首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To compare replication of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in pulmonary artery endothelial cells (ECs) obtained from juvenile cattle, sheep, white-tailed deer (WTD; Odocoileus virginianus), and black-tailed deer (BTD; O hemionus columbianus). SAMPLE POPULATION: Cultures of pulmonary artery ECs obtained from 3 cattle, 3 sheep, 3 WTD, and 1 BTD. PROCEDURE: Purified cultures of pulmonary artery ECs were established. Replication, incidence of infection, and cytopathic effects of prototype strains of BTV serotype 17 (BTV-17) and 2 serotypes of EHDV (EHDV-1), and (EHDV-2) were compared in replicate cultures of ECs from each of the 4 ruminant species by use of virus titration and flow cytometric analysis. RESULTS: All 3 viruses replicated in ECs from the 4 ruminant species; however, BTV-17 replicated more rapidly than did either serotype of EHDV. Each virus replicated to a high titer in all ECs, although titers of EHDV-1 were significantly lower in sheep ECs than in ECs of other species. Furthermore, all viruses caused extensive cytopathic effects and a high incidence of cellular infection; however, incidence of cellular infection and cytopathic effects were significantly lower in EHDV-1-infected sheep ECs and EHDV-2-infected BTD ECs. CONCLUSIONS AND CLINICAL RELEVANCE: There were only minor differences in replication, incidence of infection, and cytopathic effects for BTV-17, EHDV-1, or EHDV-2 in ECs of cattle, sheep, BTD, and WTD. It is not likely that differences in expression of disease in BTV- and EHDV-infected ruminants are attributable only to species-specific differences in the susceptibility of ECs to infection with the 2 orbiviruses.  相似文献   

2.
Epizootic hemorrhagic disease virus (EHDV), an arthropod-borne orbivirus (family Reoviridae), is an emerging pathogen of wild and domestic ruminants that is closely related to bluetongue virus (BTV). The present study examines the outcome of an experimental EHDV-7 infection of Holstein cattle and East Frisian sheep. Apart from na?ve animals that had not been exposed to BTV, it included animals that had been experimentally infected with either BTV-6 or BTV-8 two months earlier. In addition, EHDV-infected cattle were subsequently challenged with BTV-8. Samples were tested with commercially available ELISA and real-time RT-PCR kits and a custom NS3-specific real-time RT-PCR assay. Virus isolation was attempted in Vero, C6/36 and KC cells (from Culicoides variipennis), embryonated chicken eggs and type I interferon receptor-deficient IFNAR(-/-) mice. EHDV-7 productively infected Holstein cattle, but caused no clinical signs. The inoculation of East Frisian sheep, on the other hand, apparently did not lead to a productive infection. The commercial diagnostic kits performed adequately. KC cells proved to be the most sensitive means of virus isolation, but viremia was shorter than 2 weeks in most animals. No interference between EHDV and BTV infection was observed; therefore the pre-existing immunity to some BTV serotypes in Europe is not expected to protect against a possible introduction of EHDV, in spite of the close relation between the viruses.  相似文献   

3.
4.
5.
A serogroup-specific polymerase chain reaction (PCR) assay and isolate identification strategies (restriction endonuclease analysis (REA) and nucleotide sequencing) were developed for the detection of North American isolates of epizootic haemorrhagic disease virus (EHDV). PCR primers (EHDV-pr4, EHDV-pr5) were designed to hybridize to the L3 gene of a North American isolate of EHDV serotype 1. Total nucleic acid was extracted from preparations of infected tissue culture and PCR was performed using a cDNA-PCR kit, according to the manufacturer's specifications. The PCR assay generated a 459 base pair product from North American isolates of EHDV serotypes 1 and 2, while bluetongue virus (BTV) serotypes 10, 11, 13, and 17, and cell controls, failed to demonstrate PCR products. Slight modifications allowed for the PCR detection of EHDV-1 and -2 in white-tailed deer blood (Odocoileus virginiatus); PCR fragments were not amplified from uninfected deer blood. A number of restriction endonucleases and sequencing primers were evaluated for their utility in isolate identification experiments. Specifically, REA employing HincII and cycle sequencing with an internal primer (EHDV-1-pr3) proved most successful for identifying isolate-specific genome markers. The techniques presented are expected to prove valuable for rapid and specific detection of possible future EHDV incursions in wild and domestic animal species.  相似文献   

6.
An indirect enzyme-linked immunosorbent assay (I-ELISA) is described for simultaneous screening of bovine sera for detection of antibodies to bluetongue (BT) and epizootic hemorrhagic disease of deer (EHD) viruses (V). Optimal dilutions of BTV and EHDV antigens were combined and allowed to absorb on to the wells of microtiter plates. Appropriately diluted (1:100) bovine sera were allowed to incubate and the bound antibodies were detected by a murine monoclonal antibody (MAb) to bovine immunoglobulin (H-Chain) conjugated with horseradish peroxidase. The performance of the combined (C) I-ELISA in detecting antibodies to BTV and EHDV in sequential serum samples from calves experimentally inoculated with BTV, serotype 10, EHDV, serotype 1 (New Jersey) or EHDV serotype 2 (Alberta) was evaluated. Comparable antibody profiles were demonstrable by the CI-ELISA and separate I-ELISAs using either BTV or EHDV antigens. The results suggest that the CI-ELISA offers many advantages over the standard agar gel immunodiffusion (AGID) test and has potential application as a rapid, sensitive, inter-group-specific and inexpensive test for simultaneous screening of bovine sera for antibodies to BTV and/or EHDV.  相似文献   

7.
Red deer (Cervus elaphus) is a widespread and abundant species susceptible to bluetongue virus (BTV) infection. Inclusion of red deer vaccination among BTV control measures should be considered. Four out of twelve BTV antibody negative deer were vaccinated against serotype 1 (BTV-1), and four against serotype 8 (BTV-8). The remaining four deer acted as unvaccinated controls. Forty-two days after vaccination (dpv), all deer were inoculated with a low cell passage of the corresponding BTV strains. Serological and virological responses were analyzed from vaccination until 28 days after inoculation (dpi). The vaccinated deer reached statistically significant (P<0.05) higher specific antibody levels than the non vaccinated deer from 34 (BTV-8) and 42 (BTV-1) dpv, maintaining stable neutralizing antibodies until 28 dpi. The non vaccinated deer remained seronegative until challenge, showing neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of the non vaccinated deer from 2 to 28 dpi, whereas no BTV RNA was found in the vaccinated deer. BTV was isolated from the blood of non vaccinated deer from 7 to 28 dpi (BTV-1) and from 9 to 11 dpi (BTV-8). BTV RNA could be identified by RT-PCR at 28 dpi in spleen and lymph nodes, but BTV could not be isolated from these samples. BT-compatible clinical signs were inapparent and no gross lesions were found at necropsy. The results obtained in the present study confirm that monovalent BTV-1 and BTV-8 vaccines are safe and effective to prevent BTV infection in red deer. This finding indicates that vaccination programs on farmed or translocated red deer could be a useful tool to control BTV.  相似文献   

8.
The diagnostic potential of RT-PCR for detection of bluetongue virus (BTV) ribonucleic acid (RNA) sequence in cell culture and tissue samples from infected ruminants from United States, Sudan, South Africa and Senegal, was evaluated. The non structural protein 1 (NS1) gene of North American BTV serotype 11 was targeted for PCR amplification. The United States BTV serotypes 2, 10, 11, 13 and 17 and the Sudanese BTV serotypes 1, 2, 4 and 16 and BTV serotype 4 from South Africa and BTV serotype 2 from Senegal were studied. RNAs from all BTV field isolates used in this study, propagated in cell cultures, were detected by the described RT-PCR-based assay. The first specific 790bp BTV PCR products were amplified using a pair of outer primers (BTV1 and BTV2). Specificity of the PCR products was confirmed by a nested amplification of a 520bp PCR product using a pair of internal (nested) primers (BTV3 and BTV4). The BTV PCR products were visualized on ethidium bromide-stained agarose gels. Amplification products were not detected when the RT-PCR-based assay was applied to RNAs from closely related orbiviruses including, epizootic hemorrhagic disease virus (EHDV) prototypes serotypes 1, 2, 4; RNA from Sudanese isolate of palyam orbiviruses serogroup and total nucleic acid extracts from uninfected Vero cells. Application of the nested BTV RT-PCR to clinical samples resulted in amplification of BTV RNA from blood and serum samples from goats experimentally infected with BTV4 and from naturally infected sheep, goats, cattle and deer. The results of this study indicated that this RT-PCR assay could be applied for rapid detection of BTV, in cell culture and clinical samples from susceptible ruminants during an outbreak of the disease, in the United States and African.  相似文献   

9.
Blood samples were obtained from sentinel beef cattle at monthly intervals, and the sera were tested for antibodies, using a bluetongue virus (BTV) immunodiffusion test (IDT) and virus-neutralization test (VNT), for 5 BTV serotypes (2, 10, 11, 13, and 17) and 2 epizootic hemorrhagic disease virus (EHDV) serotypes (1 and 2). The cattle tested were transported from Tennessee to Texas in 1984 and 1985. All cattle were seronegative by the BTV IDT at the initial bleeding in Texas in 1984 and 1985. In 1984, 16 of 40 (40%) cattle seroconverted as assessed by results of the BTV IDT. In the 16 seropositive cattle in 1984, neutralizing antibodies were detected to BTV serotypes 10 (n = 7), 11 (n = 3), and 17 (n = 11), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1984, no cattle seroconverted to BTV-2 or BTV-13. In 1985, 10 of 36 (27.8%) cattle seroconverted as assessed by results of the IDT. Of the 10 seropositive cattle in 1985, neutralizing antibodies were detected to BTV serotypes 10 (n = 10), 11 (n = 10), 13 (n = 7), and 17 (n = 5), and EHDV serotypes 1 (n = 1) and 2 (n = 7). In 1985, no cattle seroconverted to BTV-2. Clinical diseases attributable to BTV or EHDV was not detected in these cattle in 1984 or 1985.  相似文献   

10.
In 1987 a serological survey of cattle for antibodies (Ab) to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) was undertaken in British Columbia and southwestern Alberta after infection with the viruses was diagnosed in wild and domestic ruminants in the Okanagan Valley. Of 4610 cattle tested, five had Ab only to BTV, 125 had antibodies only to EHDV and 16 had Ab to both viruses. The Ab were identified as specific for BTV type 11 (BT-11) or EHDV type 2 (EHDV-2). All but one of the seropositive cattle originated in the Okanagan Valley of British Columbia. The remaining one seropositive animal which had Ab to EHDV-2 was pastured with a bull purchased from the Okanagan Valley.  相似文献   

11.
The frequencies of precipitating antibodies to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in domestic ruminants and white-tailed deer (WTD) in Georgia were 36% and 32%, respectively (n = 2,200). The frequencies of seropositivity to BTV and EHDV were high among cattle (47% and 42%, respectively [n = 1,068]) and less so in WTD (36% and 34% [n = 414]). The frequencies among sheep were 34% for BTV and 29% for EHDV (n = 286), whereas among goats, seropositivity was 8% for BTV and 7% for EHDV (n = 433). Serum samples from northeastern Georgia (1 of the 4 regions in the survey) had the highest frequency of precipitating antibodies for BTV (45%) and EHDV (38%). The lowest frequency was in southeastern Georgia, with 29% seropositivity for BTV and 24% seropositivity for EHDV. Of the 175 farms or herds in the serosurvey, 70% included animals that had BTV-precipitating antibodies, and 67% included animals which had EHDV-precipitating antibodies. Seventeen viral isolates were obtained from individual animals on 9 different farms. Fifteen of the isolates were BTV--8 from cattle, 4 from sheep, and 3 from WTD; 8 of them were serotype 11, and 7 were serotype 17. Viral isolates from each of 2 WTD were identified as EHDV serotype 1 and serotype 2. Of the total 17 isolates, 11 were from clinically healthy ruminants, and 6 were from animals with clinical signs of BT or EHD. Five of the viral isolates originated from northeastern Georgia, 7 from the northwestern region, and 5 from the southwestern region; none was obtained from specimens from the southeastern region.  相似文献   

12.
In the present study, a multiplex RT-PCR-based assay for simultaneous detection and differentiation of North American serotypes of bluetongue (BT) virus (BTV) and epizootic hemorrhagic disease (EHD) virus (EHDV) in cell culture and clinical samples was developed. Two pairs of primers (B1 and B4) and (E1 and E4) were designed to hybridize to non-structural protein 1 (NS1) genomes of (BTV-11) and (EHDV-1), respectively. The multiplex PCR-based assay utilized a single tube-PCR amplification in which EHDV and BTV primers were used simultaneously in a multiplex format. The BTV primers generated a 790 base pair (bp) specific PCR product from RNA samples of North American BTV serotypes 2, 10, 11, 13 and 17; whereas EHDV serotypes 1 and 2 or total nucleic acid extract from non-infected baby hamster kidney (BHK) cells failed to demonstrate the 790bp specific BTV PCR product. Likewise, the EHDV primers produced a 387bp specific PCR product from RNA samples of EHDV serotypes 1 and 2, but not from BTV serotypes 2, 10, 11, 13, 17 or from total nucleic acid extract of BHK cell controls.Two pairs of nested primers (B2 and B3) and (E2 and E3), internal to the annealing sites of primers (B1and B4) and primers (E1 and E4), produced a 520bp specific BTV and a 224bp specific EHDV PCR product from BTV and EHDV first amplification products, respectively. These nested amplifications increased the sensitivity of the PCR assay and confirmed the specificity of the first amplified EHDV or BTV PCR products. The described multiplex RT-PCR-based assay could be used to facilitate rapid detection and differentiation of North American BTV and EHDV serotypes and to provide a valuable tool to study the epidemiology of these orbivirus infections in susceptible animal populations.  相似文献   

13.
Epizootic hemorrhagic disease virus (EHDV) is an Orbivirus. While not previously considered as an important disease in cattle, several EHDV serotypes (EHDV-6 and 7) have recently been implicated in disease outbreaks. The involvement of sheep in the epidemiology of EHDV is still not understood. In this study we compared the prevalence of antibodies to EHDV and bluetongue virus (BTV) in sheep to their prevalence in cattle after an outbreak of EHDV that occurred in Israel during 2006. Sixty-six sheep and lambs scattered in seven herds were compared to 114 cows and calves scattered in 13 dairy cattle herds, matched to the sheep herds by location. While antibody prevalence to EHDV was high in cattle (35.2% within the outbreak zone) no evidence of exposure to EHDV was found in sheep (p<0.0001). Antibodies to BTV were apparent in both cattle and sheep though in the former it was significantly higher (63.2%, 16.7% respectively, p<0.0001), suggesting higher exposure of cattle to biting Culicoides midges. Taken together, these results imply that sheep have a negligible role in the epidemiology of EHDV.  相似文献   

14.
Immunisation of mice with recombinant VP7 antigen of epizootic hemorrhagic disease virus of deer (EHDV) induced serum antibody responses to EHDV. However, from the 19 monoclonal antibodies (Mab) produced from these mice, 15 were specific for EHDV and four for bluetongue virus (BTV). No Mabs were identified with the specificity for an epitope of VP7 shared by both EHDV and BTV in spite of the fact that they share a large portion of homology in VP7 amino acids composition. These Mabs were divided into five groups based on their specificity and interaction with each other. Group II Mabs, consisting of 13 Mabs, recognises a potential serogroup specific, linear epitope of EHDV VP7 antigen. One of the Mabs to BTV (Group V) was identified as BTV VP7 specific with the possibility of being the serogroup specific and recognizes a potential conformational epitope. Two Mabs from these VP7 specific groups were further analysed and found to be useful in a competitive enzyme-linked immunosorbent assay (C - ELISA) for detection of specific antibodies against EHDV and BTV in bovine sera.  相似文献   

15.
Thirty-two bovine field isolates of bluetongue virus (BTV), 6 field isolates of epizootic hemorrhagic disease virus (EHDV) from deer, 4 BTV prototype serotypes (10, 11, 13, and 17), and 2 EHDV prototype serotypes (1 and 2) were coelectrophoresed, using polyacrylamide gels. Field isolates were obtained from various regions of the United States. Analysis of polyacrylamide gels and scattered plots generated for comparison of migration patterns for different isolates within each serotype of BTV revealed wide variation among the individual segments. The BTV serotypes 10 and 11 had more variation, compared with BTV serotypes 13 and 17, especially for migration of genome segment 5. A definitive correlation was not seen between the double-stranded RNA migration profiles on polyacrylamide gel electrophoresis, geographic origin, herd of origin, or year of collection. One BTV field isolate contained more than 1 electropherotype, with 2 bands at the segment-7 position, and it was further characterized as BTV serotype 11. Segments 2 and 5 of EHDV isolates were more variable in their migration than were the other gene segments. Generally, migration profiles for EHDV double-stranded RNA were more variable, compared with those of BTV isolates. Although a correlation was found between migration profiles and serotype of 2 isolates of EHDV, a study of additional EHDV isolates is required before the diversity of electrophoretic patterns of EHDV can be determined.  相似文献   

16.
Three camels aged 4–5 years were experimentally infected with Bluetongue virus serotype 1 (BTV-1) and were observed for 75 days. No clinical signs of disease were observed throughout the experiment, however all three animals seroconverted and developed BTV-1 specific neutralising antibodies after challenge. All three camels developed a viraemia from 7 days post infection albeit at a lower level than that usually observed in experimental infections of sheep and cattle. Virus was isolated from the blood of all three animals suggesting that camels may act as a reservoir for BTV and play an important role in its transmission.  相似文献   

17.
Ibaraki virus, which causes a bluetongue-like disease of cattle in Japan, was compared antigenically with the four serotypes of bluetongue virus (BTV) found in the U.S. and with the two serotypes of epizootic hemorrhagic disease virus (EHDV). No antigenic relationship was found between Ibaraki virus and BTV serotypes 10, 11, 13, and 17 in tests for group or serotype-specific antigens. However, Ibaraki virus and EHDV were related antigenically. The agar gel precipitin and indirect fluorescent antibody tests for group antigens showed two-way cross relationships between Ibaraki virus and EHDV serotypes 1 and 2. The more restrictive serotype-specific neutralization test revealed that antigenic relatedness was stronger between Ibaraki virus and the serotype 2 (Alberta strain) of EHDV than between Ibaraki virus and the serotype 1 (New Jersey strain) of EHDV.  相似文献   

18.
The compulsory vaccination campaign against Bluetongue virus serotype eight (BTV-8) in Germany was exercised in the state of Bavaria using three commercial monovalent inactivated vaccines given provisional marketing authorisation for emergency use. In eleven Bavarian farms representing a cross sectional area of the state the immune reactions of sheep and cattle were followed over a two year period (2008-2009) using cELISA, a serum neutralisation test (SNT) and interferon gamma (IFN-γ) ELISPOT. For molecular diagnostics of BTV genome presence two recommended real time quantitative RT-PCR protocols were applied. The recommended vaccination scheme led to low or even undetectable antibody titers (ELISA) in serum samples of both cattle and sheep. A fourfold increase of the vaccine dose in cattle, however, induced higher ELISA titers and virus neutralising antibodies. Accordingly, repeated vaccination in sheep caused an increase in ELISA-antibody titers. BTV-8 neutralising antibodies occurred in most animals only after multiple vaccinations in the second year of the campaign. The secretion of interferon gamma (IFN-γ) in ELISPOT after in vitro re-stimulation of PBMC of BTV-8 vaccinated animals with BTV was evaluated in the field for the first time. Sera of BTV-8 infected or vaccinated animals neutralising BTV-8 could also neutralise an Italian BTV serotype 1 cell culture adapted strain and PBMC of such animals secreted IFN-γ when stimulated with BTV-1.  相似文献   

19.
An indirect enzyme-linked immunosorbent assay (I.ELISA) is described for detection of bovine serum antibody to epizootic hemorrhagic diseases of deer virus (EHDV). Serum samples, at a dilution of 1:200, were incubated with group-specific EHDV antigens, pre-adsorbed to microtiter plates. Bound antibodies were detected by a murine monoclonal antibody to bovine immunoglobulin (Ig)G1 (heavy-chain specific) conjugated with horseradish peroxidase. The performance of the I.ELISA in detecting antibodies to EHDV in sequential serum samples from calves experimentally infected with serotypes 1,2,3 and 4 was evaluated. The I.ELISA detected EHDV antibodies from 14 days postinfection when seroconversion by the standard agar gel immunodiffusion (AGID) test was also evident. The group-specific antibodies to EHDV increased exponentially during the first two to four weeks postinfection and remained relatively stable for about 12 months in some calves. Unlike observations with the AGID test, no reaction was seen in the I.ELISA between blue-tongue virus (BTV) antigen and sera from calves given a single dose of EHDV. The performance of the I.ELISA and AGID were compared using 3,135 AGID negative bovine field sera from herds in Ontario, Alberta and British Columbia and 130 AGID positive samples collected from cattle in 1987 and 1988 during and after outbreaks of EHD in the Okanagan Valley, British Columbia. The specificity and sensitivity of the assay relative to the AGID test were 99.3% and 91.5% respectively, with an overall agreement of 99.0% between the tests.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
为了解近几年云南边境地区牛、羊流行性出血热病毒(EHDV)的感染和流行情况,本研究从2014年起连续3年在与老挝、越南接壤的江城县设置EHDV监测点,每年选择投放EHDV抗体阴性的10头牛和5只山羊作为哨兵动物进行跟踪监测。每年5~10月份对哨兵动物采血,每周1次,11、12月每月采集一次,进行EHDV抗体、抗原监测和病毒分离。针对致细胞病变的样品,采用EHDV群特异性S7基因片段引物进行RT-PCR方法检测,同时利用EHDV-1、-5、-6、-7、-10标准阳性血清对分离到的病毒进行中和试验鉴定。结果显示,2014-2016年江城县牛EHDV抗体阳性率分别为41.9%、58.6%和75.4%;3年期间共监测到15头EHDV抗体阳性黄牛,并从中分离到20个可致细胞病变样品,经RT-PCR确认为EHDV,遗传进化分析发现有11个毒株与1997和2003年日本分离的EHDV毒株亲缘关系较近,9个毒株与1977和1981年澳大利亚分离的EHDV毒株亲缘关系较近,5个毒株与2015年广西分离株的亲缘关系较近;3年期间在山羊体内未检测出抗体,未发现抗原阳性动物;经中和试验血清型鉴定,确定20株毒株包括EHDV-5、-6、-7、-10型4种血清型,感染时间均在5~9月之间。本研究发现,江城县长期存在多种血清型EHDV同时流行,2014-2016年EHDV抗体阳性率逐年增加,亟需加强对EHDV感染情况及活动规律的持续研究,提高流行性出血热的防控效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号