首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the dynamics of litterfall and litter decomposition of Sasa dwarf bamboo (Sasa senanensis) and trees to clarify the characteristics of organic matter and nitrogen cycling between plant and soil in a natural cool-temperate mixed forest ecosystem dominated by an understory vegetation of Sasa. Mean annual Sasa litterfall over the 3-year study period was 164 g m?2 year?1, which accounted for approximately 29% of total litterfall. Litter decomposition of Sasa leaf and Sasa culm was significantly slower than that of tree leaf during first and second years. The slow decomposition rates of both Sasa litter types were caused by a significantly higher silicate than in tree leaf. Nitrogen concentration in litter increased as decomposition progressed, especially in Sasa leaf and tree leaf. As a result of the slow decomposition of both Sasa litter types, 111 and 73% of nitrogen to the initial amounts were retained in Sasa leaf and Sasa culm after 3 years, respectively. The amounts of retained nitrogen in Sasa leaf, Sasa culm, and tree leaf after 3 years were 1.29, 0.47, and 3.92 g N m?2, respectively, indicating that the differences of litter decomposition rates among the litter types influence on the nitrogen cycling in forest ecosystem through the differences of the nitrogen release from litter.  相似文献   

2.
Agroforestry systems deposit great amounts of plant residues on soil and this leads to high levels of soil organic matter content and has increased soil biodiversity and improved its conservation. This study compares the distribution of meso and macrofaunal communities in soil and litter under cacao agroforestry systems and in a natural forest in the southern Bahia state of Brazil. Soil and litter samples were obtained in September 2003, February 2004, and August 2004 in five cacao agroforestry systems. The systems evaluated included: cacao renewed under Erythrina sp. (Erythrina poeppigiana) (CRE); cacao renewed under natural forest (Cabruca, CRF); an old cacao system under Erythrina sp. (OCE); an old cacao system under a natural forest system (Cabruca, OCF) and a cacao germplasm collection area (CGC). As a reference soil and litter under a natural forest (NF) was included. Organisms were collected over a 15-day period with a Berlese–Tullgren apparatus. The density and richness of total fauna varied distinctly according to sites, sampling time and material sampled (soil and litter). 16,409 of fauna were recovered from soil and litter samples and the density of total fauna was 2,094 individuals m−2 in the litter and 641 individuals m−2 in the soil. The richness was 11.8 in the litter and 7.5 in the soil. The cacao agroforestry systems adopted for growing cacao in the southern Bahia region of Brazil have beneficial effects on the soil and litter faunal communities, and such systems of cacao cultivation could be considered as a conservation system for soil fauna. The development of a litter layer resulted in higher abundance and diversity of soil fauna.  相似文献   

3.
Understanding the impact of plant litters on soil nitrogen(N) dynamics could facilitate development of management strategies that promote plantation ecosystem function.Our objective was to evaluate the effects of different litter types on N mineralization and availability,microbial biomass, and activities of L-asparaginase and odiphenol oxidase(o-DPO) in soils of a poplar(Populus deltoides) plantation through 24 weeks of incubation experiments.The tested litters included foliage(F), branch(B), or root(R) of poplar trees, and understory vegetation(U) or a mixture of F, B, and U(M).Litter amendments led to rapid N immobilization during the first 4 weeks of incubation, while net N mineralization was detected in all tested soils from 6 to 24 weeks of incubation, with zeroorder reaction rate constants(k) ranging from 7.7 to9.6 mg N released kg~(-1) soil wk~(-1).Moreover, litter addition led to increased microbial biomass carbon(C) 49–128% and increased MBC:MBN ratio by 5–92%,strengthened activities of L-asparaginase and o-DPO by14–74%; Up to about 37 kg N ha~(-1) net increase in mineralized N in litter added soils during 24 weeks of incubation suggests that adequate poplar and understory litter management could lead to reduced inputs while facilitate sustainable and economic viable plantation production.  相似文献   

4.
High Andean cloud forests are home to a diversity of unique wildlife and are important providers of ecosystem services to people in the Andean regions. The extent of these cloud forests has been widely reduced through conversion to pasture for livestock, which threatens the forests’ ability to support biodiversity and provide ecosystem services. This paper explores whether impacts on woody plant biodiversity and four ecosystem properties (woody plant species richness, juvenile timber tree abundance, soil organic matter content and soil moisture) from converting forest to pasture can be mitigated if some woody forest vegetation is maintained within pastures. Woody vegetation in pastures was found to conserve those woody plant species that are more tolerant to exposure and grazing, but conservation of the high montane cloud forest community required areas of forest from which livestock were restricted. The sampled sites clustered according to woody plant species cover; these clusters represented a gradient from pasture with patches of shrubs to mature forest. Clusters differed in both woody plant species richness and number of juvenile timber trees whereas soil organic matter and soil moisture were observed to be similar among all clusters. This suggests that the different habitats may have some equivalent ecosystem properties. We conclude that the presence of woody vegetation in pastures may reduce some of the impacts of converting forest to pasture, but should not be considered a substitute for protecting large areas of forest, which are essential for maintaining woody plant species diversity in high Andean cloud forest.  相似文献   

5.
Tree occurrence in silvopastoral systems of Central America has been under pressure for various reasons including attempts to improve grassland productivity and the need for wood. However, scattered isolated trees are also recognized to provide ecosystem services like shade, fodder and fruits that are important to cattle in the dry season. In addition, trees may enhance the climate change mitigation potential of silvopastoral systems through increased carbon (C) uptake and subsequent soil carbon sequestration. Through differences in plant traits like nutrient uptake, canopy structure and litter quality, tree species may have an effect on C and nutrient cycling. Due to a prevailing north-easterly wind in the study area, three distinct areas associated with the impact of tree litter deposition were identified: (1) open pasture—no tree litter deposition; (2) tree canopy—above and belowground tree litter; and (3) leaf litter cone—aboveground tree litter deposition. Furthermore, the effect of tree species, Guazuma ulmifolia and Crescentia alata, were considered. The presence of trees, as compared to pasture, caused larger topsoil C, N and P contents. In the subsoil, C content was also larger due to tree presence. Soil fractionation showed that tree-induced larger litter input subsequently increased free and occluded OM fractions and ultimately increased stabilized SOM fractions. Therefore, trees were found to enhance soil C sequestration in these silvopastoral systems. This is also supported by the soil respiration data. Although the respiration rates in the pasture subplots were lower than in the leaf litter subplots, the difference was not significant, which suggests that part of the extra C input to the leaf litter subplots stayed in the soil. Nutrient cycling was also enhanced by tree presence, but with a clear differentiation between species. C. alata (Jícaro) enhanced available and stabilized forms of organic N, while G. ulmifolia (Guácimo) enhanced available soil P and stabilized organic P.  相似文献   

6.
Forested riparian buffers in California historically supported high levels of biodiversity, but human activities have degraded these ecosystems over much of their former range. This study examined plant communities, belowground biodiversity and indicators of multiple ecosystem functions of riparian areas across an agricultural landscape in the Sacramento Valley of California, USA. Plant, nematode and soil microbial communities and soil physical and chemical properties were studied along 50-m transects at 20 sites that represented the different land use, soil and vegetation types in the landscape. Riparian zones supported greater plant diversity and nearly twice as much total carbon (C) per hectare compared to adjacent land managed for agricultural uses, but had generally lower soil microbial and nematode diversity and abundance. When woody plant communities were present in the riparian zone, plant diversity and species richness were higher, and soil nitrate and plant-available phosphorus levels were lower. Belowground diversity and community structure, however, appeared to depend more on plant productivity (as inferred by vegetation cover) than plant diversity or species richness. Greater plant species richness, nematode food web structure, total microbial biomass, woody C storage and lower soil nitrate and phosphorus loading were correlated with higher visual riparian health assessment scores, offering the possibility of managing these riparian habitats to provide multiple ecosystem functions.  相似文献   

7.
Soil fauna decompose litter, whereas land use changes may significantly alter the composition and structure of soil fauna assemblages. However, little is known of the effects of land-use on the contribution of soil fauna to litter decomposition. We studied the impacts of soil fauna on the decomposition of litter from poplar trees under three different land uses (i.e. poplar-crop integrated system, poplar plantation, and cropland), from December 2013 to December 2014, in a coastal area of Northern Jiangsu Province. We collected litter samples in litterbags with three mesh sizes (5, 1 and 0. 01 mm, respectively) to quantify the contribution of various soil fauna to the decomposition of poplar leaf litter. Litter decomposition rates differed significantly by land use and were highest in the cropland, intermediate in the poplar-crop integrated system, and lowest in the poplar plantation. Soil fauna in the poplar-crop integrated system was characterized by the highest numbers of taxa and individuals, and highest Margalef’s diversity, which suggested that agro-forestry ecosystems may support a greater quantity, distribution, and biodiversity of soil fauna than can single-species agriculture or plantation forestry. The individuals and groups of soil fauna in the macro-mesh litterbags were higher than in the meso-mesh litterbags under the same land use types. The average contribution rate of meso- and micro-fauna to litter decomposition was 18.46%, which was higher than the contribution rate of macro-fauna (3.31%). The percentage of remaining litter mass was inversely related to the density of the soil fauna (P < 0.05) in poplar plantations; however, was unrelated in the poplar-crop integrated system and cropland. This may have been the result of anthropogenic interference in poplar-crop integrated systems and croplands. Our study suggested that when land-use change alters vegetation types, it can affect species composition and the structure of soil fauna assemblages, which, in turn, affects litter decomposition.  相似文献   

8.

Elevated nitrogen (N) deposition is changing soil communities around the world and will have unknown consequences for terrestrial ecosystem functions. In this study, we investigated a field experiment that lasted for 13 years to explore the effect of simulated N deposition and seasonal variations on the soil faunal community structure in a temperate natural secondary forest. The experimental design included a control group (0 kg N ha?1 yr?1, CK), low N addition (25 kg N ha?1 yr?1, LN), and high N addition (50 kg N ha?1 yr?1, HN). The results showed that long-term high N addition reduced the soil pH, C/N ratio, and microbial biomass carbon (MBC) and increased the total phosphorus. The soil faunal community structure after high N addition was significantly different from those after the CK and low N addition treatments. The overall trend was that abundance and richness increased under low N addition and decreased under high N addition. Further analysis showed that the abundance of omnivores and detritivores was lowest after high N addition, significantly less than the CK and low N addition. The interaction of N addition and seasonal dynamics had a significant impact on herbivores. We found that these changes were driven by differences in ecological strategies such as food and environmental preferences. Furthermore, temperature, moisture, nutrients, and pH in the soil environment were the key factors driving ecological strategies and environmental factors. Seasonal variations significantly affected the soil faunal community structure, showing the highest abundance, richness, diversity, and functional group abundance and richness of the soil faunal community in September. Nitrogen addition and seasonal dynamics significantly affected the abundance and richness of soil fauna by changing soil nutrient concentrations, MBC, and plant diversity. Our study showed that long-term high N addition reduced the abundance and functional group abundance of the soil fauna in natural secondary forests, while low N addition had a positive effect on soil faunal community structure. Collectively, the results suggest that the seasonal balance of soil fauna is affected after long-term N addition, which increases the seasonal sensitivity of soil fauna.

  相似文献   

9.
Use of legume trees can improve soil quality in degraded pastures. The aim of this study was to characterize C and N mineralization kinetics and estimate the potentially mineralizable C and N in soil under Mimosa caesalpiniifolia Benth. and Acacia auriculiformis A. Cunn.ex Benth. secondary forest and pasture in red-yellow latosols in southeast Brazil. We conducted a laboratory aerobic incubation experiment using a completely randomized design of four replicates and four types of plant cover using a modified version of the Stanford and Smith technique(1972) to study C and N mineralization potential.Potentially mineralizable N(N_o) ranged from 135 to170 mg kg-~(1). The predominant form of mineral N for all types of plant cover was N-NO_3~-. M. caesalpiniifolia was the only species that had a positive influence on N mineralization. Neither of the legumes influenced C mineralization in pasture or secondary forest. The model of N mineralization corresponded to a sigmoidal curve while C mineralization corresponded to an exponential curve,revealing that the N and C mineralization processes were distinct. N mineralized by M. caesalpiniifolia(216 kg of N ha~(-1)) was adequate to meet the N requirement for a livestock-forest system.  相似文献   

10.
Mediterranean wooded grasslands that emerge from silvopastoral activities are multifunctional systems that result in high biodiversity and offer ecosystem services such as forage production and soil carbon sequestration. During 3 years, ten grazed wooded grassland fields were studied in the Berchidda–Monti long-term observatory, located in NE Sardinia, Italy, with the aim of exploring the synergies and trade-offs between biodiversity and selected ecosystem services. Positions below and outside the canopy of three cork oak trees in each field were randomly selected to compare seasonal pasture production, pasture utilization rate by animals, botanical composition, biodiversity indicators (Shannon index and plant species richness) and soil organic carbon. In autumn, dry matter production of pasture was similar in the two positions; in two winters out of three it was greater below the trees than outside, and in spring it was greater outside than below the trees. While plant species richness and Shannon index were not significantly influenced by the position, the overall wooded grassland plant species richness was 31% higher than that outside of the tree crown. The soil organic carbon content in the 0–40-cm soil layer was also higher below the trees. Our findings highlight that if the main purpose of the wooded grasslands is to provide forage for grazing animals rather than conserving and/or enhancing plant diversity and soil fertility, the presence of trees constrains the overall forage productivity, although the greater forage availability in winter under the trees can contribute to improve the seasonal distribution of forage production.  相似文献   

11.
Mechanical mastication is increasingly prescribed for wildfire mitigation, yet little is known about the ecological impacts of this fuels treatment. Mastication shreds trees into woodchips as an alternative to tree thinning and burning the resulting slash, which can create soil disturbances that favor exotic plants. Previous research on mastication has not simultaneously considered both the responses of soil organisms and understory plant communities. We compared mastication to slash pile burning (both 6-months and 2.5-years post-treatment) and untreated controls in pinyon–juniper (Pinus edulisJuniperus osteosperma) woodland and measured soil properties, arbuscular mycorrhizal fungi (AMF) and understory plant composition. Our results showed that slash pile burns had severely degraded soil properties and low AMF abundance and richness compared to untreated or mastication plots. Pile burns were dominated by exotic plant species and had approximately 6× less understory plant abundance and richness than untreated plots. Only two variables differed between mastication and untreated plots 6-months post-treatment: mastication had lower soil temperature and higher soil moisture. Mastication plots 2.5-years post-treatment had more plant cover and richness than untreated plots or pile burns, although non-native Bromus tectorum cover was also greater and AMF spore richness was lower than untreated plots. The structural equation model (SEM) we developed showed that plant cover strongly influenced AMF abundance (0.50) and both plant cover (0.36) and AMF (0.31) positively influenced soil stability. In the short-term, mastication is a preferable method as it creates fewer disturbances than pile burning; however long-term impacts of mastication need further study as this practice could affect native plant communities. Our results suggest that the manner in which woody debris is treated following tree thinning has an important influence on soil stability and native plant biodiversity.  相似文献   

12.
Mexican montane rainforests and adjacent disturbed areas were studied for disturbance-related spatio-temporal changes to the arbuscular mycorrhizal fungal (AMF) community and soil glomalin concentration. The AMF community functions to both improve plant growth and soil conditions and is thus an important component to the restoration of this forest type to disturbed areas. The study areas included mature rainforests that were converted to pine forests, milpas, pastures and shrub/herbaceous plant communities via burning and logging. Seasonal patterns in AMF spore species richness and sporulation significantly differed across disturbance types at two of the three sites surveyed. Contrasting patterns of sporulation among AMF families across different disturbance types helped to explain how species richness and composition were maintained despite dramatic changes to the host plant community. Meaning, in most cases, disturbance induced changes in when different AMF taxa sporulated but not what taxa sporulated. Only conversion from mature pine–oak–LiquidambarPersea forests to pine-dominated stands severely reduced AMF spore richness and total sporulation. Surprisingly, in pine-dominant stands no concomitant negative impacts on soil glomalin (MAb32B11 immunoreactive soil protein) concentrations were detected. However, soils of mature forests containing no pines had the highest concentration of glomalin. Conversion to pasture and milpa (diverse cornfield) had a strong negative impact on the concentration of soil glomalin concentrations. In sharp contrast, the same disturbance types improved AMF sporulation and AMF spore richness. It appears that disturbance type, and not AMF community measures used herein, best predicts changes in soil glomalin concentration.  相似文献   

13.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

14.
The nitrogen status of most Zambian soils is inherently low. Nitrogen-fixing trees such as Faidherbia albida (F. albida) could have the potential to restore soil fertility. We conducted a study to examine the role of mature F. albida trees on the soil microbial communities and overall N fertility status in Zambia. Soil samples were collected under and outside the canopies of F. albida trees in representative fields from two sites namely; Chongwe (loamy sand) and Monze (sandy loam). To assess the long term canopy effects; total N, mineral N and soil organic carbon (Corg) content were directly measured from soils collected under and outside the canopy. Short term litter effects were assessed by subtracting concentrations of biochemical properties of non-amended controls from amended soils with F. albida litter during an 8 week incubation experiment. We also determined N mineralization rates, microbial community structure—Phospholipid fatty acids, microbial biomass carbon, and labile organic carbon (\({\text{C}}_{{{\text{org[K}}_{ 2} {\text{SO}}_{ 4} ]}}\)) during incubation. For the long term canopy effect, average N mineralization rate, Corg, total N and mineral N content of non-amended soils under the canopy were (all significant at p < 0.05) greater than soils outside the canopy on both sites. In the short term, amending soils with litter significantly increased N mineralization rates by an average of 0.52 mg N kg?1 soil day?1 on soil from Monze. Microbial biomass carbon measured after 4 weeks of incubation was on average significantly higher on amended soils by 193 and 334 mg C kg?1 soil compared with non-amended soils in Chongwe and Monze soils, respectively. After 6 weeks of incubation, the concentration of all selected biomarkers for major microbial groups concentrations in non-amended soils were significantly higher (all p < 0.05) under the canopy than outside in Monze soil. Using principal component analysis, we found that the segregation of the samples under and outside the canopy by the first principal component (PC1) could be attributed to a proportional increase in abundances of all microbial groups. Uniform loadings on PC1 indicated that no single microbial group dominated the microbial community. The second principal component separated samples based on incubation time and location. It was mainly loaded with G-positive bacteria, and partly with G-negative bacteria, indicating that microbial composition was dominated by these bacterial groups probably at the beginning of the incubation on Monze soils. Our results show that the improvement of soil fertility status by F. albida could be attributed to a combination of both long term modifications of the soil biological and chemical properties under the canopy as well as short term litter fall addition.  相似文献   

15.
In all, 48 sites of subalpine coniferous forest that had undergone natural regeneration for 5-310 years were selected as study locations in the Southwest China. We compared species richness (S), plant diversity (Shannon-Wiener index, H′; Margalef index, R), and above- and below-ground ecosystem carbon (C) pools of six plant communities along a chronosequence of vegetation restoration, and we also examined evidence for a functional relationship between plant diversity and C storage. Our results showed that above-ground C increased significantly (over 52-fold), mainly due to the increase of C in aboveground living plants and surface litter. Soil organic carbon (SOC) content increased from the herb community type (dominated by Deyeuxia scabrescens, P1) to mixed forest type (dominated by Betula spp. and Abies faxoniana, P4), which constituted the main C pool of the system (63-89%), but decreased thereafter (communities P5-P6). The mean C stock in the whole ecosystem - trees, litter layer and mineral soil - ranged from 105 to 730 Mg C ha−1 and was especially high in the spruce forest community type (dominated by Picea purpurea, P6). On the other hand, the relationships between C stocks (soil, aboveground) and mean annual temperature or altitude were generally weak (P > 0.05). Moreover, we did not detect a relationship between S and aboveground C storage, while we found a significant negative relationship between H′, R and aboveground C storage. In addition, our experiment demonstrated that total root biomass and litter C/N ratio were significant functional traits influencing SOC, while S, R, and H′ had little effect. Path analysis also revealed that litter C/N ratio predominantly regulated SOC through changes in the quantity of microorganisms and soil invertase enzyme activity.  相似文献   

16.
Rhizosphere-induced changes of Pinus densiflora (S. and Z.) grown at elevated atmospheric temperature and carbon dioxide are presented based on experiments carried out in a two-compartment rhizobag system filled with forest soil in an environmentally controlled walk-in chamber with four treatment combinations: control (25°C, 500 μmol mol?1 CO2), T2 (30°C, 500 μmol mol?1 CO2), T3 (25°C, 800 μmol mol?1 CO2), and T4 (30°C, 800 μmol mol?1 CO2). Elevated temperature and atmospheric carbon dioxide resulted in higher concentration of sugars and dissolved organic carbon in soil solution, especially at the later period of plant growth. Soil solution pH from the rhizosphere became less acidic than the bulk soil regardless of treatment, while the electrical conductivity of soil solution from the rhizosphere was increased by elevated carbon dioxide treatment. Biolog EcoPlate? data showed that the rhizosphere had higher average well color development, Shannon–Weaver index, and richness of carbon utilization compared with bulk soil, indicating that microbial activity in the rhizosphere was higher and more diverse than in bulk soil. Subsequent principal component analysis indicated separation of soil microbial community functional structures in the rhizosphere by treatment. The principal components extracted were correlated to plant-induced changes of substrate quality and quantity in the rhizosphere as plants’ response to varying temperature and atmospheric carbon dioxide.  相似文献   

17.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

18.
A 3-year study measured the effects of ground cover treatments and N fertilization on biomass and nitrogen dynamics in an irridiated hybrid poplar (Populus deltoides Bartr. X P. trichocarpa Torr. and Gray, clone NC-9922) plantation in northern Wisconsin, U.S.A. Annually fertilized (112 kg N ha−1 year−1) and unfertilized plots were maintained weed free (bare soil), allowed to revegetate with native weeds, or seeded to birdsfoot trefoil (Lotus corniculatus L.). Biomass and N in trees and ground-cover vegetation were sampled before and after each growing season.Trees in bare-soil plots responded to fertilization primarily in the third growing season, but total biomass of 3-year-old trees was not increased by annual fertilization. In plots with a ground cover,fertilization increased tree growth but cover crop treatment had no effect. Ground cover biomass peaked during the second growing season, but declined thereafter, primarily due to reductions in below-ground biomass. Estimated recovery of fertilizer N was low in bare soil plots after 3 years, with 2% in the ‘perennial’ portion of the trees and 13% in the leaf litter. In contrast, recovery in the cover crop plots was 44%–51% in years 2–4. During that period, both biomass and N pool dominance shifted from primarily cover crop to primarily trees. The ground cover appeared to reduce tree growth in years 1–3, but total tree biomass after 4 years was greater in fertilized plots with ground cover (22.7 Mg/ha) than in fertilized bare soil plots (16.7 Mg/ha). Biomass production in fertilized trefoil plots in the fourth year (15.1 Mg ha−1 year−1, excluding leaves) exceeds that of local forests by 50%, and may be comparable to corn productivity in the area.  相似文献   

19.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

20.
The characteristics of the faunal community in the soil are closely related to soil quality and function. Land degradation, which reduces vegetation cover, may affect the soil surface-active fauna because both the above ground and below ground invertebrates depend on complex plant communities. In this study, we evaluated the effect of land degradation/restoration and factors affecting soil fauna in northern Iran. The studied land uses were virgin natural forest (VNF), Alnus subcordata C.A.M. plantation (ASP), Quercus castaneifolia C.A. Mey plantation (QCP), Cupressus sempervirens var. horizontalis plantation (CSP) and degraded natural forest (DNF). VNF and ASP enhanced soil earthworm density (2.43 and 2.12 ind. m?2) and dry mass (27.44 and 23.39 mg m?2) with more ratio of epigeic. The activities of acarina (91,851.37 and 85,810.43 ind. m?2), collembola (83,009.50 and 74,996.18 ind. m?2) and protozoa [921.25 and 851.81 (×?102 g soil)] were increased under VNF?≈?ASP, respectively. Nematode population (650 in 100 g soil) significantly improved under VNF. In general, good quality forest floor, alkaline soil and accumulation of macro-element nutrients improved biological activities under the VNF and ASP sites, while low-quality forest floor, acidic soil, less macro-elements nutrients decreased biological activities imposed by the QCP, CSP and DNF sites. More activities of the studied soil fauna were found in autumn and spring. The findings of this study support the importance of preserving natural forests. In addition, employing N2-fixing and suitable native broadleaved species have been proposed in a bid to rehabilitate DNFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号