首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photocatalytic treatment of real community wastewater using Fe-doped TiO2 nanofilm was prepared by modified sol-gel method together with a simple dip-coating technique. The process was investigated in a home-made batch photoreactor. The as-prepared nanocomposite film was characterized by UV-Vis diffuse, XRD, BET, and Fe-SEM analysis. The poultry processing wastewater was collected from Nakhonsawan Municipality. Subsequently, the photocatalytic treatment of the wastewater was performed using a home-made photoreactor operated in batch mode to demonstrate the effects of Fe-dopant concentration with various layer numbers. The catalysts were irradiated using four lamps of 15 W power that emitted visible light and performed at room temperature. The samples were collected every 15 min and analyzed for biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal efficiency compared to pure TiO2 nanofilm and direct photolysis. From the results, the mixture of rutile and anatase was obtained with the maximum specific surface area of 150.12 mg2/g and the average particle size of 39.95 nm for 3 layers of 0.15% wt/v Fe-doped TiO2. The BOD and COD value at 90 min time treatment was presented to be 8.87 and 32 mg L?1, respectively, in the presence of 0.15% wt/v Fe-doped TiO2 film photocatalysts. Moreover, atomic absorption spectrometric result ensured that no Ti contamination was detected in all parts of plants after watering by the treated water. Hence, the photocatalytic treatment markedly improved the quality of the community wastewater.  相似文献   

2.
In this study, the impact of rose chafer (Cetonia aurata L.) larvae on net and gross methane (CH4) fluxes in soil from an old permanent grassland site (Giessen, Germany) was investigated. Previous studies at this site suggested the existence of Scarabaeidae larvae-induced “CH4-emitting hot spots” within the soil profile which may subsequently lead to increased CH4 oxidation. The net (soil + larvae) and gross (soil and larvae separated) CH4 fluxes were studied in a 3-month laboratory incubation. Addition of larvae changed the soil from a net sink (?330 ± 11 ng CH4 kg?1 h?1) to a net source (637 ± 205 ng CH4 kg?1 h?1). Supply of plant litter to the soil + larvae incubation jars tended to increase CH4 emissions which was not significant due to large variability. After 11–13 weeks of incubation, the net soil CH4 oxidation was significantly stimulated by 13–21% in the treatments containing larvae when these were taken out. Analysis of archaeal 16S rRNA genes revealed that the majority of the obtained clones were closely related to uncultured methanogens from guts of insects and other animals. Other sequences were relative to cultivated species of Methanobrevibacter, Methanoculleus, and Methanosarcina. Hence, Scarabaeidae larvae in soils (i) may represent an underestimated source of CH4 emissions in aerobic upland soils, (ii) may stimulate gross CH4 consumption in their direct soil environment, and, thus, (iii) contribute to the spatial heterogeneity often observed in the field with closed-chamber measurements. Long-term CH4-flux balances may be wrongly assessed when “exceptional” net CH4 flux rates (due to larvae hot spots) are excluded from data sets.  相似文献   

3.
Microcystins (MCs) are endotoxins produced by cyanobacteria in freshwaters globally. With known potential for human health risks, rapid and effective treatment methods are needed for MCs. Previous studies have shown photocatalysis can achieve rapid half-lives with UV lamps and slurries of TiO2. In this experiment, rates and extents of solar photocatalysis of MCs were measured using bench-scale reactors with fixed films of TiO2 for solutions with a range of cellular:aqueous MC ratios. Since cellular MCs can be removed physically, photocatalysis rates were measured following sand filtration to discern the extent of MC removal post-filtration. Since UV energy drives photocatalysis using TiO2, rates of removal were calculated as a function of cumulative UV insolation and time. For water containing < 10% aqueous MC, filtration removed 90% of total MC, and the subsequent photocatalysis half-life was 0.37 MJ/m2 (or 111 min). For water with ~?50% aqueous MCs, filtration removed 52% of the total MCs, and the average half-life for photocatalysis was 0.38 MJ/m2 (or 138 min). For the >?90% aqueous MC treatment, filtration removed 0% MCs, and the photocatalysis half-life for MCs was 0.37 MJ/m2 (or 135 min). Previous studies have used clarified waters; however, results from this study are likely representative of scenarios with waters containing confounding water characteristics and use of solar light for UV, as anticipated in developing countries with less advanced water treatment methods. Photocatalysis is a rapid and effective process for decreasing concentrations of MCs and could be useful for mitigating risks from MC exposures in drinking water.  相似文献   

4.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

5.
Abstract

To evaluate the hypothesis that plant-mediated oxygen supplies decrease methane (CH4) production and total global warming potential (GWP) in a tropical peatland, the authors compared the fluxes and dissolved concentrations of greenhouse gases [GHGs; CH4, carbon dioxide (CO2) and nitrous oxide (N2O)] and dissolved oxygen (DO) at multiple peatland ecosystems in Central Kalimantan, Indonesia. Study ecosystems included tropical peat swamp forest and degraded peatland areas that were burned and/or drained during the rainy season. CH4 fluxes were significantly influenced by land use and drainage, which were highest in the flooded burnt sites (5.75 ± 6.66 mg C m?2 h?1) followed by the flooded forest sites (1.37 ± 2.03 mg C m?2 h?1), the drained burnt site (0.220 ± 0.143 mg C m?2 h?1), and the drained forest site (0.0084 ± 0.0321 mg C m?2 h?1). Dissolved CH4 concentrations were also significantly affected by land use and drainage, which were highest in the flooded burnt sites (124 ± 84 μmol L?1) followed by the drained burnt site (45.2 ± 29.8 μmol L?1), the flooded forest sites (1.15 ± 1.38 μmol L?1) and the drained forest site (0.860 ± 0.819 μmol L?1). DO concentrations were influenced by land use only, which were significantly higher in the forest sites (6.9 ± 5.6 μmol L?1) compared to the burnt sites (4.0 ± 2.9 μmol L?1). These results suggest that CH4 produced in the peat might be oxidized by plant-mediated oxygen supply in the forest sites. CO2 fluxes were significantly higher in the drained forest site (340 ± 250 mg C m?2 h?1 with a water table level of ?20 to ?60 cm) than in the drained burnt site (108 ± 115 mg C m?2 h?1 with a water table level of ?15 to +10 cm). Dissolved CO2 concentrations were 0.6–3.5 mmol L?1, also highest in the drained forest site. These results suggested enhanced CO2 emission by aerobic peat decomposition and plant respiration in the drained forest site. N2O fluxes ranged from ?2.4 to ?8.7 μg N m?2 h?1 in the flooded sites and from 3.4 to 8.1 μg N m?2 h?1 in the drained sites. The negative N2O fluxes might be caused by N2O consumption by denitrification under flooded conditions. Dissolved N2O concentrations were 0.005–0.22 μmol L?1 but occurred at < 0.01 μmol L?1 in most cases. GWP was mainly determined by CO2 flux, with the highest levels in the drained forest site. Despite having almost the same CO2 flux, GWP in the flooded burnt sites was 20% higher than that in the flooded forest sites due to the large CH4 emission (not significant). N2O fluxes made little contribution to GWP.  相似文献   

6.
The impact of nanoparticles (NPs) in zooplankton is poorly studied, particularly when organisms are exposed through diet. Food, constituted mainly by unicellular algae, can act as an important route of contamination for zooplankton. Since unicellular algae have a high surface area in relation to their volume, NPs can interact with their cell membranes and walls, as well as with exopolysaccharides secreted by them. In the present research, we investigated both the acute effects of waterborne titanium dioxide nanoparticles (TiO2 NPs), and its chronic effects via dietary exposure on the Neotropical freshwater zooplankton Ceriodaphnia silvestrii Daday, 1902 (Crustacea: Cladocera). The observed acute effects served as support for chronic tests, in which we investigated the effects of TiO2 NPs on survival and life history parameters (body length, numbers of eggs, and neonates produced) of cladoceran adult females, using the freshwater cosmopolitan chlorophycean Raphidocelis subcapitata as source of contamination of TiO2 NPs for zooplankton. R. subcapitata cells were exposed to concentrations of 0, 0.01, 1, and 10 mg L?1 of TiO2 NPs for 96 h, and then provided as food for females of C. silvestrii until the third brood was released. Significant toxic effects were observed in body length and total number of neonates and eggs produced by females of C. silvestrii at concentrations of 1 and 10 mg L?1 of TiO2 NPs. Survival was the most sensitive parameter when exposure was given via food. From the concentration of 0.01 mg L?1 of TiO2 NPs, there was a decrease in the survival of C. silvestrii females. The quantification of TiO2 NPs in algae evidenced that they have retained NPs in their cells, being, therefore, an important route of exposure and toxicity of TiO2 NPs to the studied microcrustacean.  相似文献   

7.

Purpose  

TiO2 photocatalytic degradation of 4-chlorobiphenyl (PCB3) in aqueous solution under UV irradiation was investigated as affected by different environmental factors, including initial PCB3 concentration, TiO2 content, UV intensity, H2O2 concentration, cosolvents, and surfactants.  相似文献   

8.
Methane oxidising activity and community structure of 11, specifically targeted, methanotrophic species have been examined in an arable soil. Soils were sampled from three different field plots, receiving no fertilisation (C), compost (G) and mineral fertiliser (M), respectively. Incubation experiments were carried out with and without pre-incubation at elevated CH4 mixing ratios (100 ml CH4 l−1) and with and without ammonium (100 mg N kg−1) pre-incubation. Four months after fertilisation, plots C, G and M did not show significant differences in physicochemical properties and CH4 oxidising activity. The total number of methanotrophs (determined as the sum the 11 specifically targeted methanotrophs) in the fresh soils was 17.0×106, 13.7×106 and 15.5×106 cells g−1 for treatment C, G and M, respectively. This corresponded to 0.11 to 0.32% of the total bacterial number. The CH4 oxidising activity increased 105-fold (20–26 mg CH4 g−1 h−1), the total number of methanotrophs doubled (28–76×106 cells g−1) and the methanotrophic diversity markedly increased in treatments with a pre-incubation at elevated CH4 concentrations. In all soils and treatments, type II methanotrophs (62–91%) outnumbered type I methanotrophs (9–38%). Methylocystis and Methylosinus species were always most abundant. After pre-incubation with ammonium, CH4 oxidation was completely inhibited; however, no change in the methanotrophic community structure could be detected.  相似文献   

9.
In this work, disks containing different amount of the TiO2 precursor impregnated on the raw red clay were produced. The disks were obtained by pressing in metal template and subsequently calcined at 500 °C. The raw clay was used as rigid support to fix the TiO2. The materials were characterized by X-ray diffraction, diffuse reflectance spectroscopy, N2 adsorption-desorption (BET and BJH), scanning electron microscopy, and Fourier transform infrared (FTIR) spectroscopy. The ability of disks to produce superoxide and hydroxyl radicals after photoexcitation with UV irradiation was monitored by EPR. The catalytic efficiency was evaluated by the Reactive Red 141 dye discoloration under artificial UV light and sunlight. The reaction parameters such as concentration of RR-141 and irradiation source were evaluated. The results showed that the disks were able to decolorize 97.5% under sunlight at 60 min. The disks were also efficient in the discoloration until the tenth cycle, resulting in discoloration values near the initial cycles. Additionally, the dye fragments produced in cleavage of molecule during the reaction were evaluated by LC/MS-MS.
Graphical Abstract
  相似文献   

10.
Different from direct application of free nanoparticles (NPs) in water treatment, a composite material is used to reduce the release and potential toxic effects of NPs with maintained adsorption capacity and kinetics. Novel monolithic composites with TiO2 NPs incorporated into the walls of macroporous cryogels were synthesized and evaluated for material characteristics and their efficiency for removal of Pb(II) from aqueous solution in batch test and continuous mode. The uniformly distributed 6% TiO2-cryogel is shown to be optimal for minimizing TiO2 NP losses while maximizing Pb(II) removal. Under (25.0 ± 0.1) °C with the initial Pb(II) concentration of 10 mg/l, TiO2-cryogels exhibit excellent adsorption characteristic for Pb(II) removal with adsorption capacity up to 23.27 mg/g TiO2, which is even a little higher than that of TiO2 NPs (21.58 mg/g TiO2), and the results fit well with Langmuir–Freundlich isotherm. Both adsorbents work well in higher pH range with the highest removal rate at pH 6 for TiO2-cryogel, and the adsorption mechanism might be strong chemical interaction. Pseudo-second-order process can better describe the adsorption process rather than pseudo-first-order for both adsorbents. The external mass transfer process of Pb(II) on TiO2 NPs is much faster than that on TiO2-cryogel, and the ultimate equilibrium time is about the same (3 h) on both adsorbents. The synthesized composites could also withstand a continuous treatment, and the effect of competing and co-existing constituents such as Cd2+, SO4 2? and dissolved organic matter (DOM) is almost negligible. The composite design with small particles embedded into cryogels is proved to successfully keep the adsorption activity of TiO2 NPs and prevent them from releasing into the environment in engineering practice.  相似文献   

11.
We assessed the effect of liming on (1) N2O production by denitrification under aerobic conditions using the 15N tracer method (experiment 1); and (2) the reduction of N2O to N2 under anaerobic conditions using the acetylene inhibition method (experiment 2). A Mollic Andosol with three lime treatments (unlimed soil, 4 and 20 mg CaCO3 kg?1) was incubated at 15 and 25 °C for 22 days at 50% and then 80% WFPS with or without 200 mg N kg?1 added as 15N enriched KNO3 in experiment 1. In experiment 2, the limed and unlimed soils were incubated under completely anaerobic conditions for 44 h (with or without 100 mg N kg?1 as KNO3). In experiment 1, limed treatments increased N2O fluxes at 50% WFPS but decreased these fluxes at 80% WFPS. At 25 °C, cumulative N2O and 15N2O emissions in the high lime treatment were the lowest (with at least 30% less 15N2O and total N2O than the unlimed soil). Under anaerobic conditions, the high lime treatment showed at least 50% less N2O than the unlimed treatment at both temperatures with or without KNO3 addition but showed enhanced N2 production. Our results suggest that the positive effect of liming on the mitigation of N2O evolution from soil was influenced by soil temperature and moisture conditions.  相似文献   

12.
Bisphenol A (BPA) and reactive black 5 (RB5) dye are among the most persistent and non-biodegradable contaminants in water which require an urgent need for the development of effective removal method. The ubiquitous existence of both contaminants could interfere with the human health and aquatic environmental balance. Photocatalytic process as one of advanced oxidation processes (AOPs) has shown high performance for degradation of organic compounds to the harmless materials under sensible condition. Therefore, this study aims to develop a visible-light-driven photocatalyst that can efficiently degrade BPA and RB5 present in household water. N-doped TiO2 were successfully synthesized via simple and direct sol–gel method. The prepared TiO2 nanoparticles were characterized by field emission scanning microscope (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Brunauere Emmette Teller (BET) analysis. The incorporation of nitrogen in TiO2 lattice exhibited excellent optical responses to visible region as revealed by UV–Vis–NIR spectroscopy absorption capability at 400–600 nm. The photocatalytic activity of the N-doped TiO2 nanoparticles was measured by photocatalytic degradation of BPA and RB5 in an aqueous solution under visible-light irradiations. Degradation of BPA and RB5 was 91.3% and 89.1%, respectively after 360 min illumination. The degradation of BPA and RB5 by N-doped TiO2 was increased up to 89.8% and 88.4%, respectively under visible-light irradiation as compared to commercial TiO2 P25. This finding clearly shows that N-doped TiO2 exhibits excellent photocatalytic degradation of BPA and RB5 under visible irradiation, hence have a promising potential in removing various recalcitrant contaminants for water treatment to fulfill the public need to consume clean water.
Graphical Abstract ?
  相似文献   

13.
Cultivation of rice in unsaturated soils covered with mulch is receiving more attention in China because of increasingly serious water shortage; however, greenhouse gas emission from this cultivation system is still poorly understood. A field experiment was conducted in 2001 to compare nitrous oxide (N2O) and methane (CH4) emission from rice cultivated in unsaturated soil covered with plastic or straw mulch and the traditional waterlogged production system. Trace gas fluxes from the soil were measured weekly throughout the entire growth period using a closed chamber method. Nitrous oxide emissions from unsaturated rice fields were large and varied considerably during the rice season. They were significantly affected by N fertilizer application rate. In contrast, N2O emission from the waterlogged system was very low with a maximum of 0.28 mg N2O m–2 h–1. However, CH4 emission from the waterlogged system was significantly higher than from the unsaturated system, with a maximum emission rate of 5.01 mg CH4 m–2 h–1. Our results suggested that unsaturated rice cultivation with straw mulch reduce greenhouse gas emissions.  相似文献   

14.
A high soil nitrogen (N) content in irrigated areas quite often results in environmental problems. Improving the management practices of intensive agriculture can mitigate greenhouse gas (GHG) emissions. This study compared the effect of maize stover incorporation or removal together with different mineral N fertilizer rates (0, 200 and 300 kg N ha?1) on the emission of nitrous oxide (N2O) and carbon dioxide (CO2) on a sprinkler-irrigated maize (Zea mays L.). The trail was conducted in the Ebro Valley (NE Spain) in a high nitrate-N soil (i.e. 200 g NO3–N kg?1). Nitrous oxide and CO2 emissions were sampled weekly using a semi-static closed chamber and quantified using the photoacoustic technique in 2011 and 2012. Applying sidedress N fertilizer tended to increase N2O emissions whereas stover incorporation did not have any clear effect. Nitrification was probably the main process leading to N2O. Denitrification was limited by the low soil moisture content (WFPS <?54%), due to an adequate irrigation management. Emissions ranged from ??0.11 to 0.36% of the N applied, below the IPCC (2007) values. Nitrogen fertilization tended to reduce CO2 emission, but only in 2011. Stover incorporation increased CO2 emission. Nitrogen use efficiency decreased with increasing mineral fertilizer supply. The application of N in high N soils of the Ebro Valley is not necessary until the soil restores a normal mineral N content, regardless of stover management. This will combine productivity with keeping N2O and CO2 emissions under control provided irrigation is adequately managed. Testing soil NO3 ?–N contents before fertilizing would improve N fertilizer recommendations.  相似文献   

15.
Comamonas sp. UVS was able to decolorize Reactive Blue HERD (RBHERD) dye (50 mg L?1) within 6 h under static condition. The maximum dye concentration degraded was 1,200 mg L?1 within 210 h. A numerical simulation with the model gives an optimal value of 35.71?±?0.696 mg dye g?1 cell h?1 for maximum rate (Vmax) and 112.35?±?0.34 mg L?1 for the Michaelis constant (Km). Comamonas sp. UVS has capability of decolorization of RBHERD in the presence of Mg2+, Ca2+, Cd2+, and Zn2+, whereas decolorization was completely inhibited by Cu2+. Metal ions also affected the levels of biotransformation enzymes during decolorization of RBHERD. Comamonas sp. UVS was also able to decolorize textile effluent with significant reduction in COD. The biodegradation of RBHERD dye was monitored by UV–vis spectroscopy, FTIR spectroscopy, and HPLC.  相似文献   

16.
Abstract

To assess soil-to-plant transfer of various elements more precisely, the concentrations of the elements extracted from soil samples using eight chemical solutions were compared with the results of a pot cultivation experiment of komatsuna (Brassica rapa L. var. perviridis) or buckwheat (Fagopyrum esculentum M.) using the soils. From agricultural fields in Aomori, Japan, 16 soil samples were collected. Elements in the samples were extracted using acids (1 mol L?1 HNO3, 0.1 mol L?1 HNO3, 0.01 mol L?1 HNO3), chelating agents (0.05 mol L?1 EDTA), neutral salt solutions (1 mol L?1 NH4OAc, 1 mol L?1 NH4NO3, 0.01 mol L?1 CaCl2) and pure water. The 28 elements in the extracted solutions and plant samples were determined. The extractability of many metals was higher in 1 mol L?1 HNO3, 0.1 mol L?1 HNO3 and the 0.05 mol L?1 EDTA solutions than in the other extractants. Higher extractability using the NH4OAc solution than the NH4NO3 solution was observed for some elements, in particular U. Extractability by pure water was not always lowest among these methods, probably because of dispersion of colloidal substances in the extracted solution. The pot cultivation experiment showed that the concentrations in soil and in the extracted fraction using 1 mol L?1 HNO3, 0.1 mol L?1 HNO3 or the EDTA solution did not correlate with the concentration in plant samples for most elements. Plant uptake of Zn, Y and La by komatsuna correlated well with their concentrations in extracts with neutral salt solutions or 0.01 mol L?1 HNO3. Concentrations of Al, Cu and Cd in buckwheat were also correlated with the concentrations in the extracts.  相似文献   

17.
The aim of the present study was to establish the photocatalytic efficiency of Fe-doped TiO2 nanocatalysts toward polycyclic aromatic hydrocarbons (PAHs), which were phenanthrene, anthracene, and fluoranthene, contaminated soil under visible irradiation. The morphology, phase, and particle size of the prepared nanocatalyst have been studied as a first mention in literature. The photoresponse of the TiO2 extends from UV region to the visible region was proved by the diffuse reflectance spectrophotometry (DRS). The surface area is greatly increased though the Fe-doped TiO2 compared with the bare TiO2. The pH value of the media showed the beneficial to PAH absorption on the Fe-doped TiO2 under the alkaline condition due to the surface catalyst possesses much negative charge, which is increase in percentage of PAH degradation. Based on GC-MS study, the mechanism of photoactivity of the selected PAHs involves hydroxylation, ring opening, and rearrangement reactions. The main intermediates of PAH photodegradation were found to be 9-octadecanoic acid, heptadecane, octadecane, cyclohexane (1-hexadecylheptadecyl), and 15-hydroxypentadecanoic acid.  相似文献   

18.
Abstract

To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed-chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4-C m?2 h?1 and 1.88 (0.17–12.5) µg N2O-N m?2 h?1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4-C m?2 h?1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O-N m?2 h?1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4-C m?2 h?1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O-N m?2 h?1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4-C year?1 with 39% uncertainty and 3.3 Gg N2O-N year?1 with 76% uncertainty, respectively.  相似文献   

19.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

20.
The impacts of soil erosion on soil structure, nutrient, and microflora have been extensively studied but little is known about the responses of autotrophic bacterial community and associated carbon (C)-fixing potential to soil erosion. In this study, three abandoned croplands (ES1, ES2, and ES3) and three check dams (DS1, DS2, and DS3) in the Qiaozi watershed of Chinese Loess Plateau were selected as eroding sites and depositional sites, respectively, to evaluate the impacts of soil erosion on autotrophic bacterial community and associated C-fixing potential. Lower abundance and diversity of autotrophic bacteria were observed in nutrient-poor depositional sites compared with nutrient-rich eroding sites. However, the relative abundances of obligate autotrophic bacteria, such as Thiobacillus and Synechococcus, were significantly enhanced in depositional sites. Deposition of nutrient-poor soil contributed to the growth of obligate autotrophic bacteria. The maximum microbial C-fixing rate was observed in DS1 site (5.568?±?1.503 Mg C km?2 year?1), followed by DS3 site (5.306?±?2.130 Mg C km?2 year?1), and the minimum was observed in ES2 site (0.839?±?0.558 Mg C km?2 year?1). Soil deposition significantly enhanced microbial C-fixing rate. Assuming a total erosion area of 1.09?×?107 km2, microbial C-fixing potential in eroded landscape can range from 0.01 to 0.06 Pg C year?1. But its effect on the C pool recovery of degraded soil is limited. Dissolved organic C (DOC) was the main explanatory factor for the variation in soil microbial C-fixing rate (72.0%, P?=?0.000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号