEV). Using this approach, antibodies to TABV and RBV were detected in 47 (15.3%) and 3 (1.0%) bats, respectively. HIA results also suggest the presence of antibodies to an undetermined flavivirus(es) in 8 (2.6%) bats. Seropositivity for TABV was significantly (P < 0.05; χ2) associated with bat species, location and feeding preference, and for VEEV with roost type and location. Differences in prevalence rates between urban and rural locations were statistically significant (P < 0.05; χ2) for TABV only. None of the aforementioned factors was significantly associated with RBV seropositivity rates.  相似文献   

5.
Recent studies using molecular genetic approaches have made important contributions to our understanding of the epidemiology of veterinary arboviral encephalitides. Viruses utilizing avian enzootic hosts, such as Western equine encephalitis virus (WEEV) and North American Eastern equine encephalitis virus (EEEV), evolve as relatively few, highly conserved genotypes that extend over wide geographic regions; viruses utilizing mammalian hosts with more limited dispersal evolve within multiple genotypes, each geographically restricted. Similar findings have been reported for Australian alphaviruses. This difference may be related to vertebrate host relationships and the relative mobility of mammals and avians. Whereas EEEV and Venezualan equine encephalitis virus (VEEV) utilize small mammalian hosts in the tropics, most WEEV genotypes probably utilize avian hosts in both North and South America. The ability of mobile, infected avian hosts to disperse alphaviruses may result in continual mixing of virus populations, and thus limit diversification. This high degree of genetic conservation is also exhibited by EEE and Highlands J viruses in North America, where passerine birds serve as amplifying hosts in enzootic transmission foci. Most equine arboviral pathogens, including EEEV, WEEV and Japanese encephalitis virus (JEV), occur in a naturally virulent enzootic state and require only appropriate ecological conditions to cause epizootics and epidemics. However, VEE epizootics apparently require genetic changes to convert avirulent enzootic strains into distinct epizootic serotypes. All of these arboviruses have the potential to cause severe disease of veterinary and human health importance, and further molecular epidemiological studies will undoubtedly improve our ability to understand and control future emergence.  相似文献   

6.
The adsorption by attapulgite (a naturally occurring clay) of wild rabies virus in naturally rabid dogs was investigated. Attapulgite selectively absorbed rabies virus in the brain tissue of naturally rabid dogs and rejected rabies virus in extracts from the submaxillary salivary glands of the rabid dogs. Attapulgite rejected the neurotropic-adapted viruses lymphocytic choriomeningitis, Eastern equine and Western equine encephalitis, Japanese B encephalitis, and St. Louis encephalitis in the brain tissue of suckling mice.  相似文献   

7.
Rabies, equine herpesvirus type I, and eastern and western encephalomyelitis viruses, known causes of equine neurological disease, are reviewed with emphasis on epidemiology, pathogenesis, clinical signs, and diagnosis.

Several arboviruses known to be active in Canada and capable of producing neurological disease in humans (Powassan, St. Louis encephalitis, snowshoe hare, and Jamestown Canyon viruses) are discussed as potential causes of encephalomyelitis in horses.

  相似文献   

8.
Three arthropod-borne alphaviruses, western equine encephalitis viruses (WEEV), eastern equine encephalitis viruses (EEEV) and Venezuelan equine encephalitis viruses are the aetiological agents of a sometimes severe encephalomyelitis in equines and humans in the New World. With regard to the different ecology and epidemiology of these viruses, a method applied in serological screening should be able to distinguish between them as well as other related members of the genus Alphavirus in the American continent. However, this has been hampered in the past by (a) the close antigenic relationship between alphaviruses in traditional serological assays, especially in the routinely used haemagglutination-inhibition, and (b) the need of biosafety level 3 facilities to grow the viral antigens. An epitope blocking assay using an EEEV glycoprotein E1-expressing recombinant Sindbis virus and virus-specific monoclonal antibodies (mAbs) binding to the E1 of EEEV (strain NJ/60) and the E1 of Sindbis virus was established using automated flow cytometry. The test was evaluated using sera of infected and vaccinated rabbits. A cut-off value of 30% inhibition for antigenic complex-specific seroconversion was found to be sufficient for the detection of the respective infection. By using three different mAbs in parallel, we were able to detect alphavirus genus-, EEEV- and WEEV-complex-specific serum antibodies. As this test is based on the inhibition of binding of virus-specific mAbs, sera of every origin other than mouse can be tested. Thus, this assay may prove useful in the serological screening of a variety of animal species during an outbreak investigation.  相似文献   

9.
Antibody detection against selected potentially zoonotic vector‐borne alphaviruses and flaviviruses was conducted on sera from bats from all six parishes in Grenada, West Indies. Sera were tested for (i) antibodies to flaviviruses West Nile virus, St. Louis encephalitis virus, Ilhéus virus, Bussuquara virus (BSQV), Rio Bravo virus and all four serotypes of dengue virus (DENV) by plaque reduction neutralization test (PRNT); (ii) antibodies to alphaviruses western equine encephalitis virus, Venezuelan equine encephalitis virus and eastern equine encephalitis virus by epitope‐blocking enzyme‐linked immunosorbent assay (ELISA); and (iii) antibodies to the alphavirus chikungunya (CHIKV) by PRNT. Two species of fruit bats were sampled, Artibeus jamaicensis and Artibeus lituratus, all roosting in or within 1,000 m of human settlements. Fifteen (36%) of the 42 bats tested for neutralizing antibodies to CHIKV were positive. The CHIKV‐seropositive bats lived in localities spanning five of the six parishes. All 43 bats tested for epitope‐blocking ELISA antibody to the other alphaviruses were negative, except one positive for Venezuelan equine encephalitis virus. All 50 bats tested for neutralizing antibody to flaviviruses were negative, except one that had a BSQV PRNT80 titre of 20. The CHIKV serology results indicate that bats living close to and within human settlements were exposed to CHIKV in multiple locations. Importantly, bats for this study were trapped a year after the introduction and peak of the human CHIKV epidemic in Grenada. Thus, our data indicate that bats were exposed to CHIKV possibly during a time of marked decline in human cases.  相似文献   

10.
This review will cover zoonotic, encephalitic alphaviruses in the family Togaviridae. Encephalitic alphaviruses, i.e. Western- (WEEV), Eastern- (EEEV), Venezuelan equine encephalitis virus (VEEV) and, more rarely, Ross River virus, Chikungunya virus and Highlands J virus (HJV), are neuroinvasive and may cause neurological symptoms ranging from mild (e.g., febrile illness) to severe (e.g., encephalitis) in humans and equines. Among the naturally occurring alphaviruses, WEEV, EEEV and VEEV have widespread distributions in North, Central and South America. WEEV has found spanning the U.S. from the mid-West (Michigan and Illinois) to the West coast and extending to Canada with human cases reported in 21 states. EEEV is found along the Gulf (Texas to Florida) and Atlantic Coast (Georgia to New Hampshire), as well as in the mid-West (Wisconsin, Illinois and Michigan) and in Canada, with human cases reported in 19 states. In contrast, transmission of VEEV occurs predominantly in Central and South America. As with their geographical distribution, equine encephalitis viruses differ in their main mosquito vector species and their zoonotic potential.  相似文献   

11.
A ribonucleic acid (RNA) hybridization assay to identify cattle infected by bovine viral diarrhea virus (BVDV) is described. The RNA probe was derived from the coding region at the 3' end of the genome of the NADL strain of BVDV. Total RNA from infected cell cultures or peripheral blood leukocytes from suspect animals was extracted and applied to nylon membranes with a slot blot apparatus. Peripheral blood leukocytes were tested concurrently for BVDV by virus isolation. The results of hybridization and virus isolation were in agreement for 92% of the cases. When compared with virus isolation, hybridization had a sensitivity of detection of 59.5% and a specificity of 95%. Cross-reactivity to RNA extracts of border disease virus-infected cells was noted. No cross-reactivity was detected to other common bovine viruses (bovine herpesvirus-1, bovine respiratory syncytial virus, parainfluenza-3 virus, and bluetongue virus), to viruses classified in related families (equine arteritis virus and Venezuelan equine encephalitis virus), or to viruses having similar genomic organization (dengue virus type 2 and Japanese encephalitis virus).  相似文献   

12.
West Nile virus (WNV), a zoonotic mosquito transmitted Flavivirus, has had significant health effects on horses in the United States, with over 23,000 United States equine cases since the disease was first recognized in 1999. Previous research has focused on how this disease progresses and affects equids days to weeks post infection. The purpose of this study was to evaluate if permanent equine behavioral changes had occurred in horses that had recovered from acute West Nile fever or encephalitis. Specifically, we examined if surviving this disease caused changes in the defensive behaviors of the animal against biting and stinging insects, presumably because of neurological sequelae that can result from the infection. Results from behavioral observations and neurologic reflex testing suggest that long-term survivors of WNV do not show a change in the frequency or types of behaviors used compared to uninfected horses, supporting the concept that lasting deficits from WNV usually resolve within the following 1–3 years post-infection. However, microhabitat and grouping behavior did have a significant impact on the frequency of defensive behaviors, with indoor locales and larger groups of horses showing less insect avoidance behaviors. These principles may play a more pivotal role in protecting equines from biting insects and disease than thought previously.  相似文献   

13.
Vesicular stomatitis viruses (VSVs) cause a condition known as vesicular stomatitis (VS), which results in painful lesions in equines, cattle, swine, and camelids, and when transmitted to humans, can cause flu-like symptoms. When animal premises are affected by VS, they are subject to a quarantine. The equine industry more broadly may incur economic losses due to interruptions of animal trade and transportation to shows, competitions, and other events. Equine owners, barn managers, and veterinarians can take proactive measures to reduce the risk of equines contracting VS. To identify appropriate risk management strategies, it helps to understand which biting insects are capable of transmitting the virus to animals, and to identify these insect vectors’ preferred habitats and behaviors. We make this area of science more accessible to equine owners, barn managers, and veterinarians, by (1) translating the most relevant scientific information about biting insect vectors of VSV and (2) identifying practical management strategies that might reduce the risk of equines contracting VSV from infectious biting insects or from other equines already infected with VSV. We address transmission risk at four different spatial scales—the animal, the barn/shelter, the barnyard/premises, and the surrounding environment/neighborhood—noting that a multiscale and spatially collaborative strategy may be needed to reduce the risk of VS.  相似文献   

14.
A 42-day study was conducted to assess the impact of three West Nile virus vaccines given either as separate injections or incorporated with their counterpart equine encephalitis and tetanus vaccines on serological responses under field use conditions. Two hundred forty mature, West Nile virus seronegative (<4) horses were followed serologically pre- and postprimary and secondary vaccination with six different vaccination programs, all including West Nile virus antigens. Forty horses were unvaccinated sentinel horses. All vaccines stimulated both a primary and secondary (booster) response to vaccination that was significantly higher than that of seronegative controls. However, inclusion of West Nile virus with equine encephalitis viruses and tetanus toxoid in vaccines had a significant detrimental impact on West Nile virus serum neutralization antibody production to both the primary and secondary vaccinations.  相似文献   

15.
16.
An 11-year-old Hanoverian-cross gelding was evaluated because of acute onset of ataxia, recumbency, and fever. At the stable, this and other horses had recently been infested with ticks. Results of analysis of a sample of CSF were within reference limits, but hematologic abnormalities included lymphopenia, thrombocytopenia, mild anemia, and intracytoplasmic inclusion bodies in neutrophils that were consistent with Anaplasma phagocytophilum (previously Ehrlichia equi). Results of serum biochemical analyses were characteristic of infection and included high, unconjugated bilirubin concentration. Other common causes of recumbency in horses, such as equine protozoal myeloencephalitis, infection with eastern or western equine encephalitis viruses and equine herpesvirus-1, West Nile viral encephalitis, trauma, and metabolic disease, were ruled out. The horse responded quickly to i.v. administration of oxytetracycline and recovered fully within 6 days.  相似文献   

17.
Venezuelan equine encephalitis (VEE) viruses cause natural outbreaks in humans and horses and represent a significant biothreat agent. The effect of tunicamycin on the course of the disease in mice with VEE was investigated, and the combined effects of these agents was characterized. CD-1 mice given 2.5 microg of tunicamycin had >1,000-fold more virus in the brain 48 hours after infection with the virulent VEE strain V3000 and > or =100-fold of the attenuated strain V3034 at all tested times than did untreated mice, indicating enhanced neuroinvasion. Tunicamycin did not alter the viremia profiles of these viruses nor the replication of V3000 in the brain itself. Tunicamycin alone caused ultrastructural blood-brain barrier damage, yet neuroinvasion by V3000 in treated mice appeared to occur via the olfactory system rather than the blood-brain barrier. Tunicamycin-treated, V3000-infected mice also exhibited earlier and more severe weight loss, neurological signs, neuronal infection, neuronal necrosis and apoptosis, and inflammation than untreated, V3000-infected mice. The mean survival time of tunicamycin-treated, V3000-infected mice was 7.3 days versus 9.9 days for untreated, V3000-infected mice. These studies imply that animals that ingest toxins similar to tunicamycin, including the agent of annual ryegrass toxicity in livestock, are conceivably at greater risk from infections by encephalitis viruses and that humans and horses exposed to agents acting similar to tunicamycin may be more susceptible to encephalitis caused by VEE viruses. The exact mechanism of tunicamycin-enhanced neuroinvasion by VEE viruses requires further study.  相似文献   

18.
The prevalence of equine respiratory virus infections among a suspected population of race horses was examined using polymerase chain reaction (PCR). One or more of five equine respiratory viruses were detected in the nasal swabs of 45 of 89 horses (50.6%), and the detection rate of equine herpesvirus type 1 (EHV-1), equine herpesvirus type 4 (EHV-4), equine herpesvirus type 5 (EHV-5), equine rhinitis A virus (ERAV) and equine rhinitis B virus (ERBV) were 5.6%, 7.9%, 39.0%, 2.2%, and 6.7%, respectively. Among the 45 infected horses, 7 were co-infected with EHV and/or equine rhinitisvirus (ERV). Equine influenzavirus and equine arteritisvirus were not detected in any samples. Specific antibodies to EHV-1 and/or EHV-4 were detected in 59 of 73 tested sera (80.8%), using a virus neutralization test. This investigation suggests that equine respiratory viruses are endemic at Seoul Race Park and that the impact of viral infections on race horses’ health in Republic of Korea should be evaluated.  相似文献   

19.
Reasons for performing study: Three previously described NS1 mutant equine influenza viruses encoding carboxyterminally truncated NS1 proteins are impaired in their ability to inhibit type I IFN production in vitro and are replication attenuated, and thus are candidates for use as a modified live influenza virus vaccine in the horse. Hypothesis: One or more of these mutant viruses is safe when administered to horses, and recipient horses when challenged with wild‐type influenza have reduced physiological and virological correlates of disease. Methods: Vaccination and challenge studies were done in horses, with measurement of pyrexia, clinical signs, virus shedding and systemic proinflammatory cytokines. Results: Aerosol or intranasal inoculation of horses with the viruses produced no adverse effects. Seronegative horses inoculated with the NS1‐73 and NS1‐126 viruses, but not the NS1‐99 virus, shed detectable virus and generated significant levels of antibodies. Following challenge with wild‐type influenza, horses vaccinated with NS1‐126 virus did not develop fever (>38.5°C), had significantly fewer clinical signs of illness and significantly reduced quantities of virus excreted for a shorter duration post challenge compared to unvaccinated controls. Mean levels of proinflammatory cytokines IL‐1β and IL‐6 were significantly higher in control animals, and were positively correlated with peak viral shedding and pyrexia on Day +2 post challenge. Conclusion and clinical relevance: These data suggest that the recombinant NS1 viruses are safe and effective as modified live virus vaccines against equine influenza. This type of reverse genetics‐based vaccine can be easily updated by exchanging viral surface antigens to combat the problem of antigenic drift in influenza viruses.  相似文献   

20.
Jamestown Canyon (JC) and Saint Louis encephalitis (SLE) viruses are mosquito-transmitted viruses that have long been present in California. The objective of this study was to determine the seroprevalence of these two viruses in horses prior to the introduction of West Nile (WN) virus. Approximately 15% of serum samples collected in 1998 from 425 horses on 44 equine operations horses throughout California had serum antibodies to JC virus, whereas antibodies were not detected to SLE virus. The results indicate that horses in California were commonly infected prior to 1998 with mosquito-transmitted Bunyaviruses that are identical or closely related to JC virus, but not with SLE virus. The different seroprevalence of SLE and JC viruses in horses likely reflects the unique ecology of each virus, and it is predicted that WN virus will have a wider distribution in California than closely related SLE virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号