首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pollutant removal was compared among subsurface flow constructed wetland (CW) mesocosms used for dairy farm wastewater treatment. Supplemental aeration, flow direction, and the use of phosphorus-reducing filters (PRFs) were varied among the CWs. The following were compared: (1) vertical flow CWs with and without supplemental aeration, (2) aerated CWs with horizontal and vertical flow directions, (3) single-cell and two-cell treatment systems, and (4) wetland-wetland systems (two CWs in series) and wetland-PRF systems (a CW followed by a PRF). The results from this investigation showed that, first, nearly all treatment strategies, either singly or in pairs, substantially reduced almost all the contaminants we tested. Second, supplemental aeration resulted in higher ammonium-nitrogen (NH4-N) removal efficiencies in aerated vertical flow CWs, compared to unaerated CWs. However, it caused no further improvement in dissolved reactive phosphorus (DRP), total suspended solids (TSS), E. coli, or BOD5 removal. Third, there was no difference between aerated horizontal and aerated vertical flow CWs in removal of any of the tested contaminants. Fourth, adding a second stage of treatment significantly improved DRP, TSS, E. coli, and NH4-N removal, but not BOD5. Finally, treatment systems with PRFs showed superior performance in DRP and E. coli removal.  相似文献   

2.
Hydroponics culture generates large amounts of wastewater that are highly concentrated in nitrate and phosphorus but contains almost no organic carbon. Constructed wetlands (CWs) have been proposed to treat this type of effluent, but little is known about the performance of these systems in treating hydroponic wastewater. In addition, obtaining satisfactory winter performances from CWs operated in cold climates remains a challenge, as biological pathways are often slowed down or inhibited. The main objective of this study was to assess the effect of plant species (Typha sp., Phragmites australis, and Phalaris arundinacea) and the addition of organic carbon on nutrient removal in winter. The experimental setup consisted of 16 subsurface flow CW mesocosms (1 m2, HRT of 3 days) fed with 30 L?d1 of synthetic hydroponics wastewater, with half of the mesocosms fed with an additional source of organic carbon (sucrose). Carbon addition had a significant impact on nitrate and phosphate removal, with removal means of 4.9 g m-2?d-1 of NO3-N and 0.5 g m-2 d-1 of PO4-P. Planted mesocosms were generally more efficient than unplanted controls. Furthermore, we found significant differences among plant treatments for NO3-N (highest removal with P. arundinacea) and COD (highest removal with P. australis/Typha sp.). Overall, planted wetlands with added organic carbon represent the best combination to treat hydroponics wastewater during the winter.  相似文献   

3.
With the organic carbon of acetate (SBR-A) and propionate (SBR-P), the effect of organic carbon sources on nitrogen removal and nitrous oxide (N2O) emission in the multiple anoxic and aerobic process was investigated. The nitrogen removal percentages in SBR-A and SBR-P reactor were both 72%, and the phosphate removal percentages were 97 and 85.4%, respectively. During nitrification, both the NH4 +-N oxidation rate in the SBR-A and SBR-P had a small change without the influence of the addition of nitrite nitrogen (NO2 ?-N). With the addition of 10 mg/L NO2 ?-N, the nitrate nitrogen (NO3 ?-N) production rate, N2O accumulation rate and emission factor had increased. At the same time, the N2O emission factor of SBR-A and SBR-P reactors increased from 2.13 and 0.87% to 4.66 and 2.08%, respectively. During exogenous denitrification, when nitrite was used as electron acceptor, the N2O emission factors were 34.1 and 8.6 times more than those of NO3 ?-N as electron acceptor in SBR-A and SBR-P. During endogenous denitrification with NO2 ?-N as electron acceptor, the accumulation rate and emission factor of N2O were higher than those of NO3 ?-N as electron acceptor. High-throughput sequencing test showed that the dominant bacteria were Proteobacteria and Bacteroidetes in both reactors at the phylum level, while the main denitrification functional bacteria were Thauera sp., Zoogloea sp. and Dechloromonas sp. at the genus level.  相似文献   

4.
In this study, the role of Cyperus sp. was evaluated for removal of pollutants from swine wastewater. Vertical-flow pilot scale constructed wetlands (CWs) operating with a hydraulic retention time (HRT) of 72 h were monitored in a greenhouse, located in Viçosa, Brazil. Significant differences were observed for the following parameters: Kjeldahl nitrogen, total phosphorus, alkalinity and electric conductivity, with averages removals of 37.5 and 28.5%, 55.9 and 44.4%, 30.2 and 25.6 and 26.1% and 22.9% (for planted and unplanted CWs, respectively). The rate of dry matter yield from Cyperus sp. was 7.5 g?m?2 day?1, and the nutrient uptake capacities were 21.8, 2.1, 14.0 and 0.9 g?m?2 of N, P, K and Na, respectively. Evapotranspiration (2.7 mm day?1) was statistically higher in the planted CWs. Plants in the CWs are important for achieving high nutrient removal.  相似文献   

5.
This study assessed the accumulation of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the sediment and biomass of P. australis (Cav.) Trin. ex Steud. in a combined constructed wetland (CW) designed for the treatment of domestic wastewater of 750 population equivalents. The CW consists of two vertical subsurface flow (VSSF) reed beds followed by two horizontal subsurface flow (HSSF) reed beds. The sediment in the VSSF reed bed was contaminated with Cu (201 ?±? 27 mg kg?1 DM) and Zn (662 ?±? 94 mg kg?1 DM) after 4 years of operation. Concentrations of Cd, Cu, Pb and Zn in the sediment generally decreased along the treatment path of the CW. On the contrary, higher Al, Cr, Fe, Mn and Ni concentrations were observed in the sediment of the inlet area of the HSSF reed bed. Redox conditions were presumably responsible for this observed trend. Metal concentrations in the reed biomass did not show excessive values. Accumulation in the aboveground reed biomass accounted for only 0.5 and 1.4% of, respectively, the Cu and Zn mass load in the influent. The sediment was the main pool for metal accumulation in the CW.  相似文献   

6.
In constructed wetlands (CWs) with horizontal sub-surface flow, nutrient removal, especially phosphorus, is limited because the root biomass fills the pore spaces of the substrate (usually gravel), directing wastewater flow to deeper wetland media; plants are not regularly harvested; the litter formed by decomposing vegetation remains on the surface of the substrate and thus does not interact with the wastewater; and the substrate media often used provide only limited adsorption. Effective nutrient removal including rootzone oxidation, adsorption and plant uptake therefore requires sufficient interaction of wastewater with the treatment media. We assessed the feasibility of biological nutrient removal from wastewater using substrate-free CWs with horizontal flow, planted with two tropical macrophytes namely, Cyperus papyrus and Miscanthidium violaceum. The objectives were to evaluate the system treatment efficiency under semi-natural conditions, and to assess microbial and plant biomass contributions to nutrient removal in the CWs. Results showed high removal efficiencies for biochemical oxygen demand, ammonium-nitrogen (NH4–N) and phosphorus (P) fractions in papyrus-based CWs (68.6–86.5%) compared to Miscanthidium (46.7–61.1%) and unplanted controls (31.6–54.3%). Ammonium oxidizing bacteria in CW root–mats (108–109 cells/gram dry weight) and residual nitrite and nitrate concentrations in the water phase indicated active system nitrification. Papyrus showed higher biomass production and nutrient uptake, contributing 28.5% and 11.2%, respectively, of the total N and P removed by the system compared to 15% N and 9.3% P removed by Miscanthidium plants. Compared to literature values, nitrification, plant uptake and the overall system treatment efficiency were high, indicating a high potential of this system for biological nutrient removal from wastewaters in the tropics.  相似文献   

7.
The mechanisms for maintaining the species diversity of plant communities under conditions of resource limitation is an important subject in ecology. How interspecific relationships influence the pattern of nutrient absorption by coexisting species in N-limited ecosystems is still disputed. We investigated the effect of neighbor species on the uptake of inorganic and organic N by three common plant species using 15N tracer techniques in a semi-arid alpine steppe on the northern Tibet. The results showed that the plant species varied in their capacity to absorb NO3 ?-N, NH4 +-N, and glycine-N with or without neighbor species. Carex moorcroftii and Leontopodium nanum showed much more plasticity in resource utilization than Stipa purpurea when neighbor species were present. When C. moorcroftii and S. purpurea coexisted, they all increased their 15N uptake for the NO3 ?-N (C. moorcroftii 2.2-fold increase and S. purpurea 2.2-fold increase) and glycine-N treatments (C. moorcroftii 2.9-fold increase and S. purpurea 3.4-fold increase), which indicated that neighborhood had a positive effect for N absorption between the two species. However, L. nanum was a less effective competitor for N utilization than the neighbor species across almost all treatments. The dominant species appeared to have an inhibitory effect on N absorption by the accompanying species in this alpine steppe environment. Thus, interspecific neighbor pairs may result in both a mutually beneficial cooperative relationship and a competitive relationship among neighbors in resource use patterns in extreme environments. Resource use plasticity in altered neighbor species may be due to phenotypic plasticity based on the conditions of the realized niche, offering a valuable insight into niche complementarity and providing a general and important mechanism for resource partitioning in an alpine area.  相似文献   

8.

Purpose

Input of N as NH4 + is known to stimulate nitrification and to enhance the risk of N losses through NO3 ? leaching in humid subtropical soils. However, the mechanisms responsible for this stimulation effect have not been fully addressed.

Materials and methods

In this study, an acid subtropical forest soil amended with urea at rates of 0, 20, 50, 100 mg N kg?1 was pre-incubated at 25 °C and 60 % water-holding capacity (WHC) for 60 days. Gross N transformation rates were then measured using a 15N tracing methodology.

Results and discussion

Gross rates of mineralization and nitrification of NH4 +-N increased (P?<?0.05), while gross rate of NO3 ? immobilization significantly decreased with increasing N input rates (P?<?0.001). A significant relationship was established between the gross nitrification rate of NH4 + and the gross mineralization rate (R 2?=?0.991, P?<?0.01), so was between net nitrification rate of NH4 + and the net mineralization rate (R 2?=?0.973, P?<?0.05).

Conclusions

Stimulation effect of N input on the gross rate of nitrification of NH4 +-N in the acid soil, partially, resulted from stimulation effect of N input on organic N mineralization, which provides pH-favorable microsites for the nitrification of NH4 + in acid soils (De Boer et al., Soil Biol Biochem 20:845–850, 1988; Prosser, Advan Microb Physiol 30:125–181, 1989). The stimulated gross nitrification rate with the decreased gross NO3 ? immobilization rate under the elevated N inputs could lead to accumulation of NO3 ? and to enhance the risk of NO3 ? loss from humid forest soils.
  相似文献   

9.
Clogging is the main operational problem associated with horizontal subsurface flow constructed wetlands (HSSF CWs). The measurement of saturated hydraulic conductivity has proven to be a suitable technique to assess clogging within HSSF CWs. The vertical and horizontal distribution of hydraulic conductivity was assessed in two full-scale HSSF CWs by using two different in situ permeameter methods (falling head (FH) and constant head (CH) methods). Horizontal hydraulic conductivity profiles showed that both methods are correlated by a power function (FH?=?CH0.7821, r 2?=?0.76) within the recorded range of hydraulic conductivities (0?C70?m/day). However, the FH method provided lower values of hydraulic conductivity than the CH method (one to three times lower). Despite discrepancies between the magnitudes of reported readings, the relative distribution of clogging obtained via both methods was similar. Therefore, both methods are useful when exploring the general distribution of clogging and, specially, the assessment of clogged areas originated from preferential flow paths within full-scale HSSF CWs. Discrepancy between methods (either in magnitude and pattern) aroused from the vertical hydraulic conductivity profiles under highly clogged conditions. It is believed this can be attributed to procedural differences between the methods, such as the method of permeameter insertion (twisting versus hammering). Results from both methods suggest that clogging develops along the shortest distance between water input and output. Results also evidence that the design and maintenance of inlet distributors and outlet collectors appear to have a great influence on the pattern of clogging, and hence the asset lifetime of HSSF CWs.  相似文献   

10.
We conducted a microcosm experiment with soil being sterilized, reinoculated with native microbial community and subsequently manipulated the bacterivorous nematodes, including three treatments: without (CK) or with introducing one species of the two bacterivores characterized with different body size but similar c-p (colonizer-persister) value (Rhabditis intermedia and Protorhabditis oxyuroides, accounted for 6 and 59% of bacterivores in initially undisturbed soil, respectively). We monitored the N2O and CO2 emissions, soil properties, and especially quantified gross N transformation rates using 15N tracing technique after the 50 days incubation. No significant differences were observed on soil NH4 + and NO3 ? concentrations between the CK and two bacterivores, but this was not the case for gross N transformation rates. In comparison to CK, R. intermedia did not affect soil N transformation rates, while P. oxyuroides significantly increased the rates of mineralization of organic N to NH4 +, oxidation of NH4 + to NO3 ?, immobilization of NO3 ? to organic N and dissimilatory NO3 ? reduction to NH4 +. Furthermore, the mean residence time of NH4 + and NO3 ? pool was greatly lowered by P. oxyuroides, suggesting it stimulated soil N turnover. Such stimulatory effect was unrelated to the changes in abundance of bacteria and ammonia-oxidizing bacteria (AOB). In contrast to CK, only P. oxyuroides significantly promoted soil N2O and CO2 emissions. Noticeably, bacterivores increased the mineralization of recalcitrant organic N but decreased soil δ13C-TOC and δ15N-TN values, in particular for P. oxyuroides. Combining trait-based approach and isotope-based analysis showed high potential in moving forward to a mechanistic understanding of bacterivore-mediated N cycling.  相似文献   

11.
间歇性降雨对黄土坡地水土养分流失的影响   总被引:4,自引:4,他引:0  
坡面水土养分流失是研究农业非点源污染方面的核心问题,涉及土壤侵蚀、坡地水文和环境治理等方面的内容。以黄土坡地为研究对象,利用人工降雨模拟试验,分析间歇降雨时坡地产流-入渗-土壤侵蚀过程,以及通过预先在坡地喷施养分(NH_4~+-N、NO_3~--N、PO_4~(3-)-P),研究间歇降雨时坡面水土流失以及土壤溶质的迁移规律。试验采用针孔式人工模拟降雨器进行模拟降雨,对试验坡地间歇性进行3次降雨,雨强恒为100mm/h,每次降雨历时60min,降雨间隔时间60min。结果表明:(1)3次降雨的初始含水率不同,但产流规律相似,降雨径流率均为先增大后趋于平稳。(2)3次降雨产生的泥沙累积量分别为250.91,100.20,79.76g,第1次降雨的泥沙量远高于第2,3次。泥沙率先迅速增大到峰值然后缓慢减少,平均泥沙率随降雨次数的增多而递减。(3)对于非吸附性的NO_3~-、NH_4~+,3场降雨过程中溶质浓度均呈现由高降低并逐渐平稳的变化趋势;PO_4~(3-)-P浓度的变化规律却略显不同,降雨初期溶质浓度先短暂升高,然后再由高降低并逐渐平稳。(4)3次降雨的NH_4~+-N、NO_3~--N、PO_4~(3-)-P的径流总流失量分别为535.33,1 058.18,400.79mg,其中NO_3~--N流失量最多,PO_4~(3-)-P流失量最少。随着降雨次数的增加,不同降雨次数下的NH_4~+-N、NO_3~--N、PO_4~(3-)-P径流流失量均逐渐减少,流失量较前次降雨分别降低了19%,14%、3%,62%和57%,28.3%。因此,通过对间歇性降雨条件下黄土坡地水土溶质迁移特征的研究,对揭示降雨-径流-土壤相互作用过程和土壤养分迁移机理具有重要意义。  相似文献   

12.
A 5-year study was conducted to monitor patterns of NO3 - accumulation following the addition of plant residues of varying C:N ratios to the soil surface, to determine whether the availability of NO3 - following these applications would be timely and sufficient for typical annual crop uptake. Microbial respiration was measured in the last 3 years of the study to investigate how microbial activity was related to treatment differences in NO3 - accumulation. Treatments included: hairy vetch (Vicia villosa Roth) cut at mid-bloom; wheat (Triticum aestivum L.) straw applied at 4 Mg ha-1; vetch with 4 Mg ha-1 wheat straw; and a bare ground control. Soil NO3 - and respiration rates were correspondingly high for the 3–4 weeks following residue placement. Peak NO3 --N accumulation in vetch treatments occurred between 25 June and 10 July and ranged from 100 to 168 kg ha-1, with an average of 140 kg NO3 ?-N ha-1. Nitrate was sufficient and timely enough to meet most summer annual crop needs in the region. Over 5 years, peak NO3 ?-N was approximately 100 kg ha-1 higher in vetch than non-vetch treatments and roughly twice as high at 0–5 cm than at 5–20 cm. The addition of wheat straw caused a reduction of approximately 20% NO3 --N throughout the season as compared to vetch alone.  相似文献   

13.
The nitrous oxide and molecular N emissions from 5-cm length subsamples taken from 20-cm length sample corers containing eutric Cambisol soil fertilised either with urea, ammonium or nitrate for 1 year have been examined using gas chromatography. At the beginning of the incubation, the same N rate (260 kg N/ha) was added to the soil and kept constant during the experiment. The total abundance of the soil Bacteria and Archaea and that of nitrifiers and denitrifiers was estimated by quantitative PCR of the corresponding biotic variables 16S rRNA, amoA and napA, narG, nirK, nirS, norB, nosZI and nosZII genes. The abiotic variables dissolved oxygen, pH, exchangeable NH4+-N and NO3?-N contents and total C and total N were also analysed. None of the three fertilisers affected the total abundance of Bacteria and Archaea and nitrification was the main driver of nitrous oxide production in the 0- to 5-cm and 5- to 10-cm soil layers while denitrification was in the 10- to 15-cm and 15- to 20-cm soil horizons. Parallel to the reduction in the content of dissolved oxygen along the soil profile, there was a decrease in the total and relative abundance of the bacterial and archaeal amoA gene and an increase in the abundances of the denitrification genes, mainly in the 10- to 15-cm and 15- to 20-cm soil layers. A non-metric multidimensional scaling plot comparing the biotic and abiotic variables examined in each of the four 5-cm soil subsamples and the whole 20-cm sample showed a disparate effect of N fertilisation on N gas emissions and abundance of nitrifiers and denitrifiers bacterial and archaeal communities.  相似文献   

14.
Core lysimeters containing undisturbed coarse sandy soil (from grassland) were amended with a high rate of anaerobically digested sewage sludge (equivalent to >1,000 t ha–1). Water, at a rate equivalent to the mean weekly rainfall for the soil, was applied to amended and control lysimeters for 30 weeks and the leachate analysed for anions and cations. Lysimeters were also destructively sampled at intervals throughout the experiment and soil samples were analysed for extractable NH4+-N, NO3-N and PO43–-P. Ammonium N leached for about 11 weeks from the amended lysimeters, then abruptly stopped. A similar amount of NO3-N leached, but leaching was continuing when the experiment finished. The control lysimeters leached as much NO3-N as those that were amended, but no NH4+-N. The amended lysimeters also leached NO2-N. Negligible PO43–-P, but large amounts of SO42– were leached from the amended lysimeters. Concentrations of extractable NH4+-N and PO43–-P were very high in the amended soils, but NO3-N concentrations remained low throughout the experiment, indicating that nitrification rates were low and/or that denitrification rates were high.  相似文献   

15.
Assessment of surface water quality in the Mississippi Delta is essential to quantify the eutrophication of the Gulf of Mexico. This study estimated the characteristics and variations of surface water quality at three study sites in the Big Sunflower River Watershed (BSRW) within the Mississippi Delta using Kruskal-Wallis, Dunn, Mann-Kendall, and Pettitt tests. In general, contents of some water quality constituents such as nitrate-nitrogen (NO3???N) and total phosphorus (TP) in the BSRW varied from site to site each year, whereas variations of other constituents such as pH and dissolved oxygen (DO) each year were basically not significant. The highest median concentrations were found in spring for NO3???N and total nitrogen (TN); in summer for specific conductance (SC), Na, and Cl; and in winter for DO. Mann-Kendall trend analysis revealed that there was an increasing annual trend at Leland but a decreasing annual trend at Merigold for NO3???concentrations even though such changes were very small, whereas there was no annual trend for TP at any of the three study sites. Pettitt’s test further identified that the NO3???N concentrations had an abrupt increase in February 2009 at the median value of 0.44 mg L?1 in Leland and an abrupt decrease in June 2012 at the median value of 3.65 mg L?1 in Merigold. A very good linear correlation existed between total dissolved solid (TDS) and magnesium (Mg) in the BSRW, which could be used to estimate TDS from Mg concentrations for this watershed when the data for TDS are absent.  相似文献   

16.

Purpose

The application of roxarsone (ROX), an arsenic-containing compound, as a feed additive in the animal production industry results in elevated soil levels of ROX and its metabolites, namely, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenate (As(V)), and arsenite (As(III)). This study was conducted to study the extraction and speciation analysis of ROX-related arsenicals in soils with different physicochemical properties and the possible effects of soil properties on the extraction of ROX and its metabolites.

Materials and methods

Analytical method based on high-performance liquid chromatography (HPLC)-inductively coupled plasma–mass spectrometry (ICP-MS) was employed to determine the concentrations of As(III), DMA, MMA, As(V), and ROX extracted by different extraction solvents from different soils spiked by arsenicals. Validity of the developed method was assessed by the recovery efficiencies of arsenic species in soil-dissolved matter solutions containing 20 μg As?·?L?1 of each arsenic species. Effects of soil properties on the extraction of ROX and its metabolites were analyzed by Pearson’s correlation.

Results and discussion

Arsenic species were separated using gradient elution of water and 20 mmol?·?L?1 (NH4)2HPO4 + 20 mmol?·?L?1 NH4NO3 + 5 % methanol (v/v) within 27 min. The linear ranges of all arsenicals were 0–200 μg As?·?L?1 with R 2?>?0.9996. The developed method provided lower limits of detection for As(III), DMA, MMA, As(V), and ROX (0.80, 0.58, 0.35, 0.24, and 1.52 μg As?·?L?1, respectively) and excellent recoveries (92.52–102.2 %) for all five species. Arsenic speciation was not altered by 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v), which offered better average extraction efficiencies for As(III), As(V), DMA, MMA, and ROX (32.49, 92.50, 78.24, 77.64, and 84.54 %, respectively). Extraction performance of arsenicals was influenced by soil properties, including pH, cation exchange capacity (CEC), total Fe, and amorphous Fe.

Conclusions

ROX and its metabolites from soils could be satisfactorily separated by the developed method for the studied arsenicals. To extract arsenic species from soils, 0.1 mol?·?L?1 NaH2PO4 + 0.1 mol?·?L?1 H3PO4 (9:1, v/v) was recommended. Extraction efficiencies of arsenicals were influenced more by solvent composition than soil physicochemical properties. The present study provides a valuable tool and useful information for determining the concentrations of ROX and its metabolites in contaminated soils.
  相似文献   

17.
为揭示不同垄沟坡度对径流中溶解态氮、磷流失的影响,采用人工模拟降雨试验,设置4个垄沟坡度处理(0°,9°,18°和27°),研究了不同垄沟坡度对径流中速效磷(PO_4~(3-)—P)、硝态氮(NO_3~-—N)和铵态氮(NH_4~+—N)浓度和流失量的影响;并利用Inorganic—N/PO_4~(3-)—P、NO_3~-—N/PO_4~(3-)—P和NH_4~+—N/PO_4~(3-)—P 3种氮磷比,评价不同处理的富营养化风险。结果表明:(1)在降雨过程中,4个垄沟坡度处理径流中PO_4~(3-)—P、NO_3~-—N和NH_4~+—N浓度随时间均呈锯齿状变化;其流失量随时间变化均呈先增加后以锯齿状变化的趋势,且波动幅度大,最大值(16.60,1 020.73,48.35 mg)分别出现在垄沟坡度为0°,0°和9°处理。(2)4个垄沟坡度处理间相比较,径流中PO_4~(3-)—P和NH_4~+—N流失量均表现为0°9°27°18°,其浓度最大值(0.50,1.08 mg/L)和最小值(0.37,0.76 mg/L)均分别出现在垄沟坡度为9°和18°处理;而径流中NO_3~-—N浓度和流失量均在垄沟坡度0°处理时为最大值(30.68 mg/L和64.16 mg/m~2),18°处理时为最小值(21.78 mg/L和42.22 mg/m~2)。(3)Inorganic—N/PO_4~(3-)—P率和NH_4~+—N/PO_4~(3-)—P率表明4个垄沟坡度处理径流中均存在一定的富营养化风险。其中,垄沟坡度为0°处理的径流富营养化风险水平最高,27°处理的径流富营养化风险水平最低。研究结果可为横坡垄作的水土流失及养分流失评价、预测以及防治提供科学依据。  相似文献   

18.

Purpose

Developing routine methods that accurately predict soil nitrogen (N) mineralization is essential for fertilization recommendation; thus, chemical soil testing has received worldwide attention. However, the optimal chemical soil test for predicting soil N mineralization is region specific. This study aimed to determine suitable chemical soil tests for predicting N mineralization in paddy soils of the Dongting Lake region, China.

Materials and methods

Composite surface samples (0–20 cm) of soils (n?=?30) with diverse inherent properties were collected from representative paddy fields across the region. The benchmark indices for soil N mineralization were the net mineralization rate of soil N in a 112-day anaerobic incubation under waterlogged conditions (NMRN112) and N mineralization potential (N o ) estimated using a modified double exponential model. Laboratory-based measurements of soil labile organic N (SLON) were conducted using chemical fractionation methods including 0.01 M NaHCO3 extraction, hot 2 M KCl hydrolysis, phosphate-borate (PB) buffer hydrolysis, acidic KMnO4 oxidation, and alkaline KMnO4 oxidation. These were compared with the benchmark indices to assess their suitability for use as indicators for N mineralization.

Results and discussion

Acidic KMnO4-oxidative organic N (acidic KMnO4-N) and PB buffer-hydrolysable organic N (PBHYDR-N) correlated strongly with NMRN112 and N o (r?=?0.825–0.884, P?<?0.001, n?=?30). Grouping of soils based on soil texture generally provided no improvement in the relationships of chemical soil tests with NMRN112 and N o . Multiple stepwise regression analysis indicated that combining acidic KMnO4-N and PBHYDR-N yielded the best prediction of soil N mineralization, explaining 86.1 and 85.5 % of the variation in NMRN112 and N o , respectively, of the 30 tested paddy soils.

Conclusions

The results of acidic KMnO4-N and PBHYDR-N as indicators for soil N mineralization were promising, and the operations of acidic KMnO4 oxidation and PB buffer hydrolysis procedures are simple and cost-effective. Therefore, a combination of acidic KMnO4-N and PBHYDR-N shows promise in predicting N mineralization in paddy soils of the Dongting Lake region. However, further calibration through field studies is required and the chemical characteristics of acidic KMnO4-N and PBHYDR-N needs to be further clarified.
  相似文献   

19.
Microbiological activities are essential in the bioremediation of polluted soils. The enzymatic activities of microorganisms are usually used as a biological indicator of soil health. The aim of this work was to observe the catalase, acid phosphatase (AcP), and alkaline phosphatase (AlP) activities in soil that was amended with agro-industrial by-products and macronutrients during the process of total petroleum hydrocarbon (TPH) removal. To this end, microcosm tests were performed with soil and agro-industrial by-products ratios of 100:2:2, for soil:sugarcane bagasse pith:filter cake mud (SSF); 100:2, for both soil:sugarcane bagasse pith (SS); and for soil filter cake mud (SF). The macronutrients—carbon, nitrogen, and phosphorus—in the experimental treatments were adjusted to 100:10:1 with a solution of NH4NO3 and K2HPO4. The best TPH removal (51.4%) was obtained with SSF at 15 days. In addition, a significant correlation was observed between TPH removal and AlP as well as AcP (r = 0.74, p < 0.0001; r = 0.70, p < 0.0107, respectively). Fungi growth was also correlated with both AlP (r = 0.97, p < 0.0001) and AcP (r = 0.95, p < 0.0001) activities. Besides, bacterial and fungi growth showed a correlation with TPH (r = 0.86, p < 0.001; r = 0.77, p < 0.0034, respectively). It could be said that the agro-industrial by-products and macronutrients contributed to pollutant removal from the oil-polluted soil at relatively short amount of time. In addition, the enzymatic activities were increased after the treatment; in this study, the high sensitivity enzyme was AlP, and it could be used as an indirect indicator of oil pollutant removal.  相似文献   

20.

Purpose

We determined the relationship of a planktonic algal bloom with spatial and temporal changes in sediment bacterial communities in a eutrophic urban river in the Taihu Basin, China.

Materials and methods

Surface sediments from different locations on the river, including with and without an algal bloom, were collected monthly for 1 year. Sediment bacterial communities were assessed by sequencing 16S rRNA gene amplicons using an Illumina MiSeq.

Results and discussion

There were distinct spatial and temporal changes in sediment bacterial community structure. Significant decrease in the Shannon diversity corresponded with the peak chlorophyll a (Chl a) concentration. Proteobacteria, Chloroflexi, and Bacteroidetes were the dominant phyla throughout the year; however, their relative abundances changed seasonally. At the time of peak Chl a concentrations, Proteobacteria and Bacteroidetes comprised a greater proportion of the bacterial community. Bacterial community structure also varied spatially at the operational taxonomic unit (OTU) level according to canonical correspondence analysis (CCA), especially in locations with an algal bloom compared with those without an algal bloom. There were positive correlations between multiple bacterial genera and Chl a content, suggesting the potential for facilitative relationships between phytoplankton and bacteria. Based on the CCA, water temperature, NH4 +-N, TN, NO3 ?-N, and TP in the sediment and Chl a contents in the water column were significantly correlated with sediment bacterial community structure (P < 0.05).

Conclusions

Planktonic algal blooms may influence sediment bacterial community structure at all taxonomic levels in urban rivers. This work emphasizes the need for more comprehensive studies regarding the impact of planktonic algal blooms on sediment bacterial communities.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号