首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
A study on the effects of silicon supply on the resistance to drought in cucumber plants was conducted in pot experiments. The results suggested that in the absence of stress, silicon slightly enhanced the net photosynthetic rate, but significantly decreased the transpiration rate and stomatal conductance in cucumber plants. Silicon enhanced the net photosynthetic rate of cucumber plants under drought stress. Since silicon decreased the stomatal conductance, enhanced the capacity of holding water, and kept the transpiration rate at a relatively steady rate during drought stress, the photosynthesis of the cucumber plants was sustained. And under drought stress, silicon increased the biomass and water content of leaves in cucumber plants. Silicon decreased the decomposition of chlorophyll in cucumber plants under drought stress, limited the increase of the plasma membrane permeability and malondialdehyde (MDA) content in leaves, alleviated the physiological response of peroxidase (POD) to drought stress, maintained the superoxide dismutase (SOD) normal adaptation, and increased the activity of catalase (CAT). Under severe stress, these physiological biochemical reactions showed positive correlations with the amount of silicon supply. These findings demonstrated that silicon enhanced the resistance of the cucumber plants to drought. Statistical analysis indicated that under drought stress the cumulative value of biomass showed a highly significant correlation with the cumulative value of diurnal photosynthesis (r = 0.9812, p < 0.01), and was significantly correlated with the water content of leaves (r = 0.8650, p < 0.05). These results demonstrated that under drought stress the first factor responsible for the effects of silicon application on the cumulative value of biomass was the increase of photosynthesis, and the second factor was the enhancement of the water holding capacity. Based on these facts, it was concluded that silicon enhanced the resistance to drought mainly by taking part in the metabolism of plants.  相似文献   

2.
Silicon in crop plants has been studied in various ways, for example, in elucidating its effects on phosphorus and nitrogen uptake by roots, or increase of resistance to diseases and insect pests, Graminaceous crops generally contain much more silicon in them than other families of plants, Remarkable effects of silicon application to plants On their growth appear especially in case they have contained about 5 to 10% of silicon before-hand. When silicon content in plants, on the other hand, is quite low, such as less than 0.5% for dry matter, plants show retardation of their grOwth at both vegetative and reproductive stages. It may be deduced that silicon applied to plants might play a role in different ways in cases where they have already had either considerable or quite small amounts of silicon. While the former case has been studied very much, extreme deficiency of silicon in plants has been investigated very little1)-8). Experiments reported here were designed for elucidating roles of silicon in its defiCient plants and getting information about the essentiality of silicon for them.  相似文献   

3.
施硅对水稻白叶枯病抗性及叶片抗氧化酶活性的影响   总被引:3,自引:2,他引:1  
【目的】水稻白叶枯病是一种细菌性枯萎病害,是限制水稻生产的重要生物因素之一。通过田间接种白叶枯病菌,研究施硅对水稻叶片中丙二醛含量及抗氧化系统酶活性的影响及其抗白叶枯病的机理,为安全有效的防治病害提供理论依据。【方法】以唐粳2号水稻品种为材料,2013年在河北省秦皇岛市进行田间试验,试验在两个施氮水平 [N 180 kg/hm2(正常供氮,N180), 450 kg/hm2(高量供氮,N450)]下设3个硅处理[不施硅(-Si),施硅酸钠(Si1, 以SiO2计,70 kg/hm2), 施硅钙肥(Si2, 以SiO2计,70 kg/hm2)],在水稻孕穗期采用剪叶法接种白叶枯病菌,研究硅对接种后30 d水稻病情指数和第1 d、 3 d、 5 d、 7 d和10 d水稻叶片中丙二醛(MDA)含量、 超氧化物歧化酶(SOD)活性、 过氧化氢酶(CAT)活性、 抗坏血酸过氧化物酶(APX)活性的影响。【结果】接种白叶枯病菌后,正常供氮水平,施硅处理的病情指数比不施硅处理平均降低17.8%(P0.05); 高量供氮水平,施硅钙肥的病情指数比不施硅降低15.1%(P0.05),而施硅酸钠的病情指数差异不显著。接种白叶枯病菌后,施硅处理的水稻叶片MDA均低于不施硅处理,且在正常供氮水平第7 d和高量供氮水平第3 d、 第7 d差异达显著水平。接种白叶枯病菌后,正常供氮水平第1 d、 第7 d和高量供氮水平第1 d、 第5 d,施硅处理的水稻叶片中SOD活性均显著高于不施硅处理,且第1 d施硅钙肥的叶片SOD显著高于施硅酸钠处理; 接种白叶枯病菌后,施硅处理的水稻叶片中CAT活性均高于不施硅处理,但未达显著水平; 高量供氮水平第1 d、 第7 d和第10 d施硅处理的水稻叶片中APX活性均显著高于不施硅处理。【结论】施硅能提高感病水稻叶片中SOD、 CAT和APX的活性,降低水稻叶片中MDA含量,有效清除植物体内活性氧(ROS),从而增强了水稻抗白叶枯病的能力; 在高量供氮水平下,硅钙肥抵御白叶枯病效果好于硅酸钠。  相似文献   

4.
It was reported in the previous paper1) that rice plants showed retardation of their vegetative growth and decrease of degree of seed setting when their silicon content was extremely low. It was concluded from these facts that silicon might most probably be essential for rice. But physiological functions or behaviours of silicon in plants should be clarified in order to solve this problem completely. Uptake and disttibution of silicon in rice plants were first investigated here, especially compared with phosphorus. A possibility of using silicon radioactive isotope (31Si) for this kind of experiment was also investigated. Although tracer techniques have been greatly developed in elucidating behaviours or physiological functions of various elements in plants, radioactive silicon isotopes have been used very little in this field of science because of this very short half lives. Recently Rothbuhr and Scott 2) reported having used radioactive silicon isotope for uptake experiments by plants in Harwell, England. Since a nuclear reactor (JRR-I) in the Japanese Atomic Energy Research Institute started to work in 1959, radioactive isotopes which have rather short half lives have become available for plant experiments in Japan. Methods of preparation of 31Si for plant experiments were examined and by using 31Si it was studied how silicon was absorbed and translocated by rice and wheat under some particular environmental conditions, and also how the uptake and distribution of it in rice plants were affected by various kinds of metabolic inhibitors.  相似文献   

5.
This research was conducted to evaluate silicon (Si) effects on the morphological characteristics and resistance to rice stem borer under greenhouse conditions at Sari Agricultural Sciences and Natural Resources University in 2009. The experiment was conducted as factorial in a complete randomized design (two factors) with three replications. The factors included four levels of silicon (Si) (Si0 = 0, Si1 = 5, Si2 = 10, Si3 = 20 g Si kg?1 soil) and three rice cultivars (Parto, Line 34, and Neda). The results showed Si fertilizer had a significant effect on percentage of white head, length of leaf, width of leaf, diameter of stem, and percentage of reproductive tiller. Also, increased stem Si increased the resistance to striped stem borer in the rice cultivars studied. The greatest resistance to striped stem borer was observed with the application of 20 g Si kg?1 soil. The application of Si at the rate of 20 g Si kg?1 soil significantly reduced the percentage of white head from 18.10% (without Si) to 0.11% (with 20 g Si kg?1 soil) in Parto cultivar.  相似文献   

6.
硅对Cd胁迫下黄瓜苗期光合及抗氧化酶系统的影响   总被引:1,自引:0,他引:1  
为了解石灰性土壤硅对Cd胁迫下黄瓜苗期叶片的光合特性和抗氧化酶系统及对实际土壤Cd毒害植物的防治,研究了硅介入下Cd污染土壤中黄瓜苗期的叶片净光合速率(P_n)、气孔导度(G_s)、蒸腾速率(T_r)、胞间CO_2(C_i)等光合作用指标,叶绿素含量,丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶系统等相关参数。结果表明:与空白相比较,单施Cd处理下,P_n、G_s、T_r和叶绿素含量下降,Ci提高。硅介入后,能明显提高P_n、G_s、T_r和叶绿素总量,降低C_i含量。当C_d含量为5mg/kg时,硅施加量100~200mg/kg情况下,与空白相比,P_n、G_s、T_r和叶绿素上升,C_i下降,但100mg/kg与200mg/kg的硅处理差异不明显,300mg/kg的硅添加量效果最好。对于抗氧化酶系统,与空白相比较,土壤Cd含量为3~5mg/kg时,3类抗氧化酶的活性均受到显著抑制,200~300mg/kg硅的引入可明显提高SOD、POD、CAT活性,降低MDA值。可见,硅的引入可明显改善Cd胁迫下黄瓜叶片的光合特性和抗氧化酶系统。施用少量硅肥在石灰性土壤中对缓解植物Cd毒害具有一定的应用前景。  相似文献   

7.
This study aims to explain the effects of silicon (Si) foliar application on gas exchange characteristics, photosynthetic pigments, membrane stability and leaf relative water content of different wheat cultivars in the field under drought stress conditions. The experiment was arranged as a split-split plot based on randomized complete block design with three replications. Irrigation regime (100%, 60%, and 40% F.C.), silicon (control and Si application) and wheat cultivars (Shiraz, Marvdasht, Chamran, and Sirvan) were considered as main, sub and sub-sub plots, respectively. This study was carried out at the Research Farm of the Collage of Agriculture, Shiraz University, Iran, during 2012–2013 growing season. The results showed that foliar application of silicon increased the leaf relative water content, photosynthesis pigments (chlorophyll a, b and total chl and carotenoids), chlorophyll stability index (CSI) and membrane stability index (MSI) in all wheat cultivars, especially in Sirvan and Chamran (drought tolerant cultivars), under both stress and non-stress conditions. However, more improvement was observed under drought stress as compared to the non-stress condition. In contrast, these parameters decreased under drought stress. Si significantly decreased electrolyte leakage in all four cultivars under drought stress conditions. Furthermore, the intercellular carbon dioxide (CO2) concentration (Ci) increased under drought stress. Si application decreased Ci especially under drought stress conditions. Net photosynthesis rate (A), transpiration rate (E) and stomatal conductance (gs) were significantly decreased under drought conditions. Under drought, Si applied plants showed significantly higher leaf photosynthesis rate, transpiration rate, and stomatal conductance. Intrinsic water use efficiency (WUEi) and carboxylation efficiency (CE) decreased in all cultivars under drought stress. However, the silicon-applied plants had greater WUEi and CE under drought stress. The stomatal limitation was found to be higher in stressed plants compared to the control. Exogenously applied silicon also decreased stomatal limitation. Overall, application of Si was found beneficial for improving drought tolerance of wheat plants.  相似文献   

8.
以感白叶枯病的水稻品种日本晴(Oryza sativa L. cv. Nipponbare)为材料,在溶液培养条件下,研究了硅对接种白叶枯病菌后的水稻病情指数、叶片丙二醛(MDA)和过氧化氢(H2O2)含量以及超氧化物岐化酶(SOD)、过氧化氢酶(CAT)、脂氧合酶(LOX)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性的影响。结果表明,施硅能显著降低水稻白叶枯病的病情指数,防治效果达62.86%。接种白叶枯病菌后48 h内,施硅处理的水稻植株,叶片中丙二醛(MDA)和过氧化氢(H2O2)含量显著升高;显著提高感病植株叶片中脂氧合酶(LOX)和超氧化物歧化酶(SOD)活性;降低过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性;促进过氧化氢(H2O2)在植物体内积累,加强膜脂过氧化作用。因此,硅可通过参与植株体内代谢,调节抗氧化系统酶活性,激发机体过敏反应(HR),增强植株对白叶枯病抗性。  相似文献   

9.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

10.
Silicon may be regarded as an essential element to cereals plant from an agronomic viewpoint. It is implicated as a factor influencing the degree of susceptibility of cereals to fungal attack. Vegetation in the tropics contains much more silicon for the protection. Once the silicon dioxide has been taken up by plants, it is rapidly accumulated in insoluble form and remains in the tissues. Yield response over the control will not be obtained if available silicon exceeds 11 mg SiO2/100 g in the soil. The addition of silicon to the culture solution, at the rate of 75 ppm Si, decreased the accumulation of Mn, Cu, Fe, Zn, N, P and transpiration rate, but increased Ca, Mg, Si and carbohydrate contents. It is concluded that addition of silicon is particularly effective when combined with a heavy rate of nitrogen and magnesium.  相似文献   

11.
为阐明硅提高水稻抗稻瘟病的生理机制,采用室内溶液培养试验,研究了硅对接种稻瘟病菌后水稻叶片的几丁质酶和β-1,3-葡聚糖酶活性以及总可溶性酚和木质素含量的影响。结果表明,接种稻瘟病菌能诱导几丁质酶活性的快速上升,不施硅处理的几丁质酶活性在第2 d达到第一个峰值后就开始下降,而施硅处理的几丁质酶活性则继续上升直到第4 d才开始下降,从第4~8 d显著高于不施硅处理。β-1,3-葡聚糖酶活性在接种后的第4 d之前均上升缓慢,处理间差异不显著;第4 d后开始上升,到第8 d达到最大值;不施硅处理上升更快,显著高于施硅处理。接种稻瘟病菌能诱导水稻叶片总可溶性酚含量快速上升,施硅处理和不施硅处理分别在接种后的第3和第4 d达到峰值,并开始快速下降;施硅能显著提高总可溶性酚含量。水稻叶片中的木质素含量在接种后的第1 d快速上升,并维持较高水平,施硅处理显著高于不施硅处理;但在感病后期(第6 d),施硅处理开始显著低于不施硅处理。  相似文献   

12.
Although silicon (Si) is the second most abundant element of the earth's crust and in soils, it is not listed among the essential elements for plants. However, the beneficial role of Si in stimulating the growth and development of many plant species has been recognized. This study investigated the effects of in vitro application of nanosilicon oxide on growth and proliferation of apple rootstock MM106 in tissue culture. The experiment included five levels nanosilicon oxide (0, 25, 50, 100, and 200 mg/L) added to Murashige and Skoog medium. The results showed that using nanosilicon increased in fresh and dry weights, length and number of branches, and chlorophyll in explants with the highest increase being at 100 mg/L. Growth suppression occurred at 200 mg/L. This investigation showed that 100 mg/L silicon oxide can be added to Murashige and Skoog medium for fast growth and proliferation of MM106 apple rootstock explants.  相似文献   

13.
The purpose of this study was to determine the different kinds and concentrations of intermediates, and investigate on the effects of contact time and ozone (O3) doses on the removal of humic acid (HA), which is served as the main disinfection by-product (DBP) precursor. Based on that, the knowledge gap of DBPs generated was made up. The results showed that HA was the major precursor material for aldehydes and carboxylic acids. The concentrations of aldehydes increased as contact time and O3 doses, and reached up maximum at 2~10 min but approached a plateau at the higher O3 doses. The concentrations of formic and acetic acids increased as contact time and O3 doses. However, aromatic acids, including protocatechuic, 3-hydroxybenzoic, and benzoic acids, declined rapidly at longer reaction time and higher O3 doses. It was worth mentioning that aromatic acids had been rarely reported. Besides, a possible formation pathway was proposed: (a) HA was degraded into fulvic acid (FA)-like compounds; (b) FA-like compounds were further converted into aromatic acids; (c) aromatic acids were transformed into low-molecular-weight organic matters; (d) chlorine reacted with aldehydes and/or carboxylic acids by addition, hydrolysis, and decarbonylation reactions, leading to DBP formation. Furthermore, not only HA were the main DBPs precursors, but also the oxidation intermediates of HA could be the DBPs precursors, and they gave a certain amount of DBPs. Consequently, aldehydes and carboxylic acids should be under control in drinking water treatment plants.  相似文献   

14.
Field water stress is a common problem in crop production, especially in arid and semi-arid zones and it is widely hypothesized that silicon (Si) could reduce water stress in plants. We set up a greenhouse study to evaluate some silicon sources—potassium silicate (K2SiO3), calcium silicate (CaSiO3) and silica gel for growth and nutrient uptake by four grass species under adequate and deficit irrigation. The four species studied were Rhodes grass (Chloris gayana), Timothy grass (Phleum pratense), Sudan grass (Sorghum sudanense) and Tall fescue (Festuca arundinacea). For all species, the biomass yield response to applied silicon under deficit irrigation was significantly better than under adequate irrigation. The yield response of Rhodes grass across silicon sources was 205% under deficit irrigation compared with only 59% under adequate irrigation; for Sudan grass it was 49% compared with 26% and for Timothy, it was 48% compared with a mere 1%. The higher responses under deficit irrigation suggest that the plants relied more on silicon to endure drought stress. Biomass yield of individual plants also differed according to soil water levels with Timothy grass being the most sensitive to water stress as it exhibited the highest yield response (209%) to adequate irrigation. This was followed by tall fescue (122%) and Rhodes grass (97%). Sudan grass was the least affected by deficit irrigation, possibly on account of improved root mass and its natural drought tolerance. Strong associations were noted between the uptake of silicon and those of nitrogen (N) and phosphorus (P) irrespective of soil water condition, but the uptake of potassium (K) was more strongly correlated with that of Si under deficit than adequate irrigation. Improvements in plant growth following Si application could therefore be linked to enhanced uptake of major essential nutrients.  相似文献   

15.
The concentration of atmospheric carbon dioxide (CO2) is rising. The effect of higher than ambient levels of CO2 on plants grown in the sub-humid central Great Plains of the U.S.A. has not been investigated. Therefore, an experiment was conducted at Manhattan, Kansas, to study the effect of elevated levels of CO2 on grain sorghum [Sorghum bicolor (L.) Moench]. During the summer of 1984, the sorghum was grown in rhizotrons in which root and shoot growth could be monitored throughout the growth cycle. The tops of the plants were enclosed in plastic chambers, which contained one of four concentrations of CO2 : 330 (ambient), 485, 660, and 795 μl 1−1.Enriched CO2 delayed the boot, half bloom, and soft dough stages. Sorghum grown at elevated concentrations of CO2 yielded more roots and shoots than plants grown with 330 μl 1−1. At all soil-profile depths, root numbers and weights were higher at elevated CO2 than at ambient CO2. However, water use per unit dry matter of leaf, stem, root, and grain was decreased 13, 30, 31, and 29%, respectively, in plants grown at 795 μl 1−1 CO2 compared to plants at 330 μl 1−1 CO2. Although elevated CO2 levels increased the stomatal resistance and leaf temperature, an increase in leaf area indices resulted in a lower canopy resistance.  相似文献   

16.
The 30Si silicon isotope stable was used for assessing the accumulation and translocation of Si in rice and bean plants grown in labeled nutritive solution. The isotopic silicon composition in plant materials was determined by mass spectrometry (IRMS) using the method based on SiF4 formation. Considering the total-Si added into nutritive solutions, the quantity absorbed by plants was near to 51% for rice and 15% for bean plants. The accumulated amounts of Si per plant were about 150g in rice and 8.6g in bean. Approximately 70% of the total-Si accumulated was found in leaves. At presented experimental conditions, the results confirmed that once Si is accumulated in the old parts of rice and bean plant tissues it is not redistributed to new parts, even when Si is not supplied to plants from nutritive solution.  相似文献   

17.
《Journal of plant nutrition》2013,36(8):1457-1470
Abstract

The influence of silicon (Si) on water use efficiency (WUE) in maize plants (Zea mays L. cv. Nongda108) was investigated and the results showed that plants treated with 2 mmol L?1 silicic acid (Si) had 20% higher WUE than that of plants without Si application. The WUE was increased up to 35% when the plants were exposed to water stress and this was accounted for by reductions in leaf transpiration and water flow rate in xylem vessels. To examine the effect of silicon on transpiration, changes in stomata opening were compared between Si-treated and nontreated leaves by measuring transpiration rate and leaf resistance. The results showed that the reduction in transpiration following the application of silicon was largely due to a reduction in transpiration rate through stomata, indicating that silicon influences stomata movement. In xylem sap of plants treated with 2 mmol L?1 silicic acid, the Si concentration was 200-fold higher, while the Ca concentration which is mainly determined by the transpiration rate, was 2.5-fold lower than that of plants grown without Si. Furthermore, the water flow rate in xylem vessels of plants with and without Si was compared. Flow rate in plants with 2 mmol L?1 Si was 20% lower than that without Si, which was accounted for by the increased affinity for water in xylem vessels induced by silica deposits. These results demonstrated the role of Si in improving WUE in maize plants.  相似文献   

18.
Nematodes have difficult control and complex handling, but considering the physiological and biochemical changes that micronutrients promoting in plants, there is possibility that the supply with these chemicals increases the resistance of plants against nematodes. Thus, the present study aimed to assess the effect of the application of boron and zinc on the reproduction of Meloidogyne incognita, embryonic development and juvenile nematode hatching. Nematode reproduction was evaluated in tomato plant inoculated with 2000 eggs and treated in the aerial part with boron or zinc at the following doses: 0, 1/2, 1×, 2× and 4× the manufacturer's recommendation (100 and 30?g/L, respectively), with the plants assessed 60 days after inoculation. For assessment of embryonic development and juvenile hatching, 1?mL nematode suspension was placed in Petri dishes containing 9?mL of the same doses of boron and zinc, and assessment occurred four and eight days after incubation. Results obtained showed that boron controlled nematode population at the dose of 400?g/L and promoted juvenile hatching when used at maximum dosage on the eighth day. Zinc reduced the number of galls and the number of eggs at the dose of 60?g/L, but did not exhibit direct effect on nematode.  相似文献   

19.
The objective was to study the effects of phosphorous (P) fertilization on nutritional and developmental aspects of growing mango plants. The mango plants were evaluated by soil chemical analyses, leaf chemical analyses, biological examination of plant growth, and the starting point of fruit production. Having this in view, an experiment was set up on 2 January 2003, at Flora, a farm in Uberlandia, state of Minas Gerais, Brazil. The soil was a clayish Oxisol. The doses at planting were: D0 = zero, D1 = 40, D2 = 100, D3 = 200, and D4 = 300 g of P2O5 plant?1. These doses at the beginning of the second year were multiplied by 1.5 and at the beginning of the third year by 2.0 and applied to the plants. The fertilizer used in this experiment was triple superphosphate (44% of P2O5.). During August of 2004, 2005, and 2006, soil samples were taken at a depth of 20 cm in between the plant rows. Leaf samples were taken during August of 2004 and 2005 to determine macro- and micronutrient contents in the leaves. Plant stem diameter was measured during January of 2004 and 2005. Plant height and crown radius were measured during January of 2005 and fruit production in 2005 and 2006. Fertilizer applications increased the level of P in the soil but significantly influenced plant performance only after the second year. The effects of phosphorus on mango plants take place slowly leading to increments in plant stem diameter only at the third year. Fruit set was not influenced by phosphorous fertilization.  相似文献   

20.
Sunflower plants (Helianthus annuus L. cv. Zwerg Sonnengold) were cultivated in pots containing 1 kg of soil fertilized with 0.6 g K (K1) and 5.0 g K/pot (K2). At the age of 5 and 11 weeks, respectively the plants were transferred to a growth chamber. 50% of the plants per K treatment received sufficient watering (controls), the remaining 50% were subjected to water stress until visible signs of severe wilting were observed. At that stage the plants were rewatered. In both growth stages and even under water stress conditions the up to 5 times higher K concentrations in the tissue of K2 plants caused an increased dry matter production during the experimental periods and a larger total leaf area which was less reduced under water stress than the leaf area of K1 plants. During continuous watering the water content per leaf area of K2 plants was on the average 1.5g H2O dm?2 (K1: 1.35g), the water content of older K2 plants being on the average 1.33g H2O dm?2 (K1: 1.25g). During water stress and subsequent recovery this relation observed between K2 and K1 remained constant. In young K1 plants, however, no intensified loss of succulence was found during severe drought compared with 11-week-old K1 plants where the water content decreased from 1.2g to 0.6g H2O per dm2 of leaf area. At almost equally high soil water availability stomatal diffusive resistance especially of the older unstressed K2 plants was higher than in K-deficient plants. Under water stress, the degree of stomatal opening of K2 plants at first decreased more rapidly, but at equally low soil water potentials diffusive resistance in the leaves of K2 plants remained lower than in K1 plants. A relation of the leaf water characteristics, total water potential (41), osmotic potential (42), and turgor potential (Φp) to the corresponding soil water potential showed that under stress Φ1 and Φs in plants with sufficient K nutrition always remained on a higher level than in K1 plants. Consequently, they were able to maintain a higher turgor pressure even under conditions of restricted water availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号