首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, identification of the microbial sources responsible for soil N2O production has substantially advanced with the development of isotope enrichment techniques, selective inhibitors, mathematical models and the discoveries of specific N-cycling functional genes. However, little information is available to effectively quantify the N2O produced from different microbial pathways (e.g. nitrification and denitrification). Here, a 15N-tracing incubation experiment was conducted under controlled laboratory conditions (50, 70 and 85% water-filled pore space (WFPS) at 25 and 35 °C). Nitrification was the main contributor to N2O production. At 50, 70 and 85% WFPS, nitrification contributed 87, 80 and 53% of total N2O production, respectively, at 25 °C, and 86, 74 and 33% at 35 °C. The proportion of nitrified N as N2O (P N2O) increased with temperature and moisture, except for 85% WFPS, when P N2O was lower at 35 °C than at 25 °C. Ammonia-oxidizing archaea (AOA) were the dominant ammonia oxidizers, but both AOA and ammonia-oxidizing bacteria (AOB) were related to N2O emitted from nitrification. AOA and AOB abundance was significantly influenced by soil moisture, more so than temperature, and decreased with increasing moisture content. These findings can be used to develop better models for simulating N2O from nitrification to inform soil management practises for improving N use efficiency.  相似文献   

2.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

3.
Soil solarization is a nonchemical method of soil disinfection achieved by covering the soil surface with sheets of vinyl plastic to generate elevated soil temperature, generally over 45°C. Such elevated temperatures may be detrimental to some nitrifying microorganisms and favorable to others. However, little information exists to indicate how nitrification activity in soil is affected after solarization. We performed several experiments to investigate the effects of soil solarization on nitrification activity. We found that: (1) if a soil was subjected to pretreatment of 45 or 50°C for as little as 1 d, nitrification activity in a subsequent incubation at 30°C was less than that of a soil that did not receive any high-temperature pretreatment. However, if a soil received pretreatments of 45 or 50°C for more than 7 d, nitrification activity in a subsequent incubation at 45 or 50°C was greater than that of soil that did not receive high temperature pretreatment. (2) Nitrification activity in three kinds of soil taken from 0–5 cm depth after solarization treatment was greater at 45°C than 30°C. (3) Nitrification activity at 45°C in soil that had received solarization in the preceding year was greater than that in soil that had not been subjected to solarization. This was consistent with the fact that the population densities of ammonia oxidizers were greater in soils that had been subjected to solarization. These results suggest that soil solarization induces nitrifying microorganisms that are more active at 45–50°C than they are at 30°C, and that the effect of solarization on nitrification persists until the next crop season.  相似文献   

4.
To understand the contribution of key microbial processes to nitrous oxide (N2O) emission in intensively cultivated black soil, laboratory incubation were conducted at 70% water-holding capacity (WHC) and 25 °C, using different gases (air, oxygen, or argon) within the headspace of the incubation chambers to evaluate gas inhibition effects. Arable black soil was sampled from an experimental field that has received urea since October 1979. Nitrification contributed to 57% of total N2O emission, of which as much as 67% resulted from heterotrophic nitrification. These data strongly suggest that high soil organic carbon concentrations and low pH values are more favorable to N2O production through heterotrophic, rather than autotrophic, nitrification. Nitrous oxide produced by denitrification accounted for 28% of the total N2O emission, and the nitrifier denitrification accounted for 15% of the N2O emitted from the tested soil. These findings indicate that heterotrophic nitrification was the primary N2O production process in the tested soil.  相似文献   

5.
The effects of incubation at 20°, 30° and 40°C and urea concentrations of 0, 50, 100 and 200 μg N/g soil on urea hydrolysis and nitrification were investigated in three Nigerian soils. At constant temperature urea hydrolysis and rate of NO3? accumulation increased with increasing rate of urea addition. Urea was rapidly hydrolyzed within 1 week of incubation. Nitrification in Apomu soil increased with increasing incubation temperature. Nitrification was slow in acid Nkpologu soil (pH 4.7). Texture, cation exchange capacity and C:N ratios of the soils were not related to urea hydrolysis or nitrification. Nitrite accumulation in these soils was insignificant. Soil pH was decreased by nitrification of hydrolyzed urea-N.  相似文献   

6.
Kinetic studies of nitrification and denitrification were carried out on reconstituted cores of sediments taken from wastewater stabilization ponds. This study aims to quantify the nitrification and denitrification in the sediment and to offer kinetic models to describe the processes. Sediment cores were collected, and laboratory studies were performed. The result showed that nitrification and denitrification processes are absent in the water column of stabilization ponds of the Bertrix (Belgium) wastewater treatment plant. On the contrary, nitrification and denitrification rates measured on 18 cores of sediment are, respectively, in the range of 0.12?C1.56 g N-NH 4 + /m2 day and 0.1?C1.2 g N/m2 day. In order to describe nitrification and denitrification processes, two kinetic models were developed using the Monod standard equation.  相似文献   

7.
Transformation of cyanamide, urea and ammonium sulfate as influenced by temperature and moisture of soil The conversion of cyanamide, urea and ammonium sulfate solutions to nitrate was investigated in a sandy silt loam (pH 6.2) in relation to temperature and soil moisture conditions. 1. Cyanamide was transformed to urea within 1–5 days. Increasing temperature (2°–100°C) accelerated the breakdown, whereas high moisture conditions (120 % of total water capacity) decreased transformation. 2. The hydrolysis of urea to ammonia took place within 5–10 days even at 2°C regardless of whether cyanamide or urea was added. Low soil moisture (40 % of total water capacity) and high temperature (up to 50°) accelerated the breakdown. 3. Following urea application (20 mg N) there was a transient formation of up to five times more nitrite (0.5 mg NO2-N) as compared with cyanamide or ammonium sulfate treatments. 4. Clear differences were observed in the rates of nitrification. The rate was greater for urea than for cyanamide and ammonium sulfate. The formation of nitrate began at 2°C, with an optimum between 20° and 30°C. Under flooded conditions (120 % of total water capacity) and low temperature the rate of nitrification was slow. At higher temperatures rapid denitrification took place.  相似文献   

8.
The objective of the present study was to evaluate the impact of the treatment of slurry liquid fraction (LF) acidified to pH 5.5 (ALF) on nitrification and denitrification processes after soil application. The impact of such treatment was compared with that of untreated LF, LF treated with a nitrification inhibitor (3,4-Dimethylpyrazole phosphate (DMPP)) (LF + DMPP). An incubation was conducted using the denitrification incubation system (DENIS/gas-flow-core technique) at a constant temperature of 20 °C and lasted for 32 days in order to follow nitrogen dynamics and gaseous emissions (N2O, NO, CO2) from soil. Inhibition of ammonium nitrification and nitrate accumulation was evident in both LF + DMPP and ALF at the top soil (0–3.75 cm) and those effects were stronger in the LF + DMPP. Denitrification was the main source of N2O emissions from soils amended with treated and untreated LF. Compared to the untreated LF, the ALF significantly reduced the total N lost as N2O from 0.10% to 0.05% of the applied N whereas the DMPP reduced the total N lost as N2O from 0.10% to 0.07%. Relative to the untreated LF, the ALF reduced the total N lost as NO emissions from 0.03% to 0.02% of the applied N whereas DMPP addition led to a stronger decrease from 0.03% to 0.01%. Both, ALF and LF + DMPP had no impact on CO2 emissions relative to the untreated LF. The ALF reduced CO2 emissions by 19% relative to the LF + DMPP. Our results demonstrate that slurry acidification affect not only nitrification but also the denitrification process. This suggests that slurry acidification is a valid technique to minimize N emissions.  相似文献   

9.
The influence of different factors on the nitrification of an added ammonium salt and inherent soil-N in soils from arid and semi-arid areas of Israel was investigated. Nitrification of ammonium-N proceeded rapidly at 28°C but was inhibited partially or completely in soils incubated at 37·40°C. In contrast, nitrate formation from inherent soil-N proceeded better at 37·40 °C than at 28 °C. Bacteriological examination showed that a temperature of 37·40 °C had an injurious effect on the population of nitrifiers, especially the nitrate-forming bacteria. Nitrification by the Nitrosomonas-Nitrobacter group in culture media was also markedly inhibited at 37 °C as compared with that at 28 °C. Chloromycetin at a concentration of 25 mg per 100 g soil, and potassium chlorate at a concentration of 10-3m suppressed the formation of nitrate from ammonium, but did not exert any appreciable effect upon nitrate formation from inherent soil nitrogen. Sodium sulphacetamide inhibited the production of nitrate from ammonium-N more strongly than that from inherent soil-N. Marked differences in the two nitrification processes in the soils investigated provided good evidence that the greater part of nitrate originating from soil-N is produced by some process other than that which is responsible for nitrification of ammonium-N.  相似文献   

10.
For understanding the effects of nitrification ability on nitrogen (N) use efficiency and N losses via denitrification in paddy soils under flooding conditions, six paddy soils with different nitrification activities were sampled from various sites of China and a pot experiment was conducted. Rice plants at tillering stage were transplanted into pots and harvested 7.5 days after transplanting, 15N-(NH4)2SO4 was applied 2.5 days after rice transplanting under continuously flooding conditions. The N losses by denitrification were determined by the unrecovered 15N applied as 15NH4 + and the N use efficiency (NUE) was calculated by 15N taken up by rice plants. Plant height (from 33.8 to 37.3 cm) and biomass (from 1.07 g pot?1 to 1.52 g pot?1) increased significantly with the native NH4 + concentration in the studied soils (P < 0.01). The NUE decreased, whereas the N losses via denitrification increased due to the increase in the nitrification rate of soils determined at 60% water holding capacity (P < 0.05). The results implied that the nitrification activity of paddy soils is a key factor in controlling NUE and N losses via denitrification.  相似文献   

11.
A better understanding of the nitrogen (N) cycle in agricultural soils is crucial for developing sustainable and environmentally friendly N fertilizer management and to propose effective nitrous oxide (N2O) mitigation strategies. This laboratory study quantified gross nitrogen transformation rates in uncultivated and cultivated black soils in Northeast China. It also elucidated the contribution made by nitrification and denitrification to the emissions of N2O. In the laboratory, soil samples adjusted to 60 % water holding capacity (WHC) were spiked with 15NH4NO3 and NH4 15NO3 and incubated at 25 °C for 7 days. The size and 15N enrichment of the mineral N pools and the N2O emission rates were determined between 0 and 7 days. The results showed that the average N2O emission rate was 21.6 ng N2O-N kg?1 h?1 in cultivated soil, significantly higher than in the uncultivated soil (11.6 ng N2O-N kg?1 h?1). Denitrification was found to be responsible for 32.1 % of the N2O emission in uncultivated soil, and the ratio increased significantly to 43.2 % in cultivated soil, due to the decrease in soil pH. Most of the increase in net N2O-N emissions observed in the cultivated soil was resulting from the increased production of N2O through denitrification. Gross nitrification rate was significantly higher in the cultivated soil than in the uncultivated soil, and the ratio of gross nitrification rate/ammonium immobilization rate was 6.87 in cultivated soil, much larger than the uncultivated soil, indicating that nitrification was the dominant NH4 + consuming process in cultivated soil, and this will lead to the increased production of nitrate, whereas the increased contribution of denitrification to N2O emission promoted the larger emission of N2O. This double impact explains why the risk of N loss to the environment is increased by long-term cultivation and fertilization of native prairie sites, and controlling nitrification maybe effective to abate the negative environmental effects.  相似文献   

12.
为了避免剩余污泥厌氧发酵液利用时泥液难分离的问题,探讨了直接将发酵混合物用作外加碳源处理低碳氮比(C/N)污水的可行性。为此,首先对比了酸性(pH值=4.0±0.2)、中性(不控pH值)、碱性(pH值=10.0±0.2)条件下长期运行的剩余污泥厌氧发酵混合物的特性;其次,分别考察了碱性厌氧发酵混合物的不同投加量(0、10、20、30、50、100、200 mL),在反硝化及释磷过程中的利用。结果表明:碱性条件下溶解性化学需氧量(soluble chemical oxygen demand,SCOD)和短链脂肪酸(short-chain fatty acids,SCFAs)产量要远高于酸性和中性条件的,其中C/N比和C/P比分别高达18.9和57.0,更适合作为外加碳源利用。反硝化过程中,当初始NO_3~--N=(15.0±0.5)mg/L时,最佳投加量为30 mL,此时NO_3~--N去除率为100%;释磷过程中,最佳投加量为20 mL,此时最大净释磷量为22.8 mg/L。剩余污泥碱性厌氧发酵混合物用作外加碳源是可行的,既解决了碳源不足及剩余污泥处理的双重问题,又简化了传统发酵液利用时泥液分离的操作步骤,适用于处理低C/N比乡镇生活污水。  相似文献   

13.
Peat from an area of pristine swamp in Malaysia and from an area of that swamp drained 10 years earlier for agriculture was incubated along a temperature gradient from 0 to 20 °C to simulate microbial activity through changes in temperature. With increasing temperature, nitrate availability decreased in the pristine peat but increased in the drained peat, suggesting that drainage has altered the principle nitrate transformation process from denitrification to nitrification. Sulfate concentrations in the pristine peat exhibited a greater proportional decrease with increasing temperature than in the drained peat, suggesting that drainage has decreased the influence of sulfate reduction over sulfate availability at this site. With the exception of phosphate, nutrient concentrations in the drained site were significantly greater (P < 0.05) than in the pristine site. Biogeochemical models should consider that drained peatlands may respond very differently to the temperature change predicted by current climate change models.  相似文献   

14.
Ammonification of soil organic N and nitrification of ammonium-N was studied in Tindall clay loam over a range of temperatures from 20–60 C. Nitrification rates at each temperature were constant throughout the 28 day incubation, whereas most of the ammonification occurred in the first 7 days. The optimum for nitrification was close to 35 C. exhibiting a sharp peak at this temperature at which the potential rate was 4.8 μg N/g day?1, compared with 0.5 μg N/g day?1 at 20°C and 0.25 μg N/g day?1 at 60°C. The optimum temperature for ammonification was approximately 50°C at which the rate was 2.8 μg N/g day?1 in the first 7 days but only 0.5 μg N/g day?1 between 14 and 28 days.The temperature responses could be described mathematically with functions of the type logoN = k × 1/T.The results are discussed in relation to daily patterns of N mineralization in the field where temperatures show diurnal fluctuation.  相似文献   

15.
NaCl浓度对SBBR同步脱氮及N2O释放的影响   总被引:1,自引:0,他引:1  
盐度是影响生物脱氮过程的重要因素。盐度增加会导致生物硝化和反硝化过程中N_2O的产生并释放。该文以添加NaCl的生活污水为研究对象,采用固定填料序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),考察了不同NaCl浓度(0、5、10、15和20g/L)对SBBR脱氮性能及N_2O释放的影响。结果表明,试验NaCl浓度范围内,SBBR出水COD稳定在40~60mg/L。硝化过程NO_2~-/NO_3~-随NaCl浓度增加而增加。NaCl浓度≤10g/L时,NH_4~+-N去除率大于95%,N_2O产率由4.08%(NaCl浓度为0)增至6.72%(NaCl浓度为10 g/L)。NaCl浓度为20 g/L时,驯化后SBBR内平均NH_4~+-N去除率为70%,平均N_2O产率为13.60%。无添加NaCl时,N_2O主要产生于硝化阶段的AOB好氧反硝化过程,SBBR内缺氧区有助于减少N_2O释放;高NaCl浓度条件下,N_2O主要产生于AOB好氧反硝化过程和内源同步反硝化过程,高盐度加剧内源反硝化阶段NO_2~-和N_2O之间电子竞争,抑制N_2O还原,其活性抑制性能与电子受体和初始C/N有关。与硝态氮还原速率和亚硝态氮还原速率相比,氧化亚氮还原速率受NaCl抑制最为明显,是导致高盐度条件下N_2O释放量增加的重要因素。  相似文献   

16.
The influence of temperature (T) and water potential (ψ) on the denitrification potential, C and N mineralization and nitrification were studied in organic and mineral horizons of an acid spruce forest soil. The amount of N2O emitted from organic soil was 10 times larger than from the mineral one. The maximum of N2O emission was in both soils at the highest water potential 0 MPa and at 20°C. CO2 production in the organic soil was 2 times higher than in mineral soil. Net ammonification in organic soil was negative for most of the T‒ψ variations, while in mineral soil it was positive. Net nitrification in organic soil was negative only at the maximum water potential and temperature (0 MPa, 28°C). The highest rate was between 0 and −0.3 MPa and between 20 and 28°C. In mineral soil NO3 accumulated at all T‒ψ variations with a maximum at 20oC and −0.3 MPa. We concluded that in organic soil the immobilization of NH4+ is the dominant process in the N‒cycling. Nevertheless, decreasing of total N mineralized at 0 MPa and 20—28oC can be explained by denitrification.  相似文献   

17.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

18.
Turnover of 15N-urea and 15N-ammonium sulfa-nitrate with addition of dicyandiamide under aerobic conditions in the soil In aerobic incubation trials, the turnover of 15N-labelled urea (UR) and ammonium sulfa-nitrate (ASN) was investigated in the soil (silty loam, pH 6.5) under addition of the nitrification inhibitor dicyandiamide (DCD).
  • 1 Nitrification of urea at 7°C was markedly inhibited by addition of 10 ppm DCD-N (in relation to soil); at 14°C, a concentration of 20 ppm DCD-N was required for a sufficient inhibition; nitrification of ASN was more inhibited by DCD than nitrification of UR.
  • 2 By use of dicyandiamide, up to 14% (as compared with 10% without DCD) of the supplied N was transformed into a non-extractable N-Form from which only a slight release of nitrogen could be observed after 147 days. Also, the proportion of fixed ammoniuum was higher in the treatments with DCD as compared without DCD.
  • 3 In all experiments, the recovery was 100% ± max. 2.6%, that means that no essential (gaseous) losses of N occurred under the aerobic conditions of these trials.
  相似文献   

19.
Emissions of nitrous oxide (N2O), a potent greenhouse gas, from agricultural soil have been recognized to be affected by nitrogen (N) application and temperature. Most of the previous studies were carried out to determine effects of temperature on N2O emissions at a fixed N application rate or those of N application rates at a specific temperature. Knowledge about the effects of different ammonium (NH4+) application rates and temperatures on N2O emissions from tropical agricultural soil and their interactions is limited. Five grams of air-dried sandy loam soil, collected in Central Vietnam, were adjusted to 0, 400, 800 and 1200 mg NH4-N kg–1 soil (abbreviated as 0 N, 400 N, 800 N and 1200 N, respectively) at 60% water holding capacity were aerobically incubated at 20°C, 25°C, 30°C or 35°C for 28 days. Mineral N contents and N2O emission rates were determined on days 1, 3, 5, 7, 14, 21 and 28. Cumulative N2O emissions for 28 days increased with increasing NH4+ application rates from 0 to 800 mg N kg–1 and then declined to 1200 mg N kg–1. Cumulative N2O emissions increased in the order of 35°C, 20°C, 30°C and 25°C. This lowest emission at 35°C occurred because N2O production was derived only from autotrophic nitrification while other N2O production processes, e.g., nitrifier denitrification and coupled nitrification-denitrification occurred at lower temperatures. More specifically, cumulative N2O emissions peaked at 800 N and 25°C, and the lowest emissions occurred at 1200 N and 35°C. In conclusion, N2O emissions were not exponentially correlated with NH4+ application rates or temperatures. Higher NH4+ application rates at higher temperatures suppressed N2O emissions.  相似文献   

20.
硝化反应是土壤、特别是干旱半干旱地区农业土壤N2O产生的重要途径之一。但是,目前环境条件对硝化反应中N2O排放的影响研究较少,而在国内外通用的几个模型中均用固定比例估算硝化反应过程中N2O的排放。本文通过砂壤土培养试验,研究了土壤温度、水分和NH4+-N浓度对硝化反应速度及硝化反应中N2O排放的影响,并用数学模型定量表示了各因素对硝化反应的作用,用最小二乘法最优拟合求得该土壤的最大硝化反应速度及N2O最大排放比例。结果表明,随着温度升高,硝化反应速度呈指数增长;水分含量由20%充水孔隙度(WFPS)增加到40%WFPS时,反应速度增加,水分含量增加到60%WFPS时反应速度略有降低;NH4+-N浓度增加对硝化反应速度起抑制作用。用米氏方程描述该土壤的硝化反应过程,其最大硝化反应速度为6.67mg·kg?1·d?1。硝化反应中N2O排放比例随温度升高而降低;随NH4+-N浓度增加而略有增加;20%和40%WFPS水分含量时,硝化反应中N2O排放比例为0.43%~1.50%,最小二乘法求得的最大比例为3.03%,60%WFPS时可能由于反硝化作用,N2O排放比例急剧增加,还需进一步研究水分对硝化反应中N2O排放的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号