首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a novel strategy was used to prepare the bamboo fiber (BF)/polypropylene (PP) composites which greatly improved the distribution of BF. Both the raw and alkali treated BF were utilized for the fabrication of composites and silane coupling agent was used to improve the adhesion of BF and PP. The effects of BF content and the alkali treatment of BF on mechanical, thermal, morphological, dynamic mechanical properties and water absorption were studied. The Fourier transform infrared spectroscopy (FT-IR) analysis indicated that the hydrophilic nature of raw BF was significantly reduced by alkali treatment. In addition, the mechanical properties and the water absorption of the composites were found to increase with the increment of BF loading. Most importantly, the mechanical properties of the alkali treated BF showed much higher values than that of raw BF while the water absorption of alkali treated BF was much lower than that of raw BF. The results indicated the interaction of fiber-matrix was greatly improved by the alkali treatment. Moreover, from the Scanning Electron Microscopy (SEM) images, it further proved that the distribution of BF was improved by the way of papermaking to premix BF and PP fiber. The Dynamic mechanical thermal analysis (DMA) results showed that the storage modulus of the composites was increased with further increase in BF content.  相似文献   

2.
In order to assess the effect of cosolvent on the dissolved amounts of supercritical carbon dioxide (SCCO2) in bamboo fiber/polypropylene (BF/PP) composites, the dissolved amounts were measured at 313.15 K and pressures ranging from 15 to 25 MPa by a gravimetric method. The diffusion of mixed solvents out of BF/PP presented Fickian behavior and Fick’s diffusion model was applied to determine the dissolved amounts. The increase of dissolved amounts with the addition of ethanol can be explained not only by the density effect, but also by the specific interactions (especially hydrogen bonding) between the solute and cosolvent. The cosolvent effect reached a clear maximum at 20 MPa for both 2 % and 4 % ethanol, which seemed to be the result of specific interactions in concert with the difference between local and bulk density.  相似文献   

3.
The main objective of this research was to study the effect of fiber content variation and stearic acid (SA) treatment on the fundamental properties of unidirectional coir fiber (CF) reinforced polypropylene (PP) composites. Several percentages of filler contents were used (10–40 wt %) in order to gain insights into the effect of filler content on the properties of the composites. Coir/PP composites were fabricated by compression molding, and the properties of composites were studied by physico-mechanical and thermal properties. The results from mechanical properties such as tensile strength (TS), tensile modulus (TM) and impact strength (IS) of the CF/PP composites were found to be increased with increasing fiber content, reached an optimum and thereafter decreased with further increase in fiber content. Treatment of the coir with SA as the coupling agent enhanced the mechanical properties, crystallization temperature and crystallinity of virgin PP and water desorption of the resulting composites, resulting from the improved adhesion between the CF and PP matrix. Scanning electron micrographs (SEM) of the tensile fractured samples showed improved adhesion between fiber and matrix upon treatment with SA. Interfacial shear strength (IFSS) of the composites was measured by single fiber fragmentation test (SFFT).  相似文献   

4.
This paper presents the results of a current study on polypropylene matrix composites processed by injection, with two different glass fiber lengths and five different volume fractions. Physical and mechanical properties were obtained, namely flexural strength, stiffness modulus and fracture toughness. The mechanical properties of the composites increased significantly with the increase of the fibers volume fraction in agreement with the Counto model. The effect of water immersion time was also analysed. Immersion in water promotes a marked decrease in mechanical properties in the early seven-ten days, and afterwards tends to stabilize. Water causes a decrease of the relative strength which increases with fiber volume fraction and reaches about 29 % and 32 % for 20 % of 4.5 mm fiber length and for 25 % of 12 mm fiber length respectively, after 28 days immersion in water. Fracture toughness increases with fiber volume fraction and is always higher for 12 mm fiber length composites than for 4.5 mm fiber length composites.  相似文献   

5.
Present research investigates the mechanical properties of jute-coir fiber reinforced hybrid polypropylene (PP) composite with fiber loading variation and observes the effect of chemical treatment of fiber on property enhancement of the composites. Composites were manufactured using hot press machine at four levels of fiber loading (5, 10, 15 and 20 wt%). Fiber ratio’s were varied (jute:coir=1:1, 3:1 and 1:3) for 20 % fiber loaded composites. Both jute and coir fiber was treated using 5 % and 10 % NaOH solutions. Composites were also prepared using treated fiber with jute-coir fiber ratio of 3:1. Tensile, flexural, impact and hardness tests and Fourier transform infrared spectroscopic analysis were conducted for characterization of the composites. Tensile test of composite showed a decreasing trend of tensile strength and increasing trend of the Young’s modulus with increase in fiber loading. During flexural, impact and hardness tests, the flexural strength, flexural modulus, impact strength and hardness values were found to be increased with increase in fiber loading. All these properties enhanced with the enhancement of jute content except impact strength. 5 % NaOH treatment provided an improving trend of properties whereas, 10 % NaOH treatment showed the reverse one. The FTIR analysis of the composites indicated decrease of hemicelluloses and lignin content with alkali treatment.  相似文献   

6.
Chemical treatment is an often-followed route to improve the physical and mechanical properties of natural fiber reinforced polymer matrix composites. In this study, the effect of chemical treatment on physical and mechanical properties of jute fiber reinforced polypropylene (PP) biocomposites with different fiber loading (5, 10, 15, and 20 wt%) were investigated. Before being manufactured jute fiber/PP composite, raw jute fiber was chemically treated with succinic anhydride for the chemical reaction with cellulose hydroxyl group of fiber and to increase adhesion and compatibility to the polymer matrix. Jute fiber/PP composites were fabricated using high voltage hot compression technique. Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) tests were employed to evaluate the morphological properties of composite. Succinic anhydride underwent a chemical reaction with raw jute fiber which was confirmed through FTIR results. SEM micrographs of the fractured surface area were taken to study the fiber/matrix interface adhesion and compatibility. Reduced fiber agglomeration and improved interfacial bonding was observed under SEM in the case of treated jute fiber/PP composites. The mechanical properties of jute/PP composite in terms of Tensile strength and Young’s modulus was found to be increased with fiber loading up to 15 wt% and decreased at 20 wt%. Conversely, flexural strength and flexural modulus increased with fiber loading up to 10 wt% and start decreasing at 15 wt%. The treated jute/PP composite samples had higher hardness (Rockwell) and lower water absorption value compared to that of the untreated ones.  相似文献   

7.
Glass fiber reinforced polypropylene composites were compounded with a twin-screw extruder and injection molded. Fiber length distribution study showed that more fiber degradation occurred during processing of the composites with higher fiber loading. Dynamic mechanical analysis carried out showed that magnitudes of storage and loss modulus of composites are improves with the presence of the glass fiber in the system. The incorporation of fibers into the composites has slightly shifted the glass transition temperature to lower values. On the other hand, the presence of the glass fiber reduces the magnitude of tan δ at α-transition dramatically due to the strengthening effect by the fibers. From impact test, it was found that increment in glass fiber loading leads to an increase in peak load, critical strain energy release rate and critical stress intensity factor indicating the improvement in the material toughness. However, there was no significant change observed in fracture energy. With respect to increasing in specimen geometry, despite an improvement in peak load and fracture energy of the impact specimen, the critical strain energy release rate and critical stress intensity factor values were decreased. On the other hand, increase in test temperature resulted in reduction of peak load and critical stress intensity factor due to increment in material ductility, whereby fracture energy and critical strain energy release rate improved.  相似文献   

8.
In this paper, the short carbon fiber (SCF)/PP composite foams with fine open cell were prepared with batch foaming technique using supercritical CO2. The effects of SCF contents, saturation pressure and depressurization rate on the cell morphology were studied. The experimental results indicate that the cell morphology of foamed composites was significantly influenced by the SCF contents and saturation pressure. It is found that the cell size increased and cell density decreased with the increment of SCF contents while the saturation pressure had the opposite effect. However, depressurization rate showed little impacts on the cell morphology due to the presence of SCF.  相似文献   

9.
10.
In this research, reinforcing effect of hybrid filler including rice husk (RH), beech bark (BB) and nano-SiO2, in polypropylene has been investigated. In the sample preparation, four levels of filler loading were used for waste lignocellulosic materials (55-58 wt.%) and nano-SiO2 (0-4 wt.%). In order to increase the interphase adhesion, polypropylene grafted with maleic anhydride was added as a coupling agent to all the composites studied. The physical properties, viz. the thickness swelling and water absorption, and mechanical properties, namely, the tensile, flexural and notched Izod impact strengths, of the composites were determined. Generally, high amount of filler content in composites can lead to the reduction of interfacial adhesion between matrix polymer and filler, and it limits their applications. The results showed that while flexural properties and elongation at break were moderately improved by the increase in the amount of filler in the matrix, tensile and Izod impact strengths decreased dramatically. However, the composites had acceptable mechanical strength levels. The mechanical properties of composites filled with RH are generally greater than BB composites. The thickness swelling and water absorption of the composites increased with the increase in the filler loading, but to a negligible extent as compared with the wood-based composites and the solid woods. Nano-SiO2 addition showed little positive effect on the mechanical properties. It can be concluded from this study that the used waste lignocellulosic materials are attractive reinforcements from the standpoint of their physico-mechanical properties.  相似文献   

11.
Banana fiber-reinforced polypropylene (PP) matrix composites were prepared by compression molding and their mechanical properties were evaluated. Banana fibers and matrices were irradiated with UV radiation at different intensities. Mechanical properties of irradiated banana fibers and matrices based composites were found to increase significantly compared to untreated counterparts. Optimized banana fibers were treated with 2-hydroxyethyl methacrylate (HEMA) solution and were cured in an oven at different temperatures for different curing times and then composites were fabricated. Monomer concentration, curing temperature and curing time were optimized with the extent of polymer loading and mechanical properties and showed better mechanical properties over untreated composites. Water uptake and simulating weathering test of the composites were also investigated.  相似文献   

12.
Aluminum particles (Al) were added to polypropylene (PP) in the presence of poly ethylene glycol (PEG) and polypropylene-graft-maleic anhydride to produce composites. The composites were then melt-spun into a mono filament and tested for tensile properties, diameter evenness and morphology. Melt rheological properties of Al/PP composites were studied in linear viscoelastic response regions. It was observed that level of dispersion of aluminum particles within a polypropylene composite fiber could be improved by incorporating polyethylene glycol. The improvement of dispersion led to an improvement in the fibers mechanical properties through a reduction of the coefficient of variation of fiber diameter.  相似文献   

13.
Synthetic fibers are generally produced with circular cross sectional shapes. Other cross sectional shaped fibers such as trilobal, triangular, hollow and pentagonal fibers are also produced to improve some properties of fibers and fabrics such as lustre, handle, wicking rate, strength, stiffness and bulkiness. In this research we aimed to investigate compressional behaviours of fabrics knitted from polypropylene fibers having three different cross sectional shapes; namely circular, trilobal and triangular. Morphological, structural and mechanical properties of produced fibers were evaluated by using scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry and tensile tester, respectively. In terms of structural and mechanical properties, no significant differences were found related to fiber cross sectional shapes. Then, plain knitted farbrics were produced and compressional properties of these fabrics were investigated. Fabrics knitted from trilobal fibers showed the highest compressibility properties and it is followed by fabrics which are produced from triangular and circular fibers.  相似文献   

14.
Carbon fibers were coated with E51 plus Methacryl-POSS together in an attempt to improve the interfacial properties between carbon fibers and unsaturated polyester resins matrix. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were performed to characterize the changes of carbon fiber surface. AFM results show that the coating of E51 plus POSS significantly increased the carbon fiber surface roughness. XPS indicates that silicon containing functional groups obviously increased after modification. Dynamic mechanical analysis was carried out to investigate the surface energy of carbon fiber. Force modulation atomic force microscopy (FMAFM) and Interlaminar shear strength (ILSS) were used to characterize the interfacial properties of the composites. ILSS was increased by 21.9 % after treatment.  相似文献   

15.
This work investigated the effects of date palm leaf fiber (DPLF) content on the thermal and tensile properties; and morphology of compatibilized polyolefin ternary blend. Recycled polyolefin ternary blend consisting of low density polyethylene (RLDPE), high density polyethylene (RHDPE) and polypropylene (RPP) were fabricated at different parts per hundred resin (phr) of DPLF. Maleic anhydride grafted polyethylene (MAPE) was used as compatibilizer to enhance the adhesion between filler and polymer matrix. The composites were prepared using melt extrusion and tests samples were produced via injection molding process. Thermal conductivity results showed that as much as 11 % reduction in thermal conductivity was achieved with the incorporation of 30 phr DPLF. Highest tensile strength was observed with the incorporation of 10 phr DPLF. The elongation at break was reduced with the addition of DPLF due to impediment of chain mobility by the fillers. Initial degradation temperature increased with the addition of DPLF. Hence, it is concluded that DPLF can be used to develop green and thermally insulating composites. It is hoped that the present results will stimulate further studies on the thermally insulative materials based on natural fibers reinforced polymer composites for applications in the building industries.  相似文献   

16.
Maize stalk has become one of the major sources of fibers from the agricultural residues. Use of these fibers as a reinforcement in the polymer is described in this paper. The present work is focused on establishing the properties such as physical, chemical, morphological structure and thermal properties of maize stalk fiber using different characterization techniques. Simple hand layup method was followed for processing the composite material. Chemical treatments of fibers were carried out to study the interaction of fibers with the matrix. The results revealed that maize fibers can also be used as a traditional fiber as reinforcement in a natural fiber reinforced composite materials.  相似文献   

17.
A useful reinforcement for carbon fiber (CF) composites was found by performing the assisted electrophoretic deposition (EPD) of graphene oxide (GO) for carbon nanotubes (CNTs) onto the CF surface. GO-assisted EPD of CNTs was conducted without the use any other pre-treatment or additives in order to avoid destroying the structure of the CNTs and to facilitate preparation of stable dispersion that was suitable for EPD. The presence of GO-CNTs may effectively increase both the roughness and wettability of the CF surface, resulting in an improvement to the interfacial bonding strength between the CF and the epoxy (EP). In contrast to the pristine CF/EP composite, the GO-CNTs/CF/EP composite exhibited a 64.6 % increase in interlaminar shear strength. Meanwhile, the water absorption of the composites decreased from 0.36 wt.% to 0.14 wt.%. The variable surface morphology, surface roughness, surface free energy and surface chemical composition of the CF were considered to have had an effect on the interfacial properties of the CF/EP composites; these effects could be seen using atomic force microscopes, scanning electron microscopes, X-ray photoelectron microscopes and contact angle analysis characterizations.  相似文献   

18.
The objective was to study the potential of grain by-products (husk) of grains such as wheat (Triticum aestivum L; German name is Weizen) and rice (Oryza sativa) as reinforcements for thermoplastics as an alternative to or in combination with wood fibres. Prior to composites preparation, the chemical components of fibres such as cellulose, hemi-cellulose, lignin, starch, protein and fat were measured and the surface chemistry and functionality of grain by-products were studied using EDX and FT-IR. Structural constituents (cellulose, starch) were found in wheat husk (W) equal 42%, in rice husk 50% and in soft wood 42%, respectively. Thermal degradation characteristics, the bulk density, water absorption and the solubility index were also investigated. Wheat husk (W) and rice husk were found thermally stable at temperatures as low as 178 °C and 208 °C, respectively. The particle morphology and particle size were investigated using microscopy. Water absorption properties of the fibres were studied to evaluate the viability of these fibres as reinforcements. Polypropylene composites were fabricated using a high speed mixer and an ensuing injection moulding process with 40 wt% fibre. The tensile and Charpy impact strength of the resulting composites were investigated. The tensile elongation at break was found to 75% for wheat husk (W) composites and 23% for rice husk composites better than soft wood composites. Rice husk composites showed 13% better Charpy impact strength than soft wood composites. Due to coupling agent, tensile strength of composites found to improve 25% for soft wood, 35% for wheat husk (W) and 45% for rice husk.  相似文献   

19.
In recent years, composites based on glass fiber reinforced polymer have been widely used in order to meet increasing durability and safety regulations, particularly in the power cable, automotive and plane industry. In this paper, mechanical and electrical properties of high density polyethylene (HDPE) and HDPE containing glass fiber polymer composites were investigated and compared at different temperatures. Composite materials were prepared with the hot pressing method. Tensile strength, % elongation and the modulus of elasticity (or Young’s modulus) were determined for each sample at different temperatures. In addition to this, at different temperatures τ σ and τ E have mechanical and electrical lifetime respectively, corresponding to mechanical tension (σ) and electrical strength (E), and this was investigated for each sample. As compared to the mechanical and electrical properties of neat HDPE, HDPE/0.5 % glass fiber composites have been found to have better mechanical and electrical durability.  相似文献   

20.
A systematic study has been carried out to investigate the mechanical and physical properties of jute, bamboo and coir (brown and white) single fibers. The tensile properties (tensile strength, Young’s modulus and strain to failure) were determined by varying span length. Scanning electron microscopic analysis was also carried out to determine the physical properties of fibers in order to correlate with its strength, Young’s modulus and strain to failure. The Young’s modulus and strain to failure were corrected using newly developed equations. The study revealed that with increasing test span length the Young’s modulus increased and tensile strength as well as strain to failure decreased. This is because no extensometer could be used in this test set-up and machine displacement (denoted by α) was used for the modulus determination. It is also attributed that larger span length helps to minimize the machine displacement compared to smaller ones due to the reduced relative effect of slippage in the clamps. Among all fibers, the Young’s modulus of bamboo fiber was the highest. Jute fiber had smoother surface compared to other three examined fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号