首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogeneity of PAN/DMSO/H2O spinning dopes with conventional PAN molecular weight and comparative high PAN concentration have been investigated using rheology method. The rheological results show that G′ and G″ of these solutions increase with increasing oscillation frequency. At lower temperature and higher H2O content, higher viscous modulus and elastic modulus are observed, too. The homogeneity of PAN/DMSO/H2O systems is reflected through the logG′-logG″ plots as well as gel point temperatures. The theoretical analysis indicates PAN/DMSO/H2O spinning solutions with conventional PAN molecular weight are close to homogeneous systems, which are very suitable for gel spinning.  相似文献   

2.
A new guar gum derivative (CMHTPG) containing anionic carboxymethyl and cationic 2-hydroxy-3-(trimethylammonio)propyl substituents was characterized with the help of a stress-controlled rheometer for its linear viscoelastic behavior in aqueous systems. The frequency-dependent elastic modulus (G′) and viscous modulus (G″) curves for 0.5, 1.0, 1.5 and 2.0 g/dl of aqueous CMHTPG solutions were found to cross at a given frequency. The crossover frequency value decreased with the increase of CMHTPG concentration. At 25 °C, the longest relaxation time was obtained to be 5.556 s for aqueous 2.0% CMHTPG solution while the shortest relaxation time to be 0.027 s for aqueous 0.5% CMHTPG solution, showing a strong concentration dependence on the viscoelastic properties. Moreover, the complex viscosity (η*) of aqueous CMHTPG solution was found to increase with the increase of CMHTPG concentration, and to decrease with the increase of frequency. By investigating the viscoelastic properties of aqueous CMHTPG salt solutions containing various concentrations of NaCl, it was observed that the addition of NaCl could lead to a slight increase in the G, G″ or η* value. Temperature was confirmed to have an important influence on the viscoelastic properties of aqueous CMHTPG solution. For aqueous 1.0% CMHTPG solution, the activation energy reflecting the temperature sensitivity of the complex viscosity was determined at the frequency of 1.0 rad/s and found to be 16.94 kJ/mol.  相似文献   

3.
A set of 13 waxy rice genotypes prepared by chemical-induced mutation of rice variety TNG67 and 7 waxy rice varieties widely grown in Taiwan were compared for structural, rheological and retrogradation characteristics of starches. Wide differences in retrogradation enthalpy (ΔHret), gel firmness and storage modulus (Gret) were observed for 2-week stored gels of 20 starches. Ratio of short-to-long amylopectin chains was significantly higher (p < 0.05) in starches from mutant genotypes than in commercial varieties. ΔHret and Gret of starch pastes stored over 4 weeks showed stronger correlation with amylopectin chain-profile compared to those stored for 2 weeks. Amount of long amylopectin chains was correlated positively (p < 0.05) with ΔHret and gel firmness. Overall, ratio of short-to-long amylopectin chains affected almost all the rheological and retrogradation parameters. Results of this study can be useful to plant breeders and food industry for quality improvement and selection of waxy rice mutants for various applications.  相似文献   

4.
The effects of the following additives on the amaranth (A), quinoa (Q) and oat (O) dough rheological properties and the extruded tagliatelle dough mechanical characteristics were evaluated: carboxymethylcellulose of sodium (CMC), whey protein isolate (WPI), casein (CAS), chitosan (CHIT) and pregelatinized starch (PS). The amaranth, quinoa and oat rheological dough properties and amaranth, quinoa and oat tagliatelle mechanical characteristics were compared to those of their respective controls (ACTRL, QCTRL and OCTRL) and of the SEMOLINA sample. The storage modulus (G′) and loss modulus (G″) values of the quinoa and oat doughs with PS were similar to those of the semolina dough. For all tagliatelle samples, WPI reduced the elastic modulus or Young's modulus towards that of the semolina tagliatelle. Moreover, the additives did not have particular influence on the tenacity with the exception of the amaranth tagliatelle added with WPI.  相似文献   

5.
Textile industry generate significant amount of waste fibres in form of short lengths during mechanical processing. However these short fibres possess excellent properties suitable for many other applications. The objective of this work was to use them for the preparation of nanoparticles/nanofibres as fillers in biodegradable composite applications such as food packaging, agriculture mulch films, automotive plastics, etc. The present paper concerns with jute fibres as a source of nanocellulose for reinforcement of PVA mulch films. Jute fibres were first refined to micro/nanoscale particles in form of nanofibrillar cellulose (NFC) by high energy planetary ball milling process in dry and wet condition. Wet milling was observed more efficient than dry milling in terms of unimodality of size distribution with reduction in size below 500 nm after milling for 3 hours. Later the obtained particles were used as fillers in Poly vinyl alcohol (PVA) films and their reinforcement evaluated based on thermal properties. It was observed that glass transition temperature (Tg) of PVA films improved from 84.36 °C to 95.22 °C after addition of 5 % jute particles without affecting % crystallinity and melting temperature (T m) of PVA. Dynamic mechanical analysis of composite films with 5 % jute particles showed higher value of 14×108 Pa for storage modulus in comparison to 9×108 Pa of neat composite film. The percolation effect was observed more above glass transition temperature which consequently resulted in improved transfer of stiffness from jute particles to PVA matrix above 50 °C. The percolation phenomena also explained the improvement in thermal stability by 10 °C for every increased loading of jute particles due to formation of hydrogen bonds with PVA matrix.  相似文献   

6.
In this study, a glucose oxidase (GOX), papain and xylanase combination was developed for fresh whole wheat dough for both browning inhibition and rheological improvement. Measurements of carotenoids extracted from enzyme-treated doughs showed that 0.001% (w/w) GOX could catalyze the oxidization of 40.0% carotenoids and thus cause a decrease of browning index (BI) by 5.20 during dough preparation. For 24 h browning inhibition, 0.010% (w/w) xylanase and papain individuals were able to separately act on the phenolic compounds and polyphenol oxidase, leading to lower BI rises (5.36 and 7.04, respectively) of doughs as compared to the BI rise (13.53) of the control dough; however, 0.020% GOX caused a higher BI rise (16.60) than control although it made BI decrease by 6.34 at 0 h. Rheological investigations on enzyme-treated doughs revealed that both xylanase and papain led to decreases of elastic (G′) and viscous modulus (G″) of doughs while GOX caused increases of G′ and G″. Therefore, an optimal combination composed of 0.010% (w/w) xylanase, 0.005% (w/w) papain and 0.002% (w/w) GOX was carried out using orthogonal experimental design by comparing BI rises in 24 h, which was also proved as a rheological improver for fresh whole wheat dough.  相似文献   

7.
Glycerol-plasticized wheat gliadin bioplastics were prepared through thermo-molding method. The effect of glycerol content on the morphology and the mechanical properties of wheat gliadin bioplastics was studied. Morphology, tensile properties (tensile strength and elongation at break), dynamic mechanical properties and rheological properties were evaluated in relation to glycerol content. Experimental results reveal that the morphology, the glass transition temperatures (Tg) of both the gliadin-rich and the glycerol-rich domains and the tensile properties are closely linked to the glycerol content. The time–temperature superposition (TTS) fails to be applied to the dynamic loss modulus G″ (all temperatures) and the dynamic storage modulus G′ (above 80 °C) of wheat gliadin bioplastics.  相似文献   

8.
Boron doped PVA/Zr-Al acetate nanofibers were prepared by electrospinning using PVA as a precursor. The effect of calcination temperature on morphology and crystal structure was investigated at 250, 500, and 800 °C. The study also establishes the effect of boron doping on the morphology of PVA/Zr-Al acetate nanofibers at various calcination temperatures. The measurements showed that the conductivity, pH, viscosity and the surface tension of the hybrid polymer solutions have increased with boron doping. In addition, the fibers were characterized by FTIR, DSC, XPS, XRD and SEM techniques. The addition of boron did not only increase the thermal stability of the fibers, but also increased the average fiber diameters, which gave stronger fibers. The DSC results indicated that the melting temperature (Tm) of the fibers was increased from 256 to 270 °C with the addition of boron. XRD peak patterns showed that after further heat treatment at 800 °C, zirconia exists in two phases of tetragonal and monoclinic modifications. Moreover, alumina does not transform into the γ-Al2O3 and θ-Al2O3 phase at 800 °C. The SEM appearance of the fibers showed that the addition of boron resulted in the formation of crosslinked bright surfaced fibers.  相似文献   

9.
Rheological properties of gluten from three biscuit wheat cultivars (Triticum aestivum, L., cv. Reaper, Ritmo, Encore) were studied. The cultivars were grown in two seasons (1997–1999) with three different nitrogen levels, and nitrogen fertiliser was applied using three different strategies. Protein and gluten contents were significantly affected by the N level (P<0.001), but inter-cultivar differences were only significant in 1999, when growing conditions were restricted by environmental factors. The viscoelastic properties of gluten were characterised by creep recovery and oscillation testing. The results showed a significant inter-cultivar effect (P<0.001), with an additional effect from the N level (P<0.001). Increasing levels of nitrogen fertiliser increased the viscous properties of gluten, through an increase of maximum strain and recovery strain, and through a decrease of the storage (G′) and loss modulus (G′′), whereas the phase angle, δ, increased. This increase in viscous behaviour is suggested to be attributed to a higher gliadin/glutenin ratio in the gluten. The fertiliser application strategy did not influence the rheological properties significantly. Thus, high N fertiliser application in biscuit wheat cultivation may be beneficial to obtain rheological properties, which are suitable for biscuit making.  相似文献   

10.
Herein, a biodegradable and biocompatible composite comprising of support membrane based on crosslinked PVA/PEG film and curcumin loaded electrospun poly(lactic acid) (PLA) nanofiber mat is introduced. The membrane film was prepared from PVA/PEG blend followed by crosslinking with an optimum amount of citric acid, 15 wt.%. After then, PLA solutions with different curcumin content, 0-11 wt.%, were electrospinned on the prepared membrane substrate. The prepared film showed high water absorption, water vapor transmission rate and superior mechanical properties with improved elastic modulus, tensile strength and with an elongation of around 320 % with respect to the non-crosslinked one. Also, the scanning electron microscopy was revealed uniformly dispersed pores throughout the membrane film with a nearly narrow in size distribution centered at 36 μm. As well, a nanostructure porous morphology was found for the electrospun fibrous curcumin loaded PLA from the scanning electron microscopy micrographs and the average fiber diameter was decreased with curcumin content. In vitro drug release from the prepared flexible composite into the vertical diffusion cell was recorded by the measuring curcuminoids content using high performance liquid chromatography and drug release kinetic evaluations were revealed that the release pattern of all prepared samples, containing different content of curcumin, well fitted to the Higuchi’s model signifying diffusion-controlled release mechanism. As well, the determined release rate at the second release stages, i.e. steady state flux (J), was varied from 0.31 to 43.53 μg·cm-2·h-1 with increasing drug content from 1 to 11 wt.%. Regarding this results, this flexible composite by providing the moist environment along with miraculous healing properties of curcumin, can be potential candidate for transdermal drug delivery.  相似文献   

11.
This study investigated the incorporation of nanoscale germanium (Ge) and silicon dioxide (SiO2) particles into poly(vinyl alcohol) (PVA) nanofibers with the aim of developing nanostructures with far-infrared radiation effects and antimicrobial properties for biomedical applications. Composite fibers containing Ge and SiO2 were fabricated at various concentrations of Ge and/or SiO2 using electrospinning and layered on polypropylene nonwoven. The morphological properties of the nanocomposite fibers were characterized using a field-emission scanning electron microscope and a transmission electron microscope. The far-infrared emissivity and emissive power of the nanocomposite fibers were examined in the wavelength range of 5-20 μm at 37 °C. The antibacterial properties were quantitatively assessed by measuring the bacterial reductions of Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli. Multi-component composite fibers electrospun from 11 wt% PVA solutions containing 0.5 wt% Ge and 1 wt% SiO2 nanoparticles exhibited a far-infrared emissivity of 0.891 and an emissive power of 3.44·102 W m?2 with a web area density of 5.55 g m?2. The same system exhibited a 99.9 % bacterial reduction against both Staphylococcus aureus and Escherichia coli, and showed a 34.8 % reduction of Klebsiella pneumoniae. These results demonstrate that PVA nanofibrous membranes containing Ge and SiO2 have potential in medical and healthcare applications such as wound healing dressings, skin care masks, and medical textile products.  相似文献   

12.
The dynamic rheological properties of glutens and gluten fractions (gliadin and glutenin) of two U.K.-grown wheat cultivars, Hereward and Riband, having good and poor bread quality, respectively, were studied. Gluten and glutenin doughs from cv. Hereward had higher G' and lower tan δ values than those from cv. Riband at all frequencies studied. A more pronounced difference in G' and tan δ was observed between the glutenin doughs of the two wheats than between their respective gluten doughs. The rheological properties, i.e. G' and tan δ values, of gliadin doughs were similar for both wheats. Varying the gliadin/glutenin ratio by adding the isolated gliadin or glutenin sub-fractions to the parent glutens showed that the G' values decreased and the tan δ values increased as the gliadin/glutenin ratio was increased for both cultivars, indicating a considerable decrease in elasticity as the gliadin/glutenin ratio increased. The decrease in G' may be attributed to a plasticising effect of gliadin and ‘interference’ of gliadin with glutenin-glutenin interactions. The reduction in G' was much more pronounced when the gliadin/glutenin ratio was increased between 0.15 and 1.0 than between 1.0 and above. Gluten from cv. Hereward had higher G' and lower tan δ values than cv. Riband gluten at all gliadin/glutenin ratios, indicating that cv. Hereward gluten had greater elastic character than cv. Riband gluten. Although significant effects of other non-protein hydrocolloid components cannot be discounted, these observations are consistent with the view that the viscoelasticity of the glutenin sub-fraction of gluten and differences in the ratio of gliadin to glutenin are the main factors governing inter-cultivar differences in the viscoelasticity of wheat gluten.  相似文献   

13.
For people with celiac disease, a lifelong abdication of gluten including-products is necessary to live a life without celiac affected reactions. The production of high-quality bread from gluten free flour is not simple in comparison to gluten including flours such as those derived from wheat (Triticum spp.). The gas binding and crumb structure forming capacity are very low in gluten free batters. They can efficiently be analyzed through the rheological properties of the dough used. The use of acidification in amaranth (Amaranthus hypochondriacus) dough preparation is a possible means of changing the rheological behavior of amaranth in the desired direction. Methods include the use of lactic acid directly, or the fermentation via lactic acid bacteria. Adding up to 20 mL lactic acid/kg flour in amaranth dough preparation led, during oscillation tests, to an increase of the complex shear modulus up to 30% in the range of 0.1 up to 10 Hz. The use of sourdough fermentation decreased the complex shear modulus in the same test up to nearly 60%. In creep recovery tests, the elastic part of amaranth dough decreased from 65.4% without any treatment down to 63.9% by the addition of up to 20 mL lactic acid/kg flour. Sourdough fermentation by Lactobacillus plantarum was able to decrease it to 54%. The acidification showed a significant positive influence on the rheological parameters of amaranth dough only at the higher stress level. In contrast, sourdough fermentation was able to produce doughs with viscosity and elasticity similar to that found in pure wheat flours.  相似文献   

14.
Sepia ink oligopeptide (SIO) is a tripeptide extracted from Sepia ink. To test the hypothesis that SIO inhibits prostate cancer by inducing apoptosis, the effects of SIO on the proliferation of three human prostate cancer cell lines were examined using a CCK-8 assay. SIO significantly inhibited the proliferation of DU-145, PC-3 and LNCaP cells in a time- and dose-dependent manner. Flow cytometry studies showed that exposing DU-145, PC-3 and LNCaP cells to 5, 10, or 15 mg/mL SIO for 24 h increased the percentage of the early-stage apoptotic cells from 11.84% to 38.26% (DU-145), 22.76% to 39.96% (PC-3) and 5.05% to 16.11% (LNCaP), respectively. In addition, typical morphologic changes were observed in the cells with acridine orange/ethidium bromide staining. SIO treatment induced strong S and G2/M phase cell cycle arrest in a dose-dependent manner in DU-145 and LNCaP. In contrast, SIO treatment induced strong Sub G1 and G0/G1 phase cell cycle arrest in a dose-dependent manner in PC-3. SIO exposure for 24 h decreased the expression of the anti-apoptotic protein Bcl-2 and increased the expression of the apoptogenic protein Bax. Moreover, the Bax/Bcl-2expression ratio was increased. Concurrently, the expression of caspase-3 was upregulated. These data support our hypothesis that SIO has anticarcinogenic properties.  相似文献   

15.
Since protein aggregation and formation of a continuous protein matrix in rye dough is very limited, an enzyme-induced protein aggregation method to improve the baking properties was investigated. The effects of microbial transglutaminase (TG) on the properties of rye dough were studied by rheological tests, confocal laser scanning microscopy (CSLM), standard-scale baking tests and crumb texture profile analysis. Addition of TG in the range of 0-4000 Ukg−1 rye flour modified the rheological properties of rye flour dough, resulting in a progressive increase of the complex shear modulus (|G∗|) and in a decrease of the loss factor (tan δ) due to protein cross-linking or aggregation. CLSM image analysis illustrated a TG-induced increase of the size of rye protein complexes. Standard baking tests showed positive effects on loaf volume and crumb texture of rye bread with TG applied up to 500 Ukg−1 rye flour. Higher levels of TG (500 U ≤ TG ≤ 4000 U) had detrimental effects on loaf volume. Increasing TG concentration resulted in an increase of crumb springiness and hardness. In conclusion, the results of this work demonstrated that TG can be used to improve the bread making performance of rye dough by creating a continuous protein network.  相似文献   

16.
This study examined the effects of matrix (PVA and Si) on the properties of TEMPO-treated nanocomposites preparing from different pulp sources (Kraft and NaBH4 treated Kraft). Chemical characterization and crystallization were determined via FT-IR, thermal stability via TGA and morphological alterations via SEM. UTM and DTMA were used to measure the Young’s and storage moduli. The real and imaginary parts of permittivity and electric modulus were evaluated using an impedance analyzer. After interaction, prominent vibrations and alteration of crystallinity were seen. Storage and Young’s moduli decreased after Si and PVA interaction. The Si-TOCN films showed higher permittivity properties and all of the films followed a similar trend of significantly dropping ε' and ε'' values at high frequency. The PVA-TOCN films had mechanical advantages at room temperature compared to the Si-TOCN films. However, the Si-TOCN films had better thermomechanical properties at high temperatures. NaBH4 revealed favorable effects on mechanical properties of the films.  相似文献   

17.
The effect of feed moisture content (10, 14 and 18%) and die temperature (110 and 160 °C) on functional properties, specific mechanical energy (SME), morphology, thermal properties, X-ray diffraction pattern (XRD), Fourier transform infrared spectroscopy (FTIR) and amylose-lipid complex formation of extruded sorghum flour was investigated. Results showed that the extrusion cooking significantly changed the functional properties of extruded sorghum flour. Increasing feed moisture increased the peak gelatinization temperature (Tp), the degree of gelatinization (%) and starch crystallinity (%) while it decreased the gelatinization temperature ranges (Tc - T0), starch gelatinization enthalpy (ΔHG) and amylose-lipid complex (%) formation. With increasing die temperature, the degree of gelatinization and amylose-lipid complex formation increased and the starch Tp, Tc-T0, ΔHG and crystallinity decreased. The FTIR spectra also showed that the extrusion cooking did not create new functional groups or eliminate them in sorghum protein, whereas the sorghum extrudate protein had random coil conformation.  相似文献   

18.
Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC) were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO). First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC), a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI) to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.  相似文献   

19.
Poly(vinyl alcohol) (PVA)/multi-walled carbon nanotube (MWNT) composite films were prepared by casting a DMSO solution of PVA and MWNTs, whereby the MWNTs were dispersed by sonication. A significant improvement in the mechanical properties of the PVA drawn films was achieved by the addition of a small amount of MWNTs. The initial modulus and the tensile strength of the PVA drawn film increased by 30% and 45% respectively, with the addition of 1 wt% MWNTs, which are close to those calculated from the rule of mixtures, and were strongly dependent upon the orientation of the PVA matrix. The mechanical properties, however, were not improved with a further increase in the MWNT content. The orientation of MWNTs in the composite was not well developed compared to that of the PVA matrix. This result suggests that the improvement of the molecular orientation of the PVA matrix plays a major role in the increase of the mechanical properties of the drawn PVA/MWNT composite films.  相似文献   

20.
Using dimethyl sulfoxide (DMSO) as a solvent, the polyacrylonitrile/soy protein isolate/polyurethane (PAN/SPI/PU) blend solutions and wet-spun fibers were prepared. The rheological properties of the PAN/SPI/PU solution were investigated. Investigations of the structure and properties of the PAN/SPI/PU fibers involved Fourier transform infrared, enzymatic hydrolysis, scanning electron microscopy, mechanical properties, dye adsorption, contact angle, and moisture regain measurements. The results showed that all PAN/SPI/PU solutions possess pseudoplastic properties, and there are opposite effects of SPI and PU in the PAN/DMSO solution. The apparent viscosity, the amount of non-Newtonian fluid and the extent of structuralization of the PAN/DMSO solution increase with the addition of SPI, whereas these features all decrease with the addition of PU. The biodegrability, the absorption of acidic dye and the moisture regain increase with the proportional increase in weight of SPI in the fiber blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号