首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In 2 separate experiments, groups of atropinized cats (6 cats/group) were given acepromazine (0.25 mg/kg of body weight) or xylazine (2.2 mg/kg) IM and anesthetized with pentobarbital. The mean dose of pentobarbital was decreased approximately 36% by acepromazine, and approximately 80% by xylazine, compared with published doses. Anesthetized cats were given IV saline solution (control groups) or were given the antagonists 4-aminopyridine (4-AP; 0.5 mg/kg), yohimbine (0.4 mg/kg), or 4-AP + yohimbine (0.5 mg/kg and 0.4 mg/kg, respectively). In acepromazine-treated cats, 4-AP + yohimbine was the most effective antagonist; arousal and walking occurred in an average of 10.4 minutes and 91.7 minutes, respectively. Yohimbine enhanced the antagonistic effects of 4-AP. In xylazine-treated cats, yohimbine was an effective antagonist; arousal and walking occurred in an average of 2.8 minutes and 12.8 minutes, respectively. Yohimbine did not enhance the antagonistic effects of 4-AP. Mean respiratory rates were decreased by acepromazine, but were increased by xylazine. Thus, respiratory rate depression by pentobarbital was not as marked with xylazine as it was with acepromazine. Changes in mean heart rate were not remarkable with either sedative, and cardiac irregularities were not palpated or auscultated. In healthy cats, the duration of pentobarbital anesthesia can be controlled by 4-AP + yohimbine (acepromazine-pretreated cats) or by yohimbine alone (xylazine-pretreated cats).  相似文献   

2.
Tiletamine (12.5 mg), zolazepam (12.5 mg), ketamine (20 mg), and xylazine (5 mg) (TKX; 0.25 ml, IM) combination was evaluated as an anesthetic in 22 male and 67 female adult feral cats undergoing sterilization at high-volume sterilization clinics. Cats were not intubated and breathed room air. Oxygen saturation (SpO(2)), mean blood pressure (MBP), heart rate (HR), respiration rate (RR), and core body temperature were recorded. Yohimbine (0.25 ml, 0.5 mg, IV) was administered at the completion of surgery. TKX produced rapid onset of lateral recumbency (4+/-1 min) and surgical anesthesia of sufficient duration to complete surgical procedures in 92% of cats. SpO(2) measured via a lingual pulse oximeter probe averaged 92+/-3% in male cats and 90+/-4% in females. SpO(2) fell below 90% at least once in most cats. MBP measured by oscillometry averaged 136+/-30 mm Hg in males and 113+/-29 mm Hg in females. MBP increased at the onset of surgical stimulation suggesting incomplete anti-nociceptive properties. HR averaged 156+/-19 bpm, and RR averaged 18+/-8 bpm. Neither parameter varied between males and females or over time. Body temperature decreased significantly over time, declining to 38.0+/-0.8 degrees C at the time of reversal in males and 36.6+/-0.8 degrees C at the time of reversal in females. Time from anesthetic reversal to sternal recumbency was prolonged (72+/-42 min). Seven cats (8%) required an additional dose of TKX to maintain an adequate plane of anesthesia at the onset of surgery, and this was associated with significantly longer recovery times (108+/-24 min).  相似文献   

3.
The purpose of this study was to investigate and compare the effects of medetomidine and xylazine on some neurohormonal and metabolic variables in healthy cats. Five cats were used repeatedly in each of 11 groups, which were injected intramuscularly with physiological saline solution (control), 20, 40, 80, 160, and 320 microg/kg of medetomidine, and 0.5, 1, 2, 4, and 8 mg/kg of xylazine. Blood samples were taken over 24 h from the jugular vein for determination of plasma glucose, insulin, cortisol, epinephrine, norepinephrine, glucagon, and nonesterified fatty acid concentrations. Both medetomidine and xylazine induced remarkable hyperglycemia that was dose-dependent except for the response to medetomidine from 0 to 3 h. Both agents suppressed epinephrine and norepinephrine release but not in a dose-dependent manner at the tested dosages. Both agents inhibited insulin release and lipolysis, with similar potency, and tended to suppress cortisol release. The glucagon levels did not change significantly in any of the groups. These results suggest that the effects of medetomidine and xylazine on glucose metabolism and catecholamine release may not be due only to the actions mediated by alpha2-adrenoceptors.  相似文献   

4.
Cardiac performance was evaluated in 9 healthy cats sedated with xylazine. Each cat was evaluated echocardiographically before and after the administration of xylazine or xylazine and glycopyrrolate. Each cat was echocardiographically evaluated during manual restraint only (control value), after IM administration of 0.55 mg of xylazine/kg of body weight, after IM administration of 2.2 mg of xylazine/kg, and after IM administration of 0.011 mg of glycopyrrolate/kg followed 10 minutes later by IM administration of 2.2 mg of xylazine/kg. Echocardiographic indices of cardiac performance (fractional shortening, left ventricular wall amplitude, aortic amplitude, mitral valve E point septal separation) indicated a significant decrease (P less than 0.05) in the left ventricular function and heart rate after the small (0.55 mg/kg) and large (2.2 mg/kg) dosages of xylazine. With the administration of glycopyrrolate, the bradycardia was minimized, but cardiac performance was not improved. After administration of glycopyrrolate, cardiac performance decreased, but the decrease was not significant when compared with the ventricular performance of the cats after administration of the large dosage of xylazine. Compared with control values, the reduction in left ventricular function values associated with administration of xylazine or xylazine and glycopyrrolate was independent of the heart rate. Therefore, the alpha-2 adrenergic agonist xylazine has a marked depressive effect on cardiac performance in the cat, and premedication with glycopyrrolate may not completely alleviate the undesirable bradycardia, but may actually be detrimental to the cardiovascular system.  相似文献   

5.
6.
7.
将舒眠宁应用于猫,观察其麻醉诱导时间、维持麻醉时间、苏醒时间、各项生理参数及麻醉效果。给猫肌注舒眠宁0.08 mL/kg后,诱导、维持麻醉、苏醒时间分别为(3.8±0.3)m in,(59±16)m in和(16±13)m in,对各项生理参数影响不明显。在拟进行绝育或去势术的猫静注舒眠宁0.04 mL/kg后,诱导、维持麻醉、苏醒时间分别为(30±5)s、(30±16)m in和(20±12)m in,所监测的生理参数均在正常范围内。将舒眠宁和舒泰分别以0.08 mL/kg和10 mg/kg给猫肌注后,舒泰组出现眼球震颤,舌、头部不自主运动,开口困难、大量流涎等副作用,舒眠宁组则无明显副作用;舒泰比舒眠宁对猫的心率影响大;舒眠宁的肌松效果好于舒泰。  相似文献   

8.
Objective To determine if intravenous regional anesthesia (IVRA) can be used in cats without resulting in excessive plasma lidocaine concentrations or adverse cardiovascular effects. Study design Prospective, blinded crossover study. Animals Seven healthy male young adult cats weighing 3.96 ± 0.63 kg. Methods At 2.3% end‐tidal isoflurane concentration, lidocaine (L) 3 mg kg?1 (1%) or saline (S) was injected in a distal cephalic venous catheter after application of two tourniquets to that forelimb which remained in place for 20 minutes. Heart and respiratory rates, arterial blood pressures and ECG were recorded every 5 minutes during tourniquet application and for 20 minutes following tourniquet removal. Lidocaine plasma concentrations were measured 5 minutes after injection and 0.5, 1, 2, 4, 8, 20 and 40 minutes after tourniquet removal. End tidal isoflurane concentrations were reduced to 1.5–2.0% to elicit a response to toe pinch (RTP) in the contralateral leg. The study was repeated similarly in the contralateral leg and RTP was graded for 40 minutes. Response was also tested in the leg previously injected, the differences between the two scores determined and those differences compared between the L and S treatments. The data were analyzed using anova for repeated measures comparing values to baseline. Significance was set at p < 0.005 using the Bonferroni method for multiple comparisons. Results There were no significant differences in physiologic parameters at either isoflurane concentration. Differences in RTP were significantly larger in the lidocaine treatment. The highest mean lidocaine concentrations were measured 0.5 minutes after tourniquet removal after both injections and were 2.79 ± 1.05 and 3.10 ± 1.11 µg mL?1. The highest individual plasma concentration was 6.46 µg mL?1. Conclusion No adverse hemodynamic effects were evident after IVRA lidocaine in any cat. The lidocaine dose studied inhibited a RTP until 20 minutes after tourniquet removal. Lidocaine concentrations varied and were measurable prior to tourniquet removal. Clinical relevance IVRA may be a suitable technique for cats undergoing surgery of the distal limbs.  相似文献   

9.
10.
Xylazine administered subcutaneously (s.c.; 1–4 mg/kg) or intravenously (i.v.; 0.5-2 mg/kg) to cats consistently caused dose-related decreases in body temperature which were maximal 3–4 h after injection and lasted for at least 12 h. Otherwise the animals appeared to have recovered fully from the central nervous system effects of the drug within 1.5–3.5 h. Xylazine-induced hypothermia developed more rapidly in cats placed in a 4°C environment and, in contrast, was replaced by a hyperthermic response in cats placed in a 32°C environment. These changes in body temperature were not opposed by compensatory thermoregulatory effector activity such as shivering or tachypnea. This pattern of responses at varied environmental temperatures is indicative of a general depression of the thermo-regulation. Thus, animals given xylazine should not be exposed to extreme heat or cold for several hours to avoid development of hyper- or hypothermia.  相似文献   

11.
12.
OBJECTIVE: To determine antiemetic efficacy of prophylactic administration of dexamethasone and its influence on sedation in cats sedated with xylazine hydrochloride. ANIMALS: 6 healthy adult cats (3 males and 3 females). PROCEDURE: The prophylactic antiemetic effect of 4 doses of dexamethasone (1, 2, 4, and 8 mg/kg of body weight, IM) or saline (0.9% NaCl) solution (0.066 ml/kg, IM) administered 1 hour before administration of xylazine (0.66 mg/kg, IM) was evaluated. Cats initially were given saline treatment (day 0) and were given sequentially increasing doses of xylazine on days 7, 14, 21, and 28. After xylazine injection, all cats were observed for 30 minutes to allow assessment of frequency of emesis and time until onset of the first emetic episode.The influence of dexamethasone on xylazine-induced sedation in these cats also was evaluated. RESULTS: Prior treatment with 4 or 8 mg/kg of dexamethasone significantly reduced the frequency of emetic episodes and also significantly prolonged the time until onset of the first emetic episode after xylazine injection. Time until onset of the first emetic episode also was significantly prolonged for dexamethasone at a dose of 2 mg/kg. Time until onset of sedation after administration of xylazine was not altered by administration of dexamethasone. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone (4 or 8 mg/kg, IM) significantly decreased the frequency of emetic episodes induced by xylazine without compromising sedative effects in cats. Dexamethasone may be used prophylactically as an antiemetic in cats treated with xylazine.  相似文献   

13.
Cardiovascular effects of xylazine and detomidine in horses   总被引:6,自引:0,他引:6  
The cardiovascular effects of xylazine and detomidine in horses were studied. Six horses were given each of the following 5 treatments, at 1-week intervals: xylazine, 1.1 mg/kg, IV; xylazine, 2.2 mg/kg, IM; detomidine, 0.01 mg/kg, IV; detomidine, 0.02 mg/kg, IV; and detomidine, 0.04 mg/kg, IM. All treatments resulted in significantly decreased heart rate, increased incidence of atrioventricular block, and decreased cardiac output and cardiac index; cardiac output and cardiac index were lowest following IV administration of 0.02 mg of detomidine/kg. Mean arterial pressure was significantly reduced for various periods with all treatments; however, IV administration of 0.02 mg of detomidine/kg caused hypertension initially. Systemic vascular resistance was increased by all treatments. Indices of ventricular contractility and relaxation, +dP/dt and -dP/dt, were significantly depressed by all treatments. Significant changes were not detected in stroke volume or ejection fraction. The PCV was significantly reduced by all treatments. Respiratory rate was significantly decreased with all treatments, but arterial carbon dioxide tension did not change. Arterial oxygen tension was significantly decreased briefly with the 3 IV treatments only.  相似文献   

14.
Urethral pressure profiles (UPPs) were recorded in ten adult healthy male cats before and after administration of either phenoxybenzamine, diazepam, nifedipine or xylazine. A significant decrease (p less than 0.05) in urethral pressure at the level of the prostate was observed following treatment with all drugs. Xylazine produced a significant decrease in urethral pressure 4 to 7 cm from the tip of the penis in healthy male cats. None of the drugs used decreased urethral pressure in the zones of pure striated muscle or pure smooth muscle in these cats, making current recommendations for pharmacological management of urethral spasm suspect. Further studies are necessary to evaluate clinical cases of urethral spasm and to study the effects of these drugs on the urethral pressure of cats suffering from this spasm.  相似文献   

15.
Effects of the drug xylazine were determined on arterial pH, arterial oxygen pressure (PaO2), arterial carbon dioxide pressure (PaCO2), aortic blood pressure, aortic flow, heart rate, pulse pressure, stroke volume, and peripheral resistance of dogs. The drug was given intravenously (IV) with and without atropine and was given intramuscularly (IM) without atropine. After IV administration of xylazine (1.1 mg/kg), arterial pH, PaO2, and PaCO2 values were not changed from control values. However, the drug did produce a statistically significant decrease in heart rate, decrease in aortic flow, initial increase in blood pressure followed by decrease, and increase in peripheral resistance. Stroke volume and pulse pressure were not significantly changed. Atropine (0.02 mg/kg, IV) did not significantly change any of the effects produced by xylazine. Intramuscular administration of xylazine (2.2 mg/kg) did not produce significant changes in arterial pH, PaO2, or PaCO2. Heart rate and aortic flow decreased significantly, but statistically significant changes did not occur in aortic blood pressure or peripheral resistance; however, the changes in these last 2 values were in the same direction and were of similar magnitude as those which occurred afger IV administration of xylazine.  相似文献   

16.
Left ventricular echocardiographic parameters in cats were recorded, measured and analyzed to study the effects of a combination of xylazine and sodium pentobarbital on left ventricular function. The depressant effects of a combination of xylazine and sodium pentobarbital on the left ventricular dimension at end diastole, the percent change in minor diameter and the velocity of circumferential fibre shortening were compared to echocardiographic values of unanesthetized cats. No change in heart rate was noted. Stroke volume and cardiac output were depressed.  相似文献   

17.
Studies evaluating the effects of dobutamine in horses do not consistently report increases in cardiac output despite increases in arterial blood pressure. The concurrent administration of the α2 agonist clonidine, in people, inhibited the chronotropic effects of dobutamine and increased left ventricular stroke work ( Zimpfer et al. 1982 ). Our study was performed to determine if pre‐medication with an α2 agonist affects the response to dobutamine in anaesthetized horses. Eleven horses were anaesthetized on four separate occasions for one of four randomly assigned treatments; (I) no xylazine, no dobutamine (II) xylazine, no dobutamine (III) no xylazine, dobutamine, and (IV) xylazine, dobutamine. Horses received 0.02 mg kg?1 of butorphanol IV 10 minutes prior to anesthetic induction. Two minutes prior to induction, groups II and IV received 0.5 mg kg?1 of IV xylazine. Anaesthesia was induced with 6–7 mg kg?1 of thiopental and maintained with halothane. End‐tidal halothane concentrations were maintained between 1.1 and 1.2% in groups I and III, and 0.9–1.0% for groups II and IV. Heart rate, cardiac output, right atrial pressure, and systolic (SAP), diastolic (DAP) and mean (MAP) arterial pressure were recorded 30 minutes after beginning halothane anaesthesia (T10). Cardiac output was estimated using Lithium dilution ( Linton et al. 2000 ). Baseline measurements were repeated twice, at 5‐minute intervals (T5 and T0). At time 0 (T0), an IV infusion of either saline (100 mL hour?1) or dobutamine (0.001 mg kg?1 minute?1) was started and data recorded at 5‐minute intervals for 30 minutes (T5 – T30). Stroke volume and systemic vascular resistance (SVR) were calculated. Data were analysed using repeated measures anova (p < 0.01 significant) and Newman–Keuls for multiple comparisons. Cardiac output and stroke volume increased over time in groups III and IV. Cardiac index was higher in groups III and IV than in groups I and II from T10 until completion of the study. Estimates of cardiac index at T30 for groups I–IV were 45 ± 9, 46 ± 11, 71 ± 11, and 78 ± 19 mL kg?1 minute?1, respectively (mean ± SD). Stroke index was higher in groups III and IV than in groups I and II from T15 to T30. Values for stroke index at T30 for groups I–IV were 0.98 ± 0.19, 1.11 ± 0.18, 1.46 ± 0.21, 1.74 ± 0.33 mL kg?1. Heart rate decreased from T10–T30 in groups I and II. Heart rate was greater in groups I and III than in groups II and IV at T5 and T0. Values for heart rate at T0 for groups I–IV were 48 ± 5, 42 ± 5, 50 ± 4, 43 ± 4 beats minute?1. Systolic arterial pressure, DAP and MAP were higher in groups III and IV than in groups I and II from T5 to T30. There were no differences in SVR between groups. Dobutamine at 0.001 mg kg?1 minute?1 increased cardiac output, blood pressure, and stroke volume. Premedication with xylazine at 0.5 mg kg?1 did not appear to affect the response to dobutamine.  相似文献   

18.
To determine the effects of yohimbine and tolazoline on the cardiovascular, respiratory and sedative effects of xylazine, four horses were sedated with xylazine and treated with either yohimbine, tolazoline or saline. Xylazine was administered as an intravenous (i.v.) bolus (1.0 nig/kg) followed by a continuous infusion at the rate of 12 μg/kg/min. Heart rate, respiratory rate, mean arterial pressure, arterial blood gases, and the chin-to-floor distance were recorded throughout the experiment. After 60 min, either yohimbine or tolazoline was administered i.v. in incremental doses until reversal of sedation (defined as the return of the chin-to-floor distance to baseline values) was achieved. A control group in which a saline bolus was administered instead of an antagonist drug was included for comparison.
The average dose of yohimbine administered was 0.12 ± 0.02 (SEM) mg/kg. While the average dose of tolazoline was 7.5 ± 1.1 mg/kg. Both tolazoline and yohimbine antagonized the ventricular bradycardia and A-V conduction disturbances observed with xylazine administration. No change in mean arterial pressure was observed with xylazine or yohimbine administration, but tolazoline caused persistent mild systemic hypertension. There were no clinically significant changes in respiratory rate or arterial blood gas values with administration of either xylazine, yohimbine or tolazoline. The chin-to-floor distance decreased significantly with xylazine administration and increased significantly with administration of either yohimbine or tolazoline. In conclusion, both yohimbine and tolazoline successfully antagonized the cardiovascular and CNS depression associated with xylazine administration.  相似文献   

19.
Hemodynamic effects of xylazine in the calf   总被引:3,自引:0,他引:3  
The hemodynamic effects of sedative level doses of xylazine in five chronically instrumented calves were studied. These effects included immediate and prolonged reductions in heart rate, cardiac output, arterial blood pressure, and left ventricular dp/dt max. Stroke volume showed an initial decrease in value with a return in 15 minutes to base-line values. Total peripheral resistance, end-diastolic left ventricular pressure, end-diastolic left ventricular volume, and left ventricular residual fraction were increased after drug administration. The results indicate that a depressed myocardium results from xylazine administration. With one exception (the absence of a hypertensive response), these effects largely parallel, both quantitatively and qualitatively, those seen with this drug in other species. Sedation by xylazine is produced in cattle at doses which are small compared to those which is required for sedation in other species. These same small doses in cattle also cause hemodynamic changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号