首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • ? Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.
  • ? We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.
  • ? Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.
  • ? We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.
  •   相似文献   

    2.

    ? Context

    The correlation between tree ring width and density and short-term climate fluctuations may be a useful tool for predicting response of wood formation process to long-term climate change.

    ? Aims

    This study examined these correlations for different radiata pine genotypes and aimed at detecting potential genotype by climate interactions.

    ? Methods

    Four data sets comprising ring width and density of half- and full-sib radiata pine families were used. Correlations with climate variables were examined, after the extraction of the effect of cambial age.

    ? Results

    Cambial age explained the highest proportion of the ring to ring variation in all variables. Calendar year and year by family interaction explained a smaller but significant proportion of the variation. Rainfall had a positive correlation with ring width and, depending on test site, either a negative or positive correlation with ring density. Correlations between temperature during growing season and ring density were generally negative.

    ? Conclusion

    Climate variables that influence ring width and wood density can be identified from ring profiles, after removing the cambial age effect. Families can be selected that consistently show desirable response to climate features expected to become prevalent as a result of climate change.  相似文献   

    3.
    Models for predicting microfibril angle variation in Scots pine   总被引:1,自引:0,他引:1  

    Context

    Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.

    Aims

    The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.

    Methods

    Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.

    Results

    The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.

    Conclusion

    A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems.  相似文献   

    4.

    Context

    The development of multiple trait selection indices for solid (structure) wood production in the Scots pine (Pinus sylvestris L.) breeding program requires genetic variances and covariances estimated among wood quality traits including stiffness.

    Aims

    Genetic control and relationships among Scots pine growth, fiber, and wood quality traits were assessed by estimating heritability, phenotypic and genetic correlation using a Scots pine full-sib family trial.

    Method

    Wood quality traits including clearwood and dynamic acoustic stiffness were measured using SilviScan and Hitman in a 40-year-old progeny trial and by sampling increment cores of 778 trees of 120 families. Genetic parameters were estimated using the mixed model by the ASReml software.

    Results

    Heritability ranged from 0.147 to 0.306 for growth, earlywood, transition wood and latewood proportion traits and from 0.260 to 0.524 for fiber dimension, wood density, MFA and stiffness traits. The highly unfavorable genetic correlation between diameter and whole core density (?0.479) and clearwood stiffness (?0.506) and dynamic acoustic stiffness (?0.382) was observed in this study.

    Conclusion

    The unfavorable genetic correlations between growth traits and stiffness indicate that multiple traits selection using optimal economic weights and optimal breeding strategies are recommended for the advanced Scots pine breeding program.  相似文献   

    5.
    Neighboring trees growing under identical environmental conditions can exhibit different dynamics and periods of growth. Despite the recent advances in cambial biology, the exogenous and endogenous factors generating asynchronous xylem growths still remain undetermined. This study investigated timings and duration of xylem formation in maritime pine (Pinus pinaster Ait.) from an even-aged plantation in Portugal growing under Mediterranean climate. Cambial phenology and stem diameter were monitored weekly, from March to December 2010, on two classes of trees divided according to the tree ring widths of the last 15 years, but similar age and size: fast- and slow-growing trees. We tested the hypothesis that differences in tree ring widths result from cell production which in turn affects timings of xylogenesis and that the bimodal growth pattern, typical of the Mediterranean, originates from a double reactivation of the cambium: in spring and autumn. Cambial activity started earlier and ended later in fast-growing trees, confirming that cell production is a key factor determining the duration of xylogenesis. Intra-annual variations in stem diameter recorded by band dendrometers revealed two peaks of increment occurring in spring and late summer. However, the number of cambial cells did not increase in late summer, which suggested that the second peak of increment was caused by stem rehydration, rather than by a reactivation of cell division. These results demonstrated that the variability in the timings of xylem phenology observed among trees of the same age and size and growing under similar environmental conditions was closely related to cell production and not to age or size per se.  相似文献   

    6.

    Key message

    The emergence of the characteristic tree-ring pattern during xylogenesis is commonly thought to be controlled by a gradient of morphogen (auxin, TDIF peptide...). We show that this hypothesis accounts for several developmental aspects of wood formation, but not for the final anatomical structure.

    Context

    Wood formation is a dynamic cellular process displaying three generic features: (i) meristematic cell proliferation is restricted to the small cambial zone, preventing exponential xylem radial growth along the growing season; (ii) developmental processes result in a stable zonation of the developing xylem; (iii) the resulting mature wood cells form the typical tree-ring structure made of early and late wood with a gradient of cell sizes, an important trait for wood functioning in trees and for lumber quality. The mechanisms producing these spatial-temporal patterns remain largely unknown. According to the often-cited morphogenetic-gradient hypothesis, a graded concentration profile of a signalling molecule (e.g. auxin, TDIF) controls xylogenesis by providing positional information to differentiating cells.

    Aims

    We assessed the predictions of the morphogenetic-gradient theory.

    Methods

    We developed a computational model of wood formation implementing hypotheses on how a morphogen flows through the developing xylem and controls cell division and growth and we tested it against data produced by studies monitoring wood formation in conifers.

    Results

    We demonstrated that a morphogenetic gradient could indeed control xylem radial growth and wood-forming tissue zonation. However, it failed to explain the pattern of final cell sizes observed in tree-rings. We discussed the features that candidate additional regulatory mechanisms should meet.
      相似文献   

    7.

    Key message

    Onset and cessation of radial and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in southern Finland were independent phenomena. They both contributed to the increment period duration, which was a more crucial factor defining the magnitude of annual radial and height increment.

    Context

    Phenology of diameter and height increment is a critical component of growth, also contributing to damage and survival of trees.

    Aims

    We quantified annual variation in intra-annual tracheid production and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.).

    Methods

    The number of tracheids and the day of the year for the onset and cessation of tracheid production were monitored from microcores collected repeatedly during growing seasons 2001–2012 in southern Finland. Weekly height increment was also measured in an adjacent sapling stand in 2008–2012.

    Results

    The first tracheids in pine were found around mid-May and in spruce a week later. The cessation of the tracheid production occurred during the last week of August for both tree species. Increment onset and cessation were independent phenomena, both contributing to the magnitude of tracheid production via increment period duration, which appeared to be a more crucial factor defining the number of tracheids. Duration of the height increment period was also related to shoot length but the connection was less tight than the link between the duration of tracheid production and the number of tracheids. A thermal threshold around 100 d.d. (degree days) was found for the onset of radial increment. No single environmental factor triggered the cessation of tracheid production, but in some years, soil water availability appeared to play a role.

    Conclusion

    The results indicate that extending growing seasons due to the climatic warming may increase growth in the Finnish forests.
      相似文献   

    8.
    Three different methods were evaluated for analysing wood formation of Norway spruce [Picea abies (L.) Karst.] and Scots pine (Pinus sylvestris L.) in Finland. During two growing seasons, wood formation dynamics were determined both by wounding the cambium with a needle followed by localisation of the wound-associated tissue modification after the growing season (pinning), and by extracting small increment cores during the growing season (microcoring). Stem radius was additionally monitored with band dendrometers. For Norway spruce, pinning and microcoring yielded similar dates for the onset of wood formation. The timing of wood production during the growing season was also similar for pinning and microcoring. For Scots pine, the onset of wood formation was recorded from microcores almost 2 weeks later than from pinning samples. In Scots pine, microcore measurements also produced somewhat later cessation dates for tracheid formation than the pinning samples. For both tree species, the total number of tracheids formed during the growing season was, however, about the same for pinning and microcoring. Dendrometer results clearly differed from those of pinning and microcoring. In particular, the dendrometers showed an increase of stem radius considerably earlier in spring, when the other methods did not detect wood formation. Thus, pinning and microcoring currently represent the most reliable techniques for detailed monitoring of wood formation.  相似文献   

    9.

    Context

    It is widely accepted that ring area increment generally increases from the tree apex to the crown base and is more-or-less constant below the crown base (Pressler’s law), but few quantitative models of this distribution have been developed.

    Aims

    The aim of this study was to develop a model of ring area increment using easily obtained crown features and other tree or stand characteristics in order to further the understanding and prediction of tree growth, form, and wood quality.

    Methods

    The models were fit to stem analysis observations from white spruce, black spruce, balsam fir, and lodgepole pine.

    Results

    In the final model, which includes tree crown and stand variables, ring area increment within the crown region was slightly curvilinear, the slope of ring area increment below the crown was non-zero, and the effect of butt swell was appreciable up-to a relative height of 0.10.

    Conclusions

    The high accuracy of the mixed effects model suggests that the three-component model form is appropriate for describing ring area profiles, whereas some tree-to-tree variation remains unexplained. The tree and stand variables used in these models can be easily measured in the field or obtained from remote sensing techniques.  相似文献   

    10.

    Context

    Density management diagrams (DMDs) are useful for designing, displaying and evaluating alternative density management regimes for a given stand-level management objective. The inclusion of variables related to crown fire potential within DMDs has not previously been considered.

    Aims

    The aim of this study was to include isolines of variables related to crown fire initiation and spread in DMDs to enable identification of stand structures associated with different types of wildfire.

    Methods

    Biometric and fuel data from maritime pine (Pinus pinaster Ait.) stands in NW Spain were used to construct DMDs. Different surface and crown fire behaviour models were used together to estimate crown fire potential.

    Results

    The crown fire potential varied greatly throughout development of the maritime pine stands. Low stands were more prone to crowning. The type of crown fire was mainly determined by stand density.

    Conclusion

    The DMDs developed can be used to identify relationships between stand structure and crown fire potential, thus enabling the design of thinning schedules aimed at reducing the likelihood of crowning.  相似文献   

    11.

    Key message

    Fungal infection was outlined as a potential reason for the onset of indented annual growth ring formation during the juvenile phase of hazel wood growth. Annual growth ring indentations resulted from the formation of disturbed zones which originated solely in close proximity to leaf traces.

    Context

    Hazel wood is an abnormal type of woody tissue that is formed as a result of exogenous stimuli that may trigger long-term responses in the cambium. Cambial responses produce anatomical alterations in the surrounding xylem tissue that can be observed as an indentation of annual growth rings. The chemical profiles of lignan hydroxymatairesinol may provide an indication of its possible role in the protection of a living tree against the spread of a fungal or microbial infection at the onset of indentation.

    Aims

    The objectives of this study were to reveal the anatomical differences in the altered woody tissue of Picea abies hazel wood at both the onset and the later stages of annual growth ring indentation and to determine the chemical profiles for hydroxymatairesinol upon elicitation by a fungal infection in the disturbed zones.

    Methods

    Light and scanning electron microscopy observations were carried out on radial, tangential, and cross sections of hazel wood zones separated from P. abies stems. Concentrations of hydroxymatairesinol were determined for both the disturbed zones and the non-indented zones using a gradient high-performance liquid chromatography.

    Results

    The formation of disturbed zones was accompanied by significant changes in both the direction and width of the tracheids which produced an abnormal formation of intertwined and twisted tracheids. Fungal hyphae, radial cell wall cracks, and unusually large cross-field pitting were all found in the tracheids of the disturbed zones.

    Conclusion

    The content of hydroxymatairesinol in the acetone extract determined from the disturbed zones was 3.4 times greater than that present in the non-disturbed tissues. By means of vascular dysfunction in the leaf traces, host trees responded to the fungal infection by plugging the lumens of conductive leaf trace tissue and filling the vascular pathway with polyphenolic compound deposits.
      相似文献   

    12.

    ? Introduction

    There has been an increasing interest in very early selection of radiata pine to reduce the breeding cycle for solid wood products. For such selection, new approaches are required to assess wood quality in wood from very young stems.

    ? Methods

    Nursery seedlings of clones of radiata pine were grown in leant condition using two leaning strategies for 18–20 months. Opposite wood and compression wood were isolated from the leaning stems and tested for dynamic modulus of elasticity, density, longitudinal shrinkage, volumetric shrinkage and compression wood area using new methods evolved for testing small size samples quickly and reliably. The methods were tested for their efficiency in differentiating clones by their wood properties.

    ? Results

    Leaning of stems provided distinct opposite and compression wood for testing. Automated image analysis method used for compression wood area assessment was found to be a quick and effective method for processing large number of samples from young stems. Compression wood was characterised by high basic density, high longitudinal shrinkage and low volumetric shrinkage than that of opposite wood. Acoustic velocity in opposite wood had a strong negative association with longitudinal shrinkage. The study signifies the importance of preventing mixing of opposite wood with compression wood while assessing wood quality in young stems thus making leaning a critical strategy. The comparison of wood properties of opposite wood revealed significant differences between clones. Opposite wood of the clone with the lowest dynamic modulus of elasticity exhibited the highest longitudinal shrinkage.

    ? Conclusion

    Significant differences in measurable wood properties between clones suggest the prospects of early selection for solid wood products.  相似文献   

    13.
    14.

    Context

    Wood density is an important component of wood quality, and it is therefore important to assess whether it can be subject to genetic improvement.

    Aim and methods

    We assessed the potential for genetic improvement of wood density in Larix kaempferi by recording components of annual growth rings. A full diallel mating test based on six plus L. kaempferi trees was used. Trees were 29 years old. Wood density was recorded by soft X-ray densitometry, and genetic parameters and genetic gains were computed.

    Results

    Wood density of mature wood was highly heritable, and the largest heritability (0.78) was reached at age 25. Specific combining ability and reciprocal effects displayed very low variance. The age–age correlation of overall wood density was very high (>0.94). The genetic correlation between overall wood density and basal cross-sectional area was positive after age 10. Early selection at age 6 would account for 69 % of the genetic gain from direct selection at age 28 in terms of wood density.

    Conclusion

    Genetic improvement of wood density could be achieved by mass selection and a simultaneous selection for radial increment in L. kaempferi; early selection for wood density can be achieved in this species.  相似文献   

    15.

    Context

    Edible stone pine (Pinus pinea L.) nut is a forest product which provides the highest incomes to the owners of stone pine forests.

    Aim

    The objective of this work is to evaluate the effect of first thinning on growth and cone production in an artificially regenerated stand in order to determine optimum intensity.

    Methods

    A thinning trial was installed in 2004 to compare two thinning regimes (heavy and moderate) and a control treatment. From 2004 to 2012, six inventories of forest attributes were carried out, and the cone crop was harvested annually. We evaluated the effect of thinnings on growth using repeated measures analysis of variance with a mixed model approach. With regards to cone production, we first estimated the probability of finding cones in a tree by applying a generalized mixed model and then estimated cone production by using a mixed model, including climatic variables.

    Results

    We found that thinning had a positive influence on tree diameter increment. Thinning increased the probability of finding cones and cone production. However, significant differences between heavy and moderate thinnings were not found.

    Conclusion

    We recommend early silvicultural treatments in stone pine stands to favor the development of trees and larger edible pine nut production.  相似文献   

    16.
  • ? Since the 1960s biologists have been trying to assess factors affecting cambial activity and latewood formation. A comparison of the phenology of the apical and lateral meristems could add new clues in order to understand mechanisms of the growth dynamic in conifers.
  • ? This study compared needle and shoot growth with xylogenesis in Larix decidua, Pinus cembra and Picea abies during 2001 to verify if cambial resumption occurred after shoot and needle growth had begun, and if latewood initiation occurred when shoot lengthening was complete.
  • ? In pine and spruce, needle and shoot lengthening was synchronous between mid-June and August while larches showed an early development of the needles at the end of May with a later shoot lengthening. Cell production lasted from mid-May to the beginning of August, with the first differentiating cells observed at the end of May, which indicated a earlier reactivation of the cambium with respect to needle and shoot growth.The first latewood cells began wall thickening between July and August, during the termination of needle and shoot lengthening.
  • ? The hypothesis that cambial resumption occurs after shoot and needle elongation was rejected. The separation in time between apical growth and secondary wall thickening of latewood suggested the presence of an internal competition in resource allocation.
  •   相似文献   

    17.

    Context

    Although drought is generally considered the main environmental constraint in Mediterranean environments, the ability to acclimate to and tolerate frost in early developmental stages can be a determinant for seedling survival of many Mediterranean tree species like stone pine (Pinus pinea L.).

    Aims

    The aim of this study was to assess the impact of the developmental stage of naturally regenerated stone pine individuals on tolerance to low temperature (LT) from summer to late autumn and in spring, at a highly continental site in central Spain. Specifically, we tested to what extent the differences in tolerance are related to shoot heteroblasty.

    Methods

    We assessed LT tolerance of needles from individuals at three age classes (class C1: seedlings, class C2: 4- to 8-year-old saplings and class C3: >9-year-old saplings) over nine dates from summer to spring.

    Results

    LT tolerance displayed severe seasonal trends and differed between age classes. It usually increased with sapling age. Such differences were tightly related to heteroblasty of the shoots. Our results point to a higher LT tolerance associated with larger leaf dry mass per unit area (LMA) values. No impact of late frosts on shoot growth rates was detected during this study.

    Conclusions

    Developmental changes during early plant growth seem to play a role in frost tolerance of stone pine seedlings, a finding which furthers our understanding of regeneration dynamics in this species in areas with continental influence.  相似文献   

    18.

    ? Context

    The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

    ? Aims

    This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

    ? Methods

    We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

    ? Results

    For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

    ? Conclusions

    These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

    19.

    ? Context

    Modification of stand density by thinning may buffer the response of tree growth and vigor to changes in climate by enhancing soil water availability.

    ? Aims

    We tested the impact of thinning intensity on cambial growth of Aleppo pine (Pinus halepensis L.) under semi-arid, Mediterranean conditions.

    ? Methods

    A multiple thinning experiment was established on an Aleppo pine plantation in Spain. We analysed the stem growth dynamics of two different crown classes under four different thinning intensities (15 %, 30 %, and 45 % removal of the basal area) for 2 years, based on biweekly band dendrometer recordings. Local relative extractable soil water was derived from the use of a water balance model Biljou© (available at https://appgeodb.nancy.inra.fr/biljou/) and used as an explanatory variable.

    ? Results

    Radial growth was mainly controlled by soil water availability during the growing season, and differed by crown class. The growth rates of dominant trees were significantly higher than the growth rates of suppressed trees. Removal of 30 % and 45 % of the initial basal area produced a growth release in both dominant and suppressed trees that did not occur under less intense thinning treatments.

    ? Conclusions

    Soil water availability was the main driver of radial growth during the growing season. Forest management confirmed its value for ameliorating the effects of water limitations on individual tree growth. These results may help managers understand how altering stand density will differentially affect diameter growth responses of Aleppo pine to short-term climatic fluctuations, promoting forests that are resilient to future climatic conditions.  相似文献   

    20.

    ? Context

    The transition of microfibril angle (MFA) values from juvenile to mature wood marks the change from variable, low-quality wood to stronger and more consistent wood that can produce higher value products.

    ? Aims

    We evaluate the utility of different statistical models that predict how much of a log is higher quality mature wood based on MFA.

    ? Methods

    MFA was measured from pith to bark at breast height in six lodgepole pine stands in western Canada. Six different forms of two-segment regression models were assessed to determine the point of transition (TP) in MFA from juvenile to mature wood.

    ? Results

    All six models provided useful and significant TP estimates. In the first segment (juvenile phase), the quadratic form produced the most conservative TPs, the linear form the least conservative, and the exponential form was intermediate. A linear second segment (mature phase) was only a minor improvement over a constant. There were significant differences in MFA TP among some sites. Analyses of the relationships between TP and tree variables, e.g., DBH, height, were inconclusive.

    ? Conclusions

    Any of the six two-segment models can be used objectively to estimate MFA transition points; the choice of model will allow mill managers to manage risk in product out-turn.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号