首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil compaction is one of the major problems facing modern intensive agriculture. To remove soil compaction and restore soil productivity soil must be ripped to loosen it. Ripping is a costly process involving high fuel consumption, as well as depreciation of the implements through wear and tear. This article shows research into some combinations of tine spacing and ripping depth and their consequences for soil properties and grain yields. Three sites were chosen for these experiments on clayey and sandy soils. Treatments were a factorial of three tine spacings (20, 30 and 40 cm) by three ripping depths (15, 30 and 40 cm) together with the control.Commercial gypsum at 2.5 t/ha was applied to all treatments to maintain soil structure after ripping and the treatments were treatments were monitored for two seasons under wheat and barley crops.The highest grain yield in sandy soil was found with the combination of 40 cm ripping depth and 20 cm tine spacing. In clayey soils tine spacings of 20 cm and 30 cm in combination with 40 cm ripping depth, were equally effective for grain yield. The shallowest depth treatment, 15 cm, did not significantly affect grain yields regardless of tine spacing. It seems that the best practical compromise of tine spacing and ripping depth is 30 cm × 30 cm. The highest stored soil water was obtained from the deepest ripping and the widest tine spacing (40 cm × 40 cm) treatments and the lowest was obtained from the shallowest depth and narrowest spacing (15 cm × 20 cm) treatments which was still higher than the control treatment. However, due to soil re-settlement and re-compaction, the soil water storage obtained in the year after ripping to 40 cm depth was in many cases only equal to that obtained from 30 cm ripping depth. Soils ripped at 30 cm or deeper had significantly higher water infiltration rate than soils ripped at 15 cm depth. Soil bulk density, though decreased significantly in all ripping treatments relative to the controlled treatments in the first year, showed no stable pattern of change in the second year. All shallow ripping treatments (15 cm) regardless of tine spacing had similar soil strength and were not significantly different from the control. The other two ripping depths in general were equal, and significantly better than the controls. It is concluded that ripping to 30 or 40 cm depth in combination with 30 or 40 cm tine spacing was most effective for treating compacted soils.  相似文献   

2.
Linear regression equations between the logarithm of the total soil moisture potential and soil moisture content in the hygroscopic moisture range (Landau–Deryagin law) were derived for typical soils from different natural zones of European Russia. From these equations, a compact algorithm was developed for calculating the hydration energy of soils, which increases from 1280 to 10600 J/kg in the following soil series: heavy loamy soddy podzolic soil–heavy loamy gray forest soil–medium loamy light chestnut soil–heavy loamy brown semidesert soil–light clayey solonchak–light clayey chernozem–medium clayey krasnozem. Relationships were revealed between the hydration energy of soils, the specific surface of soils, the content of physical clay in soils, and the concentration of hydrated exchangeably adsorbed ions.  相似文献   

3.
  【目的】  磷的固定是石灰性土壤中磷肥效益低的重要原因,研究两种施肥方式下不同形态磷源在石灰性土壤中的迁移以及有效性,为实现磷肥减施增效提供理论基础。  【方法】  采用土柱模拟试验方法进行研究,供试土壤为粘质和壤质石灰性土壤。供试磷酸盐为磷酸脲、焦磷酸和聚磷酸,壤土施磷量为0.0581 g/柱,粘土为0.0594 g/柱。施用方式包括一次施用和分4次滴施,同时以不施用磷酸盐土柱为对照。于地下室内 (27 ± 1.0)℃培养28天后将土柱在?80℃条件下快速冷冻固形,从土表向下0—100 mm内每隔5 mm作为一个切割单元,100—300 mm间每隔20 mm作为一个切割单元,测定每层土壤的水溶性磷和Olsen-P含量。  【结果】  培养28天后,一次施用条件下,磷在壤土中的移动距离表现为聚磷酸 (90 mm) > 焦磷酸 (60 mm) > 磷酸脲 (50 mm),粘土中表现为聚磷酸 (80 mm) > 焦磷酸 (70 mm) > 磷酸脲 (60 mm)。分次滴施条件下,聚磷酸 (95 mm) 在壤土中的移动距离比磷酸脲 (65 mm) 和焦磷酸 (70 mm) 分别增加46.2%和35.7%,在粘土中聚磷酸 (90 mm) 的移动距离较磷酸脲 (70 mm) 和焦磷酸 (75 mm) 分别增加28.6%和20.0%。磷浓度下降到一半时所达到土柱深度 (半运移深度) 的结果表明,在壤土一次施用条件下,半运移深度表现为聚磷酸 (15.1 mm) > 焦磷酸 (11.4 mm) > 磷酸脲 (10.5 mm),分次滴施条件下半运移深度为聚磷酸 (20.0 mm) > 焦磷酸 (14.4 mm) > 磷酸脲 (14.3 mm)。在粘土一次施用条件下,半运移深度为聚磷酸 (17.7 mm) > 焦磷酸 (15.8 mm) > 磷酸脲 (14.8 mm),分次滴施条件下,聚磷酸、焦磷酸和磷酸脲的半运移深度依次为51.3、27.1和41.4 mm。相关性分析结果表明,不论一次施用还是分次滴施,聚磷酸和焦磷酸处理均随着水溶性磷含量的增加,有效磷含量在粘土上的增加量大于在壤土上的,分次滴施聚磷酸较一次施用在同样水溶性磷含量下,有效磷的含量在粘土和壤土中的差距减小,焦磷酸处理中水溶性磷与有效磷在两种土壤上较为接近。磷酸脲一次施用后,有效磷在粘土中随水溶性磷的变化量大于在壤土中,分次滴施结果则相反。  【结论】  在质地为壤土和粘土的石灰性土壤中,不论是一次性施用还是分次滴施,磷的移动性均表现为聚磷酸 > 焦磷酸 > 磷酸脲,且分次滴施3种磷源时磷的移动性和有效性均显著高于一次施用。同样水溶性磷含量条件下,粘土中磷的有效性高于壤土,分次滴施提高土壤磷素有效性的效果表现为粘土优于壤土。  相似文献   

4.
DCD 在不同质地土壤上的硝化抑制效果和剂量效应研究   总被引:5,自引:0,他引:5  
通过硝化抑制剂抑制土壤硝化作用是实现作物铵硝混合营养和提高氮肥利用率的重要途径之一。本试验采用室内模拟的方法, 在人工气候室(25 ℃)黑暗培养条件下, 应用新疆石灰性土壤研究了不同剂量的双氰胺(dicyandiamide, DCD)在砂土、壤土、黏土3 种不同质地土壤中对土壤硝态氮、铵态氮转化的影响及DCD 的剂量效应和硝化抑制效果。处理30 d 内, 各剂量DCD 处理对砂土的硝化抑制率为96.5%~99.4%(平均值为98.3%), 在黏土上为66.9%~85.6%(平均值为77.6%), 在壤土上为49.3%~79.4%(平均值为67.7%), 总体硝化抑制率表现为砂土>黏土>壤土。在砂土上DCD 的剂量效应不明显, DCD 用量从纯氮的1.0%增加到7.0%时, 土壤中硝态氮含量仅增加1.9~10.7 mg·kg-1(培养30 d 时); 而在壤土和黏土中, 土壤硝态氮含量随DCD 浓度的增加而显著下降, 存在明显剂量效应。这说明施用DCD 可显著抑制新疆石灰性土壤的硝化作用过程, 在砂土、壤土、黏土中DCD 的最佳浓度分别为纯氮用量的6.0%、7.0%和7.0%, 并在培养30 d 内发挥显著作用。  相似文献   

5.
Soil samples were collected from a loamy sand and a clayey soil near Cinzana, Mali, for the purpose of documenting the seasonal dynamics of soil inorganic N after 9 years under five crop-management systems. The cropping systems were: continuous grain sorghum (Sorghum bicolor) or millet (Pennisetum glaucum) without residue return, continuous grain with stalk residue returned to the field every second year, grain in rotation with cowpea (Vigna unguiculata), and grain in rotation with the green manure crops, sesbania (Sesbania rostrata) and dolichos (Dolichos lablab). A sharp increase in soil N was observed early in the rainy season in both soils. Extractable N concentration in loamy sand and clayey soils, respectively, peaked between 15–22 kg and 33–51 kg N ha–1 in the upper 10 cm of soil. In the clayey soil, the higher soil N concentrations associated with the early season flush lasted 8 weeks after the onset of rain. Nitrogen addition through rotational crops and crop residue was low. Significant improvement of cereal grain yield may not be possible solely by rotation with sesbania and dolichos green manure or cowpea without additional nutrient input. Earlier cereal planting, where feasible, is recommended to improve synchrony of soil N mineralization and crop demand.  相似文献   

6.
Morphogenetic features of soils on the selected plots in the Cat Tien National Park in southern Vietnam have been studied with the use of a set of morphological, analytical, and instrumental methods. The lithological factor and topographic position play the leading role in the development of the particular genetic soil features. The soils can be subdivided into four groups according to these factors. The soils developing from volcanic deposits with a predominance of tephra can be classified as thin clayey brown tropical soils (Dystric Skeletic Rhodic Cambisols (Clayic)), and the soils developed from less weathered colluvial derivatives of basalts with some admixture of tephra can be classified as dark-humus clayey tropical soils (Skeletic Greyzemic Umbrisols (Clayic)). Very poor soils developed from the eluvium of argillites are classified as thin weakly developed clayey tropical soils (Dystric Regosols (Clayic)). The soils forming from the alluvial sediments of different textures are classified as alluvial loamy sandy soils (Dystric Fluvisols (Arenic, Drainic)) and as alluvial clay loamy soils (Eutric Fluvisols (Episiltic, Endoclayic)).  相似文献   

7.
The thermal regime of the different soil types of Georgia has been studied on the basis of soil temperature records obtained at 60 weather stations in 1947–1995. It is shown that the thermal conductivity and temperature gradients in the soil profiles depend on the soil type. In the upper 0–20 cm of the soils in the intermontane depressions, the lowest temperature gradients in the summer are typical of the red ferrallitic soils (0.5–1.1°C/dm), and the highest gradients are observed in the chernozems of eastern Georgia (1.0–1.3°c/dm). The soil temperature gradients are especially high in the late spring (1.4–1.8°c/dm), when the atmospheric convection is formed. In the mountains, the lowest gradients in the summer are observed in the cinnamonic soils (0.4–0.9°c/dm), and the highest gradients are established in the brown forest soils (0.5–1.3°c/dm). The redistribution of the temperatures in the deeper layers depends on the soil texture. The lowest temperature gradient is in the soils of Telavi (3.1°c/m), where a stony layer is found at the depth of 60 cm, which causes the good heating of the deep layers. The highest gradients are seen in the clayey and loamy soils of western (Chakva, 3.8°c/m) and eastern (Tbilisi, 3.9°c/m) Georgia. This is probably related to the high water content in the heavy-textured soils.  相似文献   

8.
The objective of this study was to assess the influence of land use on soil aggregate size distribution and the consequences for organic C, N, and S concentrations in bulk soil and macroaggregates. The properties of a loamy and a clayey Oxisol used for continuous cropping, pasture and reforestation were compared with those of the native savannah (“Cerrado”). We measured aggregate size fractionation, C, N, and S concentrations in bulk soil, small (0.25–2 mm, SMA), and large macroaggregates (2–8 mm, LMA), and carried out a mineralization experiment with intact and crushed LMA. The aggregate size distribution of pastures was not different from native Cerrado. Reforestation and plowing caused higher percentages of smaller aggregates which was more pronounced in the loamy than in the clayey soil. Total concentrations of C, N, and S were higher in the clayey (C: 21.5–23.3 g kg?1; N: 1.2–1.4 g kg?1; S: 178–213 mg kg?1) than in the loamy soil (C: 7.8–10.3 g kg?1; N 0.5–0.7 g kg?1; S: 87–132 mg kg?1). LMA of the loamy soil had higher C, N, and S concentrations than the bulk soil. SMA and both macroaggregate fractions of the clayey soil did not differ from the bulk soil. 71 % of potentially mineralizable N in LMA of the loamy soil were only mineralized after aggregate disruption. In contrast, there were only small differences between crushed and intact LMA of the clayey soil. Therefore, we considered conventional tillage suitable for clayey soils. The loamy soil would require a more soil conserving system like no-till or crop-pasture rotation to improve sustainability.  相似文献   

9.
Background, aim, and scope  The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil–water–plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods  The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic ‘Rhodic’ Acrudox (RA), a sandy-clayey textured Anionic ‘Xantic’ Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L−1) and two electrolyte solutions (CaCl2 or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L−1). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion  Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni2+ and Ca2+ was higher than that between Ni2+ and Na+ in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl ions and consequent adsorption of Ni2+. Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions  The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives  The presence of NaCl or CaCl2 in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.  相似文献   

10.
Soil porosity and organic matter content influence the hydrology, thermal status and productivity of agricultural soils. Shape, size and continuity of soil pores are determined by tillage practices. Thus appropriate tillage and mulch management can conserve residual soil moisture during the post rainy season. This can play a key role in enhancing productivity under the rainfed ecosystem of subhumid region in eastern India. A field study was carried out on a fine loamy soil from 1993–1994 to 1995–1996. Two tillage treatments were conventional ploughing (150 mm depth) and shallow ploughing (90 mm) depth. Each tillage practice was tested with three mulch management viz., no mulch, soil dust mulch and rice (Oryza sativa L.) straw mulch. Soil organic carbon, bulk density, moisture retentivity, soil temperature with productivity and water use pattern of barley (Hordium vulgare L.) were measured.Reduction in ploughing depth resulted in nominal increase in profile (0.0–1.2 m) moisture status, yield, and soil thermal status at 14:00 and water use efficiency (WUE). However, it decreased the magnitude of soil temperature in the morning (07:00). Straw mulch conserved 19–21 mm of moisture in the profile (1.2 m) over the unmulched condition. Both soil dust and rice straw mulching elevated soil thermal status at 07:00 as compared to unmulched condition, but this trend was reversed at 14:00. Straw mulching significantly increased grain yield and WUE over soil dust mulch and unmulched condition. Impact of straw mulch was more pronounced under shallow ploughing depth. Shallow tillage with rice straw mulching is recommended to the farmers to obtain higher level of yield and water use efficiency.  相似文献   

11.
An experiment was carried out to investigate the decomposition and microbial use of maize leaf straw incubated in packed soil columns at different depths. The straw was incorporated into the top layer at 0–5 cm depth and into the bottom layer at 15–20 cm depth of a sandy or a loamy soil. Microbial biomass C was significantly increased after adding straw to the bottom layer of both soils. After adding straw to the top layer, this increase was significantly lower in the sandy soil and significantly higher in the loamy soil. Maize straw application significantly increased the ergosterol-to-microbial biomass C ratio in both soils from 0.26% to a mean content of 0.72% after adding straw to the top layer and to a mean content of 1.11% after adding straw to the bottom layer. The calculation of the maize-derived CO2 production revealed that the mineralization rates of maize C were always higher in the sandy soil, with a mean of 20%, than in the loamy soil, with a mean of 14%. The application of maize straw always significantly increased the soil organic matter-derived CO2 production. This increase was stronger in the loamy soil than in the sandy soil and stronger after application of the maize straw to the top layer than to the bottom layer. On average, 100% of the maize straw C was recovered in the different fractions analysed. In the layers with maize leaf straw application, 28% of the maize C was recovered as particulate organic matter (POM) > 2 mm and 32% as POM 0.4–2.0 mm, without a significant difference between the two soils and the depth of application. In the layers with maize leaf straw application, 19% of the maize C was recovered as microbial residue C and 3.1% as microbial biomass C. In the three layers without straw, the microbial biomass incorporated a further 2.4% of the maize C in the sandy soil, but only 0.9% in the loamy soil. Considerable amounts of substrate C were transferred within the microbial biomass over a decimetre distance. The finer pore space of the loamy soil seems to obstruct the transfer of maize-derived C. This was especially true if the maize leaf straw was added to the bottom layer.  相似文献   

12.
Soil tilth has been defined in terms of a ‘Physical Index’ based on the product of the ratings of eight physical properties — soil depth, bulk density, available water storage capacity, cumulative infiltration or apparent hydraulic conductivity, aggregation or organic matter, non-capillary pore space, water table depth and slope. The Physical Index and a tillage guide were used to identify the tillage requirements of different soils varying in texture from loamy sand to clay in the semi-arid tropics. The physical index was 0.389 for a loamy sand, 0.518 for a black clay loam and 0.540 for a red sandy loam soil and the cumulative rating indices in summer and winter seasons were 45 and 44 for loamy sand, 52 and 51 for red sandy loam and 54 and 52 for black clay loam soils, respectively. The compaction of the loamy sand by eight passes of a 490 kg tractor-driven roller (0.75 m diameter and 1.00 m length) increased the physical index to 0.658 and chiselling of the red sandy loam and black clay loam increased the physical indices to 0.686 and 0.729, respectively. The grain yields of rainfed pearl millet and guar and irrigated pearl millet, wheat and barley increased significantly over the control (no compaction) yields by compaction.

The chiselling of the soils varying in texture from loamy sand to clay at 50 to 120-cm intervals up to 30–40 cm depth, depending upon the row spacing of seedlines and depth of the high mechanical impedance layer, increased the grain yields of rainfed and irrigated maize on alluvial loamy sand, rainfed maize on alluvial sandy loam and red sandy loam, rainfed sorghum on red sandy loam and black clay loam, irrigated sorghum on black clay loam and rainfed black gram on red sandy loam, pod yield of rainfed groundnut, tuber yield of irrigated tapioca and fresh fruit yield of rainfed tomato on red sandy loam and sugarcane yield on black clay soil, significantly over the yields of no-chiselling systems of tillage such as disc harrow and country plough.  相似文献   


13.
Winter wheat (Triticum aestivum L.) is an important cereal crop in the temperate climates of western Europe. Root system architecture is a significant contributor to resource capture and plant resilience. However, the impact of soil type on root system architecture (RSA) in field structured soils is yet to be fully assessed. This work studied the development of root growth using deep cultivation (250 mm) during the tillering phase stage (Zadock stage 25) of winter wheat across three soil types. The three sites of contrasting soil types covered a geographical area in the UK and Ireland in October 2018. Root samples were analysed using two methods: X-ray computed tomography (CT) which provides 3D images of the undisturbed roots in the soil, and a WinRHIZO scanner used to generate 2D images of washed roots and to measure further root parameters. Important negative relationships existed between soil bulk density and root properties (root length density, root volume, surface area and length) across the three sites. The results revealed that despite reduced root growth, the clay (Southoe) site had a significantly higher crop yield irrespective of root depth. The loamy sand (Harper Adams) site had significantly higher root volume, surface area and root length density compared with the other sites. However, a reduction in grain yield of 2.42 Mt ha−1 was incurred compared with the clay site and 1.6 Mt ha−1 compared with the clay loam site. The significantly higher rooting characteristics found in the loamy sand site were a result of the significantly lower soil bulk density compared with the other two sites. The loamy sand site had a lower soil bulk density, but no significant difference in macroporosity between sites (p > 0.05). This suggests that soil type and structure directly influence crop yield to greater extent than root parameters, but the interactions between both need simultaneous assessment in field sites.  相似文献   

14.
《Geoderma》2007,137(3-4):327-339
Our objectives were to describe the field-scale horizontal and vertical spatial variability of soil physical properties and their relations to soil map units in typical southeastern USA coastal plain soils, and to identify the soil properties, or clusters of properties, that defined most of the variability within the field. The study was conducted on a 12-ha field in Kinston, NC. A 1:2400 scale soil survey had delineated three soil map units in the field: Norfolk loamy sand, Goldsboro loamy sand, and Lynchburg sandy loam. These are representative of millions of hectares of farmland in the Coastal Plain of the southeastern USA. Sixty soil cores were taken to ∼ 1-m depth, sectioned into five depth increments, and analyzed for: soil texture as percentage sand, silt, and clay; soil water content (SWC) at − 33 and − 1500 kPa; plant available water (PAW); saturated hydraulic conductivity (Ksat); bulk density (BD); and total porosity. A penetrometer was used to measure cone index (CI) at each sample location. Variography, two mixed-model analyses, and principal components analysis were conducted. Results indicated that soil physical properties could be divided into two categories. The first category described the majority of the within-field variability and included particle size distribution (soil texture), SWC, PAW, and CI. These characteristics showed horizontal spatial structure that was captured by soil map units and especially by the division between sandy loams and finer loam soils. The second class of variables included BD, total porosity, and Ksat. These properties were not spatially correlated in the field and were unrelated to soil map unit. These findings support the hypothesis that coastal plain soil map units that delineate boundaries between sandy loams versus finer loam soils may be useful for developing management zones for site-specific crop management.  相似文献   

15.
The influence of foliar application of 1% urea and four rates of urea (100, 200, 300 and 400 g tree?1) as soil application (deep fertilizer placement) were studied on leaf nutrients concentrations, yield and fruit quality of ‘Malas e Torsh e Saveh’ pomegranate (Punica granatum L.) during 2010 and 2011 growing seasons. Trees that received 300 and 400 g urea as soil application showed positive significant response on fruit yield, average fruit weight, aril weight percent of fruit, 100 arils weight, fruit diameter and TSS. Foliar application of urea had also significant effects on average fruit weight, aril weight percent of fruit and 100 arils weight. Nitrogen concentration increased linearly in leaves with the increase in rate of urea-applied. According to results, deep soil application of urea under the conditions of this study was more effective on pomegranate fruit yield and quality characters than foliar application of urea.  相似文献   

16.
很多实验早已证明[3]在田间栽培条件下,一季水稻所吸取的氮素营养物质多数来自土壤.为此土壤供氮性能是否适应和协调水稻良好生长发育的要求,这对水稻能否获得高产稳产有密切联系.本文初步探索了几种不同类型稻田土壤供氮性能的一些基本情况,目的是为进一步研究水稻高产稳产所要求的土壤供氮特性,提供必要的基础资料.  相似文献   

17.
黄泛平原不同质地土壤的持水特性   总被引:9,自引:0,他引:9       下载免费PDF全文
张景略  苗付山 《土壤学报》1985,22(4):350-356
用压力膜法对黄泛平原不同质地潮土的持水特性进行了研究.结果指出,土壤的持水性、孔径分布和水容量都与土壤质地有密切关系.在高吸力情况下,土壤的持水性随土壤质地变粘而增强.土壤孔径分布与土壤质地的关系是:重力水孔隙随土壤质地变粘而减小;迟效水孔隙和无效水孔隙随质地变粘而增加;而易效水孔隙偏粘的土壤有减小的趋势.土壤水容量也受土壤质地的影响,重力水水容量随质地变粘而增加,易效水水容量是壤土高于砂性土和粘性大,而迟效水水容量则是轻粘土高于其它质地的土壤.  相似文献   

18.
The recycling of suitable organic wastes can enhance soil fertility via effects on soil physical, chemical and biological properties. To compare the effects of digested (DS), thermally dried (TDS) and composted dewatered (CDS) sewage sludge on soil microbiological properties, an experiment was conducted at field sites for more than one year (401 d) when applied to two Mediterranean degraded soils (loam and loamy sand soils). All three types of sewage sludge had a significant effect on measured parameters. I...  相似文献   

19.
Purpose

The aims: (1) to investigate the role of the in situ weathering of bedrock in providing substrate for soil formation; (2) to evaluate the aeolian contribution to the mountainous soils in the vicinity of thick loess cover; and (3) to determine the influence of aeolian silt on further soil development.

Materials and methods

The sampled sites were arranged along the slope toposequence, where an aeolian/silt admixture possibly occurred. Each soil catena started at the top of a hill and ended at its foot. Such an arrangement of the soil profiles ensured the tracking of loess thickness variations and detection of the depth of the residuum-derived materials. One reference soil profile, consisting of aeolian silt deposits, was made. The following soil properties were determined: pH, organic carbon content, soil texture, exchangeable acidity, exchangeable ions and geochemistry. In addition, thin sections were prepared from rock samples to confirm the type of bedrock present.

Results and discussion

The soils in the studied area were classified as Cambisols, Luvisols and Stagnosols, characterised by silt loam texture and a high content of elements indicating an aeolian silt contribution—Hf (7.4 to 14.8 ppm) and Zr (274.4 to 549.0 ppm). These values differ strongly from the residues typical of weathered quartzite, greywacke or catalasite substrates, which generally have low concentrations of Hf and Zr (0.7 to 7.0 ppm and 26.0 to 263 ppm, respectively). Based on the morphological, textural and geochemical data of the studied soils, three layers were distinguished, which show different inputs of aeolian silt: (1) an aeolian silt mantle; (2) a mixed zone in which loess was incorporated into the local material; and (3) a basal zone, free of the influence of aeolian silt. Based on the obtained results, a hypothetical pathway for soil formation in mountainous areas, influenced by aeolian silt admixing, was proposed.

Conclusions

Our study demonstrates that the soils developed in the Opawskie Mountains are characterised by an aeolian silt influence. This differentiates them from weakly developed soils, which comprise materials formed during in situ weathering only. Materials originating from bedrock weathering did not play an independent role as the parent material for the studied pedons. Aeolian silt was admixed with already existing autochthonous substrates, or completely replaced them. This influence on the soil formation resulted in the occurrence of Luvisols, Stagnosols and Cambisols. Such soils cannot be formed from the weathering of quartzites and greywackes, which contribute to a less structure-forming medium.

  相似文献   

20.
Native Indians (Macuxi, Ingarikó and Uapishana) in the Raposa–Serra do Sol Indian Reserve have been cultivating forest soils since the early XIX century, especially those derived from dolerite sills, scattered within the quartzitic dominated landscape. Representative soils developed from mafic rocks under Indian shifting cultivation in northeastern Roraima, were submitted to physical, chemical and mineralogical analyses to characterize their pedogenetic characteristics and infer on their status under native Indian shifting cultivation. The soil profiles were classified as: Orthic Ebanic Chernosol (USDA Mollisol), vertic Orthic Ebanic Chernosol (USDA Mollisol), Eutrophic Haplic Cambisol (USDA mollic Inceptisol) and Eutrophic Red Nitosol (USDA Red Alfisol), which occupy, respectively, lower slopes and less dissected terrains (Mollisols) and steeper slopes (Alfisols). The first two are eutrophic, and not typical of the Amazon region. Their mineralogies range from kaolinite/goethite rich upland, deeply weathered Nitosol, to 2:1 clay rich downslope Chernosols. The latter has primary minerals in the silt fraction and high CEC resulting in high fertility. The Nitosols reveal a process of severe topsoil loss, due to widespread sheet erosion from deforestation and shifting cultivation. Chemical analyses showed varied soil fertility, ranging from high levels in the Chernosols to a low level in the non-cultivated Nitosol. Phosphorus levels are limited in all soils, despite the high fertility. The Chernosols located in lowland, flat areas close to the valley floor are more suitable environments for the slash-and-burn native farming system. In the Chernosols and Cambisols, the clay activity below the value limit for this class indicates a current natural process of increasing leaching. The more weathered and eroded Nitosol showed low Fe-oxalate and Si-oxalate levels. Micronutrients such as total zinc and copper, decreased with depth and weathering. The Nitosols showed the highest phosphate adsorption levels (1.574 mg g− 1 of soil) which can be attributed to its clayey texture. Chernosols showed overall lower P adsorption values, increasing with depth. All soils under native Indian cultivation display signs of physical and chemical degradation due to shortened fallow under intense land use pressure in the Raposa–Serra do Sol Reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号