共查询到20条相似文献,搜索用时 15 毫秒
1.
Amsalu Abich Tadesse Mucheye Mequanent Tebikew Yohanns Gebremariam Asmamaw Alemu 《林业研究》2019,(5):1619-1632
Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems.However,equations for dry deciduous woodland ecosystems,an important carbon sink in the lowland areas of Ethiopia have not as yet been developed.This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass(AGB)of dominant woody species based on data from destructive sampling for Combretum collinum,Combretum molle,Combretum harotomannianum,Terminalia laxiflora and mixed-species.Diameter at breast height ranged from 5 to 30 cm.Two empirical equations were developed using DBH(Eq.1)and height(Eq.2).Equation 2 gave better AGB estimations than Eq.1.The inclusion of both DBH and H were the best estimate biometric variables for AGB.Further,the equations were evaluated and compared with common generic allometric equations.The result showed that our allometric equations are appropriate for estimating AGB.The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems. 相似文献
2.
Dimitris Zianis Gavriil Xanthopoulos Kostas Kalabokidis George Kazakis Dany Ghosn Olga Roussou 《European Journal of Forest Research》2011,130(2):145-160
Empirical allometric equations relating biomass of aboveground components to dendrometric variables for Pinus brutia Ten. trees are derived in this paper. They are based on data collected from Lesvos (North Aegean Sea) and Crete (South Aegean Sea) Islands. Comparisons to published equations for the same species growing in northwestern and southeastern Turkey, for Pinus nigra A. growing in Turkey and Pinus halepensis Mill. found in Western Aegean (island of Evia), are also presented. The biomass of branches from destructively sampled trees (twelve in Crete and six in Lesvos) was divided into four size classes (0?C0.63 cm, 0.64?C2.5 cm, 2.51?C7.61 cm, and 7.62?C22.8 cm). Tree crown biomass was calculated as the sum of the biomass in the four classes plus the fraction of stem above crown base. Over bark stem biomass was estimated through bole volume conversion based on wood density. The results showed clearly that, for a given diameter, the Cretan trees had more crown biomass and a higher share of small branches than trees on Lesvos, probably due to differences in environment and stand structure. Comparisons to published diameter versus crown biomass equations reveal a lower crown biomass for Turkish sites of Calabrian pine and Aleppo pine on Evia Island, while only Turkish Black pine seems to be comparable to the Calabrian pine on Crete. The derived allometries can be used for landscape fire behavior modeling, for ecophysiological studies and for the Kyoto protocol requirements of carbon changes in Pinus brutia Ten. forests located in northern and southern Greek sites. 相似文献
3.
Integrating regional climate change into allometric equations for estimating tree aboveground biomass of Masson pine in China 总被引:1,自引:0,他引:1
Liyong Fu Xiangdong Lei Zongda Hu Weisheng Zeng Shouzheng Tang Peter Marshall Lin Cao Xinyu Song Li Yu Jingjing Liang 《Annals of Forest Science》2017,74(2):42
Key message
A climate-sensitive aboveground biomass (AGB) equation, in combination with nonlinear mixed-effects modeling and dummy variable approach, was developed to examine how climate change may affect the allometric relationships between tree diameter and biomass. We showed that such changes in allometry need to be taken into account for estimating tree AGB in Masson pine.Context
As a native species and being widely distributed in subtropical China, Masson pine (Pinus massoniana Lamb.) forests play a pivotal role in maintaining forest ecosystem functions and mitigation of carbon concentration increase at the atmosphere. Traditional biomass allometric equations do not account for a potential effect of climate on the diameter–biomass relationships. The amplitude of such an effect remains poorly documented.Aims
We presented a novel method for detecting the long-term (2041–2080) effects of climate change on the diameter–biomass relationships and the potential consequences for long-term changes of biomass accumulation for Masson pine.Methods
Our approach was based on a climate-sensitive AGB model developed using a combined nonlinear mixed-effects model and dummy variable approach. Various climate-related variables were evaluated for their contributions to model improvement. Heteroscedasticity was accounted for by three residual variance functions: exponential function, power function, and constant plus function.Results
The results showed that diameter at breast height, together with the long-term average of growing season temperature, total growing season precipitation, mean temperature of wettest quarter, and precipitation of wettest quarter, had significant effects on values of AGB. Excessive rain during the growing season and high mean temperature in the wettest quarter reduced the AGB, while a warm growing season and abundant precipitation in the wettest quarter increased the AGB.Conclusion
Climate change significantly affected the allometric scale of biomass equation. The new climate-sensitive allometric model developed in this study may improve biomass predictions compared with the traditional model without climate effects. Our findings suggested that the AGB of Masson pine trees with the same diameter at breast height under three climate scenarios including representative concentration pathway (RCP) 2.6, RCP 4.5, and RCP 8.5 in the future period 2041–2080 would increase by 24.8 ± 32.7% (mean ± standard deviation), 27.0 ± 33.4%, and 27.7 ± 33.8% compared with the constant climate (1950–2000), respectively. As a consequence, we may expect a significant regional variability and uncertainty in biomass estimates under climate change.4.
3种异速生长方程对生物量建模的对比分析 总被引:2,自引:0,他引:2
曾伟生 《中南林业调查规划》2014,(1):1-3,19
利用5个树种的1 055株样木的生物量实测数据,对3种常用的异速生长方程的建模效果进行比较分析。结果表明,二元生物量模型M=aDbHc的拟合效果通常要好于一元生物量模型M=aDb;基于组合变量的常用二元模型M=a(D2H)b并不适合于各类生物量的估计,仅对树干生物量和干材生物量的估计是有效的,对其它生物量的估计其效果还不如一元模型;建立树冠、树枝和树叶生物量模型时,采用组合变量D3/H可能是合适的。 相似文献
5.
Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China 总被引:1,自引:0,他引:1
Because of global climate change,it is necessary to add forest biomass estimation to national forest resource monitoring.The biomass equations developed for forest biomass estimation should be compatible with volume equations.Based on the tree volume and aboveground biomass data of Masson pine(Pinus massoniana Lamb.) in southern China,we constructed one-,two-and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations.The prediction precision of aboveground biomass estimates from one variable equation exceeded 95%.The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height,although the contributions to regressions were statistically insignificant.For the biomass conversion function on one variable,the conversion factor decreased with increasing diameter,but for the conversion function on two variables,the conversion factor increased with increasing diameter but decreased with increasing tree height. 相似文献
6.
P. Muukkonen 《European Journal of Forest Research》2007,126(2):157-166
Since biomass is one of the key variables in ecosystem studies, widespread effort has aimed to facilitating its estimation.
Numerous stand-specific volume and biomass equations are available, but these cannot be used for scaling up biomass to the
regional level where several age-classes and structural types of stands coexist. Therefore simplified generalized volume and
biomass equations are needed. In the present study, generalized biomass and volume regression equations were developed for
the main tree species in Europe. These equations were based on data compiled from several published studies and are syntheses
of the published equations. The results show that these generalized equations explain 64–99% of the variation in values predicted
by the original published equations, with higher values for stem than for crown components.
相似文献
P. MuukkonenEmail: |
7.
Olfa Shaiek Denis Loustau Pierre Trichet Céline Meredieu Beya Bachtobji Salah Garchi Mohamed Hédi EL Aouni 《Annals of Forest Science》2011,68(3):443-452
• Introduction
In order to predict the biomass of aerial components of maritime pine stands (Pinus pinaster Ait.), generalized allometric equations were developed using data collected from the southern and northern margins of its geographical area. 相似文献8.
Vishal Singh Ashish TewariSatya P.S. Kushwaha Vinay K. Dadhwal 《Forest Ecology and Management》2011,261(11):1945-1949
Biomass and carbon sequestration rate of a young (four year old) mixed plantation of Dalbergia sissoo Roxb., Acacia catechu Willd., and Albizia lebbeck Benth. growing in Terai region (a level area of superabundant water) of central Himalaya was estimated. The plantation is seed sown in the rainy season of year 2004 and spread over an area of 44 ha. Allometric equations for both above and below ground components were developed for three tree species. The density of trees in the plantation was 1322 trees ha−1 The diameters of trees were below 10 cm. Five diameter classes were defined for D. sissoo and A. catechu and 3 for A. lebbeck. 5 trees were harvested in each diameter class. Individual tree allometry was exercised for developing the allometric equations relating tree component (low and above ground) biomass to d.b.h. Post analysis equations were highly significant (P > 0.001) for each component of all species. In the plantation Holoptelia integrifolia Roxb. (Family Ulmaceae) has been reduced to shrub form because of frost. Only the aboveground biomass of H. integrifolia and other shrubs were estimated by destructive harvesting method. Herbaceous forest floor biomass and leaf litter fall were also estimated. The total forest vegetation biomass was 10.86 Mg ha−1 in 2008 which increased to 19.49 Mg ha−1 in 2009. The forest is sequestering carbon at the rate of 4.32 Mg ha−1 yr−1. 相似文献
9.
中国南方马尾松立木生物量模型研建 总被引:11,自引:0,他引:11
开展全国森林生物量监测和评估,建立适合较大区域范围的通用性立木生物量模型将成为必然趋势。以中国南方马尾松Pinus massoniana立木生物量为对象,对地上生物量和地下生物量通用性模型的建立方法进行了研究。首先,对线性和非线性立木生物量模型进行了对比分析,结果表明非线性模型要优于线性模型;然后,对一元、二元与多元非线性模型的拟合效果进行了对比,结果表明在模型中增加树高、冠幅等因子对预估精度的提高相当有限,仅用胸径作为预估因子的一元模型已经解释了生物量变动的95%以上,可以用于大尺度森林生物量的估计;最后,对地下生物量的估计途径进行了研究,结果表明,在地下生物量实测样本只是地上生物量实测样本的子样本时,合适的做法是利用子样本建立根茎比模型,再结合利用大样本建立的地上生物量模型来联合估计地下生物量。本研究建立的中国南方9省区马尾松地上生物量模型的预估精度达到95%以上,地下生物量模型的预估精度也接近90%,可以用于该区域的马尾松生物量估计。 相似文献
10.
以我国湿地松154株样木的生物量实测数据为基础,综合利用分段建模方法和非线性误差变量联立方程组方法,建立了与立木材积方程相容的地上生物量方程和生物量转换因子模型,以及与地上生物量方程相容的地下生物量方程和根茎比模型。结果表明:所建地上生物量方程的平均预估误差小于5%,地下生物量方程的平均预估误差小于10%,全树生物量估计的平均预估误差小于3%,完全可满足森林生物量计量的精度要求,从而为我国湿地松林的生物量估计及碳汇能力评估提供了计量依据。 相似文献
11.
区域尺度杉木生物量通用相对生长方程整合分析 总被引:3,自引:0,他引:3
对已发表的我国南方不同地点的杉木林生物量数据和方程进行整合分析(Meta-analysis),建立适合大尺度的杉木生物量估算通用相对生长方程。结果表明:通用相对生长方程拟合杉木树干、地上部分和全株生物量数据程度最高(相关系数R20.92),根生物量的拟合较好(R20.87),叶和枝的拟合较差(R20.78)。仅用胸径(D)作为自变量与引入胸径、树高因子(D2、H)相比,拟合的相对生长方程的相关系数相差不大。估算的各组份生物量叠加后,与地上部分和全株树木生物量方程估算值的相容性较好,其相关系数在0.99以上。方程检验结果与发表的全株生物量方程比较表明,整合分析数据拟合的通用相对生长方程能满足估算大尺度杉木地上部分和全株生物量的精度要求,可以用来估算区域杉木林的生物量和碳贮量。 相似文献
12.
《林业研究》2020,31(4)
Biomass estimation using allometric models is a nondestructive and popular method.Selection of an allometric model can influence the accuracy of biomass estimation.Bangladesh Forest Department initiated a nationwide forest inventory to assess biomass and carbon stocks in trees and forests.The relationship between carbon storage and sequestration in a forest has implications for climate change mitigation in terms of the carbon sink in Bangladesh.As part of the national forest inventory,we aimed to derive multi-species biomass models for the hill zone of Bangladesh and to determine the carbon concentration in tree components(leaves,branches,bark and stem).In total,175 trees of 14 species were sampled and a semi-destructive method was used to develop a biomass model,which included development of smaller branch(base dia 7 cm) biomass allometry and volume estimation of bigger branches and stems.The best model of leaf,branches,and bark showed lower values for adjusted R2(0.3152-0.8043) and model efficiency(0.436-0.643),hence these models were not recommended to estimate biomass.The best fit model of stem and total aboveground biomass(TAGB) showed higher model efficiency 0.948 and 0.837,respectively,and this model was recommended for estimation of tree biomass for the hill zone of Bangladesh.The best fit allometric biomass model for stem was Ln(Stem)=-10.7248+1.6094*Ln(D)+1.323*Ln(H)+1.1469*Ln(W);the best fit model for TAGB was Ln(TAGB)=-6.6937+0.809*Ln(D^2*H*W),where DBH=Diameter at Breast Height,H=Total Height,W=Wood density.The two most frequently used pan-tropical biomass models showed lower model efficiency(0.667 to 0.697) compared to our derived TAGB model.The best fit TAGB model proved applicable for accurate estimation of TAGB for the hill zone of Bangladesh.Carbon concentration varied significantly(p 0.05) by species and tree components.Higher concentration(48-49%) of carbon was recorded in the tree stem. 相似文献
13.
14.
Fuel moisture content is an important variable for forest fires because it affects fuel ignition and fire behavior. In order to accurately predict fuel ignition potential, fuel moisture content must be assessed by evaluating fire spread, fireline intensity and fuel consumption.Our objective here is to model moisture content of surface fuels in normally stocked Calabrian pine(Pinus brutia Ten.) stands in relation to weather conditions, namely temperature, relative humidity, and wind speed in the Mugla province of Turkey. All surface fuels were categorized according to diameter classes and fuel types. Six fuel categories were defined: these were 0–0.3, 0.3–0.6, and0.6–1 cm diameter classes, and cone, surface litter, and duff. Plastic containers 15 9 20 cm in size with 1 9 1 mm mesh size were used. Samples were taken from 09:00 to19:00 h and weighed every 2 h with 0.01 g precision for10 days in August. At the end of the study, samples were taken to the laboratory, oven-dried at 105 °C for 24 h and weighed to obtain fuel-moisture contents. Weather measurements were taken from a fully automated weather station set up at the study site prior to the study. Correlation and regression analyses were carried out and models were developed to predict fuel moisture contents for desorption and adsorption phase for each fuel type categories. Practical fuel moisture prediction models were developed for dry period. Models were developed that performed well with reasonable accuracy, explaining up to 92 and 95.6%of the variability in fuel-moisture contents for desorption and adsorption phases, respectively. Validation of the models were conducted using an independent data set and known fuel moisture prediction models. The predictive power of the models was satisfactory with mean absolute error values being 1.48 and 1.02 for desorption and adsorption as compared to the 2.05 and 1.60 values for the Van Wagner's hourly litter moisture content prediction model. Results obtained in this study will be invaluable for fire management planning and modeling. 相似文献
15.
Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories 总被引:1,自引:0,他引:1
Euler Melo Nogueira Philip Martin Fearnside Bruce Walker Nelson Reinaldo Imbrozio Barbosa Edwin Willem Hermanus Keizer 《Forest Ecology and Management》2008
Uncertainties in biomass estimates in Amazonian forests result in a broad range of possible magnitude for the emissions of carbon from deforestation and other land-use changes. This paper presents biomass equations developed from trees directly weighed in open forest on fertile soils in the southern Amazon (SA) and allometric equations for bole-volume estimates of trees in both dense and open forests. The equations were used to improve the commonly used biomass models based on large-scale wood-volume inventories carried out in Amazonian forest. The biomass estimates from the SA allometric equation indicate that equations developed in forests on infertile soils in central Amazonia (CA) result in overestimates if applied to trees in the open forests of SA. All aboveground components of 267 trees in open forests of SA were cut and weighed, and the proportion of the biomass stored in the crowns of trees in open forest was found to be higher than in dense forest. In the case of inventoried wood volume, corrections were applied for indentations and hollow trunks and it was determined that no adjustment is needed for the form factor used in the RadamBrasil volume formula. New values are suggested for use in models to convert wood volume to biomass estimates. A biomass map for Brazilian Amazonia was produced from 2702 plots inventoried by the RadamBrasil Project incorporating all corrections for wood density and wood volume and in factors used to add the bole volume of small trees and the crown biomass. Considering all adjustments, the biomass map indicates total biomass of 123.1 Gt (1 Gt = 1 billion tons) dry weight (aboveground + belowground) for originally forested areas in 1976 in the Brazilian Legal Amazon as a whole (102.3 Gt for aboveground only) at the time of the RadamBrasil inventories, which were carried out before intensive deforestation had occurred in the region. Excluded from this estimate are 529,000 km2 of forest lacking sufficient RadamBrasil inventory data. After forest losses of 676,000 km2 by 2006 – not counting 175,000 km2 of this deforested area lacking RadamBrasil data – the estimated dry biomass stock was reduced to 105.4 and 87.6 Gt (aboveground + belowground and only above-ground). Thus, in 2006 the carbon storage in forested areas in Brazilian Amazonia as a whole will be around 51.1 Gt (assuming 1 Mg dry biomass = 0.485 Mg C). Biomass estimates by forest type (aggregated into 12 vegetation classes) are provided for each state in the Brazilian Legal Amazon. 相似文献
16.
Pothong Titinan Elliott Stephen Chairuangsri Sutthathorn Chanthorn Wirong Shannon Dia Panitnard Wangpakapattanawong Prasit 《New Forests》2022,53(1):17-36
New Forests - As tropical deforestation and forest degradation accelerate, carbon-credit trading could provide a financial incentive to preserve and regenerate forests. Since carbon trading relies... 相似文献
17.
Aaron Smith Aksel Granhus Rasmus Astrup Ole Martin Bollandsås Hans Petersson 《Scandinavian Journal of Forest Research》2014,29(6):565-578
A suite of regional allometric aboveground biomass functions were derived for Betula pubescens and Betula pendula for Norwegian conditions. The data consisted of 67 trees sampled throughout Norway. A total of 14 component functions were developed for total aboveground, total stem, stemwood, stem bark, live crown, live branch, leaf, and dead branch biomass using combinations of diameter at breast height and height as predictor variables. Application of the derived functions to existing local southern Norwegian mountain birch and regional Swedish biomass datasets indicated an overall good predictive ability of the developed functions. However, the functions produced slight underestimates, suggesting that the respective birch populations had differing biomass allocation patterns. When the developed functions were applied to Norwegian National Forest Inventory data, they produced slightly higher biomass stock and stock change estimates than what is obtained using existing Swedish functions. The higher estimates were evident in the north, central, and western part of Norway, while estimates were similar in southeastern Norway where growing conditions are most similar to Swedish conditions. The analysis indicates that the derived functions are the best available for regional birch biomass stock and stock change estimation in Norway. 相似文献
18.
Analuddin Kangkuso Sahadev Sharma Jamili Jamili Andi Septiana Idin Sahidin Usman Rianse 《Journal of Sustainable Forestry》2018,37(7):691-711
This study aims to establish allometric models and estimate aboveground biomass (AGB) of mangroves Rhizophoraceae in the Southeast Sulawesi, Indonesia. Allometric models of the AGB of mangroves Rhizophora apiculata, R. mucronata, and Ceriops tagal were established using independent variables consisting stem diameter at 30 cm from the ground (D30), diameter at breast height (DBH), D302H and DBH2H. The AGB of mangroves was estimated by applying allometric model and tree census. The results showed that the best fitting allometric models of AGB for R. apiculata is based on variable DBH, while DBH2H is the best variable for R. mucronata trees. Conversely, the D30 is the best variable for estimating AGB of C. tagal trees. Thus, there is some variation of independent variables on allometric models for the estimation of AGB for Rhizophoraceae mangroves. The AGB (ton ha?1) of R. apiculata, R. mucronata, and C. tagal was estimated respective 651.60, 232.11 and 154.56 in the protected area, and respective 137.59, 189.35 and 39.06 ton ha?1 in the unprotected area. Higher AGB of mangroves growing in the protected area indicated the suitable condition and undisturbed by human activities. The conservation of mangroves is necessary for the sustainability of mangroves and coastal ecosystems in the Coral Triangle ecoregion. 相似文献
19.
Choonsig Kim Gyeongwon Baek Byung Oh Yoo Su Young Jung Kwang Soo Lee Ki Wan An 《Journal of Sustainable Forestry》2019,38(3):199-212
This study was conducted to compare the allometric equations and biomass expansion factors (BEFs) of six dominant evergreen broad-leaved trees (Camellia japonica L, Castanopsis sieboldii Hatus, Quercus acuta Thunb, Q. glauca Thunb, Machilus thunbergii S. et Z., and Neolitsea sericea Koidz) in subtropical forests. A total of 86 trees were destructively sampled to quantify the aboveground biomass of each tree component (i.e., leaves, branches, and stem). Species-specific or generalized allometric equations and species-dependent BEFs were developed for each tree component of the six broad-leaved forest trees. Species-specific allometric equations were significant (P < 0.05), with the diameter at breast height (DBH) accounting for 68–99% of the variation, whereas generalized allometric equations explained 64–96% of the variation. The values of stem density ranged broadly from 0.49 g cm?3 for C. sieboldii to 0.79 g cm?3 for Q. glauca, with a mean value of 0.68 g cm?3. The BEFs were significantly (P < 0.05) lower for C. sieboldii (1.25) than for M. thunbergii (2.02). Stem density and aboveground BEFs had a significant negative relationship with tree ages. The results indicate that species-specific allometric equations and species-dependent BEFs are applicable for obtaining accurate biomass estimates of subtropical evergreen broad-leaved forests. 相似文献
20.
Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time series and permanent sample plot data 总被引:3,自引:0,他引:3
Southwest China is one of three major forest regions in China and plays an important role in carbon sequestration.Accurate estimations of changes in aboveground biomass are critical for understanding forest carbon cycling and promoting climate change mitigation.Southwest China is characterized by complex topographic features and forest canopy structures,complicating methods for mapping aboveground biomass and its dynamics.The integration of continuous Landsat images and national forest inventory data provides an alternative approach to develop a long-term monitoring program of forest aboveground biomass dynamics.This study explores the development of a methodological framework using historical national forest inventory plot data and Landsat TM timeseries images.This method was formulated by comparing two parametric methods:Linear Regression for Multiple Independent Variables(MLR),and Partial Least Square Regression(PLSR);and two nonparametric methods:Random Forest(RF)and Gradient Boost Regression Tree(GBRT)based on the state of forest aboveground biomass and change models.The methodological framework mapped Pinus densata aboveground biomass and its changes over time in Shangri-la,Yunnan,China.Landsat images and national forest inventory data were acquired for 1987,1992,1997,2002 and 2007.The results show that:(1)correlation and homogeneity texture measures were able to characterize forest canopy structures,aboveground biomass and its dynamics;(2)GBRT and RF predicted Pinus densata aboveground biomass and its changes better than PLSR and MLR;(3)GBRT was the most reliable approach in the estimation of aboveground biomass and its changes;and,(4)the aboveground biomass change models showed a promising improvement of prediction accuracy.This study indicates that the combination of GBRT state and change models developed using temporal Landsat and national forest inventory data provides the potential for developing a methodological framework for the long-term mapping and monitoring program of forest aboveground biomass and its changes in Southwest China. 相似文献