首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

2.
To improve interfacial adhesion between carbon fiber and epoxy resin, the epoxy matrix is modified with N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (YDH602) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (YDH792), respectively. And the effect of matrix modification on the mechanical performance of carbon/epoxy composites is investigated in terms of tensile, flexural and interlaminar properties. The flexural properties indicate that the optimum concentration of silane coupling agents YDH602 and YDH792 for the matrix modification is approximately 0.5 wt% of the epoxy resin system, and the mechanical properties of the YDH792-modified epoxy composites is better than that of the YDH602-modified epoxy composites at the same concentration. Compared to unmodified epoxy composite, the incorporation of 0.5 wt% YDH792 results in an increase of 4, 44 and 42 % in tensile, flexural and interlaminar shear strength (ILSS) values of the carbon/epoxy composite, respectively, while the corresponding enhancement of tensile and flexural modulus is 3 and 15 %. These improvements in mechanical properties can be considered to be an indication of better fiber/matrix interfacial adhesion as confirmed by SEM micrographs of the fracture surface after interlaminar shear testing. The viscosity of the modified epoxy resin system can be reduced by incorporation of silane coupling agent YDH792, which is beneficial for fiber impregnation or wetting during liquid composite molding process.  相似文献   

3.
Intra-layer and inter-layer hybrid composite laminates were made with epoxy resin and compositions were varied in six different proportions. In-plane compressive mechanical properties were studied using finite element analysis and experiments, and the results found were in good agreement. Properties of intra-layer and inter-layer hybrids were compared with plain carbon/epoxy and plain glass/epoxy composites, and a comparison among themselves was also made. It was found that intra-layer hybrids to some extent exhibit better compressive properties compared to inter-layer hybrids. Percentage enhancement in compressive failure strain was noticed. Negative hybrid effects on compressive strength was noticed for both intra-layer and inter-layer hybrid configurations. It was found that proportion of carbon fiber content plays a key role in determining the compressive properties. According to macro-scale observation all composite laminates failed catastrophically under compressive loading. SEM observation depicted that under compressive loading carbon fibers break first followed by glass fiber.  相似文献   

4.
Gas plasma technologies have been utilized to improve the surface properties of fibers in many applications from textiles to fiber-reinforced composites since the 1960s. This review discusses the feasibility and characteristics of gas plasma technologies applied to aramid fiber. The influence of various plasma treatments on the chemical and mechanical properties of aramid fibers as well as fiber-reinforced composites is described. The moisture regain is emphasized to achieve good bonding between aramid fibers and polymer matrix and to enhance the surface modification of aramid fiber and mechanical properties of the composites. More sophisticated technologies such as plasma-initiated graft polymerization are also discussed to highlight very recent developments.  相似文献   

5.
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties.  相似文献   

6.
The surface of para-aramid fiber was modified by phosphoric acid solutions (H3PO4) based on an orthogonal experimental design and analysis method. Statistical results indicate that treatment temperature is the most significant variable in the modification processing, while treatment time was the least important factor. The structure and morphology of the modified fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction instrument (XRD), and scanning electron microscope (SEM). The results showed that some polar groups were introduced into the molecular structure of aramid fibers and the physical structure of the treated fibers was not etched obviously. The interfacial properties of aramid fiber/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) of aramid/epoxy composites was remarkably improved and the breaking strength of aramid fibers was not affected appreciably after surface modification.  相似文献   

7.
A commercially available polyester resin was reinforced with cabuya fibers. The experimental variables were the fiber loading and the length of the fiber. Tensile strength, flexural strength, and the Izod impact resistance were measured for the samples and compared to the polyester resin performance without reinforcement. Mechanical properties of the cabuya fiber reinforced material were also compared with the same resin but reinforced with glass fibers. An increase in fiber load decreases the tensile strength for the cabuya reinforced composite, where a value of 52.6 MPa corresponded to the tensile stress of the resin without reinforcement and a value of 34.5 MPa for the best reinforcement achieved with cabuya. An increase in both fiber load and length increases the Young’s modulus of the cabuya reinforced material, and a maximum value of 2885 MPa was obtained. The Young’s modulus and impact resistance values for the cabuya composite (2885 MPa and 100.87 J/m, respectively) reached higher values than those obtained for non-reinforced polyester material (2639 MPa and 5.82 J/m, respectively), and lower than the glass fiber composite (5526 MPa and 207.46 J/m, respectively); while the tensile and flexural strength obtained for the cabuya composite (34.5 MPa and 32.6 MPa, respectively) were lower than the unreinforced (52.6 MPa and 62.9 MPa, respectively) and glass fiber reinforced polyester (87.3 MPa and 155 MPa, respectively).  相似文献   

8.
Natural rubber and styrene butadiene rubber (NR/SBR) reinforced with both short nylon fibers and nanoclay (Cloisite 15A) nanocomposites were prepared in an internal and a two roll-mill mixer by a three-step mixing process. The effects of fiber loading and different loading of nanoclay (1, 3 and 5 wt. %) were studied on the microstructure and mechanical properties of the nanocomposites. The adhesion between the fiber and the matrix was improved by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH). This silicate clay layers was used in place of hydrated silica in a HRH bonding system for SBR/NR-short nylon fiber composite. Nanoclay was also used as a reinforcing filler in the matrix-short fiber hybrid composite. The cure and scorch times of the composites decreased while cure rate increased when the short fiber and nanoclay were added. The mechanical properties of the composites showed improvement in both longitudinal and transverse directions with increasing short fiber and nanoclay content. The structure of the nanocomposites was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties of nanocomposites (tensile, hardness and tear strength) are examined and the outcome of these results is discussed in this paper.  相似文献   

9.
Woven Kenaf/Kevlar Hybrid Yarn is the combination of natural and synthetic fibers in the form of thread or yarn. The yarn is weaved to form a fabric type of fiber reinforced material. Then, the fabric is fabricated with epoxy as the resin to form a hybrid composite. For composite fabrication, woven fabric Kenaf/Kevlar hybrid yarn composite was prepared with vacuum bagging hand lay-up method. Woven fabric Kenaf/Kevlar hybrid yarn composite was fabricated with total fiber content of 40 % and 60 % of Epoxy as the matrix. The fiber ratios of Kenaf/Kevlar hybrid yarn were varied in weight fraction of 30/70, 50/50 and 70/30 respectively. The composites of woven fabric Kenaf/Epoxy and woven fabric Kevlar/Epoxy were also fabricated for comparison. The mechanical properties of five (5) samples composites were tested accordingly. Result has shown that of value of strength and modulus woven fabric Kenaf/Kevlar Hybrid Yarn composite was increased when the Kevlar fiber content increased. Therefore, among the hybrid composite samples result showed the woven fabric Kenaf/Kevlar Hybrid Yarn composites with the composition of 30/70 ratio has exhibited the highest energy absorption with 148.8 J which 28 % lower than Kevlar 100 % sample. The finding indicated there is a potential combination of natural fiber with synthetic fiber that can be fabricated as the composite material for the application of high performance product.  相似文献   

10.
Fiber reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fiber which serves as a reinforcement in reinforced plastics may be synthetic or natural. To this end, an investigation has been carried out to make use of coir, a natural fiber abundantly available in India. Natural fibers are not only strong and lightweight but also relatively very cheap. The present work describes the development and characterization of a new set of natural fiber based polymer composites consisting of coconut coir as reinforcement and epoxy resin as matrix material. The developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fiber length on mechanical behavior of these epoxy based polymer composites. Finally, the scanning electron microscope (SEM) of fractured surfaces has been done to study their surface morphology.  相似文献   

11.
In this paper, the bending properties of woven carbon/glass and carbon/aramid fabric-reinforced polymer laminates is studied using a combination of experimental analysis and fracture observation. Six types of each hybrid composite were manufactured by lamination of the carbon/aramid fabric and carbon/glass fabric using VARTM. Bending behaviors were fundamentally evaluated for the six types of monolithic composites laminated by the same fabric. The objective was to achieve a good bending strength by effective combination of composite structures using limited amounts of a raw material. It was shown that the bending property was different, depending on the type of fiber, lamination structure, and the number of layers.  相似文献   

12.
In this study, the effect of boron nitride nano particle (BNNP) and/or carbon nanotube (CNT) adding for epoxy modification upon tensile, flexural and shear properties of epoxy resin and carbon fiber (CF) laminated nanocomposites were investigated. Epoxy based polymer nanocomposites were prepared by conventional casting in stainless steel mold and the CF/epoxy laminated nanocomposites were produced via vacuum assisted resin transfer molding (VARTM). Experimental results showed that the tensile, shear and flexural properties of epoxy nanocomposites and CF/epoxy laminated nanocomposites considerably increased by adding nanoparticle. Scanning electron microscopy (SEM) was utilized in order to determine damage formation of experimented nanocomposite samples. The results of laboratory tests showed that the highest values of mechanical properties were obtained for BNNP-CNT hybrid nanocomposite specimens. Bending stiffness increasement values of BNNP-CNT/Epoxy and BNNP-CNT-Epoxy/CF achieved by 27.5 %, and 38.5 %, respectively. Shear strength increasement for BNNP-CNT/Epoxy and BNNP-CNT-Epoxy/CF were determined by 23 %, and 90 %, respectively.  相似文献   

13.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

14.
Conductive aramid fiber with nickel-copper composite coating is prepared by consecutive steps of metalation swelling, sensitization, activation, nickel electroless deposition, and copper electroless deposition, respectively. The metalation swelling of aramid fiber makes the follow-up sensitization and activation feasible. The as-prepared samples are characterized by SEM, TEM, XRD and XPS. After metalation swelling, the aramid fibers look like cotton fibers with numerous nano-scale pits of 50–300 nm in diameter. Pd metal as nuclei for Ni crystal growth with the size of 10±5 nm is originated from Pd2+, which can be reduced to Pd0 by Sn2+. The Ni-Cu composite coating of 1-µm thickness has polycrystalline structure. And the electrical resistance of conductive Ni-Cu aramid fiber is 0.035 Ω/cm. The synthesis mechanism of the conductive aramid fiber with Ni-Cu composite coating is given.  相似文献   

15.
We investigated the surface modification of jute fiber by oxygen plasma treatments. Jute fibers were treated in different plasma reactors (radio frequency “RF” and low frequency “LF” plasma reactors) using O2 for different plasma powers to increase the interface adhesion between jute fiber and polyester matrix. The influence of various plasma reactors on mechanical properties of jute fiber-reinforced polyester composites was reported. Tensile, flexure, short beam shear tests were used to determine the mechanical properties of the composites. The interlaminar shear strength increased from 11.5 MPa for the untreated jute fiber/polyester composite to 19.8 and 26.3 MPa for LF and RF oxygen plasma treated jute fiber/polyester composites, respectively. O2 plasma treatment also improved the tensile and flexural strengths of jute fiber/ polyester composites for both plasma systems. It is clear that O2 plasma treatment of jute fibers by using RF plasma system instead of using LF plasma system brings about greater improvement on the mechanical properties of jute/polyester composites.  相似文献   

16.
In this work, a simple and low cost method based on screen printing is presented to synthesize a conductive silver pattern on aramid fabric. The aramid fiber was treated with (3-mercaptopropyl)-trimethoxysilane to introduce a tail mercapto group promoting the ordered binding of silver nanoparticles. SEM and AFM images indicated a uniform distribution of silver nanoparticles on fiber surface. FTIR and XRD patterns confirmed the silver layer on the fibers. Furthermore, the electrical property of conductive fiber was characterized by conductive AFM and a digital multimeter, the surface resistance of conductive fabric was as low as 0.20 Ω/cm. And single fiber tensile test indicated that the mild treating process has no significant influence on the mechanical properties of the fiber.  相似文献   

17.
In this research work, aramid and semi-carbon fibers (SCFs) were hybridized in the form of interlayer or layer by layer into epoxy matrix by hand lay-up method. Afterward, the effect of hybridization on the thermal and mechanical properties of epoxy composites was characterized by thermal analysis; horizontal burning; tensile and bending tests. Based on the results of the mechanical tests, increasing SCFs to aramid fibers ratio decreased tensile strength, elastic and flexural modulus. But with increasing this ratio to 53 % failure strain reduced, whereas in the ratios of more than 53 %, the failure strain enhanced. The results of thermal analysis curves indicated that there are three stage mass loss at the temperature ranges of 100-220, 270-470 and 500-620 °C. It was also found that with increasing the SCFs to aramid fibers ratio decreased the third-stage of the mass loss. The results of horizontal burning showed that increasing the SCFs to aramid fibers ratio decreased the rate of burning.  相似文献   

18.
The interface of fiber-reinforced composites has remained a vexing problem that limits the use of the excellent properties of carbon fiber (CF) in composite applications. In the present study, waterborne polyurethane (WPU) hybrid sizing agents were prepared to improve the performances of CFs and the interface strength of CF/PA6 composites. The structural and mechanical properties of the single-CF and CF/PA6 composites were systematic investigated. The results showed that the mechanical properties of the CF/PA6 composites were significantly improved by adding of WPU hybrid sizing agent. The tensile and flexural strengths of the WPU/SiO2/Al2O3 hybrid sizing agent treated CF/PA6 composites were increased by 24.0 % and 25.7 % than those of no-sizing treated CF/PA6 composites, respectively.  相似文献   

19.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

20.
High-performance composites by super fiber are difficult to apply at industrial field due to the high cost. To overcome this problem, there is a need to widely spread the use of the excellent composites. The composites with superior mechanical performance were investigated by a suitable stacking combination under limited amounts of a raw material. Carbon/aramid hybrid composites were soundly manufactured using the VARTM process. The excellent combinations of both the tensile and bending properties were determined. The lamination position and the continuous cumulative count of reinforcements play an important role in the strength and stiffness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号