首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inheritance of siliqua locule number and seed coat colour in Brassica juncea was investigated, using three lines each of tetralocular brown seeded and bilocular yellow seeded. Three crosses of tetralocular brown seeded × bilocular yellow seeded lines were attempted and their F1, F2 and backcross generations were examined for segregation of these two traits. Brown seed colour and bilocular siliqua characters were found to be dominant over yellow seed and tetralocular siliqua, respectively. Chi‐square tests indicated that each trait is controlled by different sets of duplicate pairs of genes. Bilocular siliquae or brown seeds can result from the presence of either of two dominant alleles, whereas tetralocular siliquae or yellow seeds are produced when alleles at both loci are recessive. A joint segregation analysis of F2 data indicated that the genes governing siliqua locule number and seed colour were inherited independently.  相似文献   

2.
Production of yellow-seeded Brassica napus through interspecific crosses   总被引:12,自引:0,他引:12  
M. H. Rahman   《Plant Breeding》2001,120(6):463-472
Yellow‐seeded Brassica napus was developed from interspecific crosses between yellow‐seeded Brassica rapa var.‘yellow sarson’ (AA), black‐seeded Brassica alboglabra (CC), yellow‐seeded Brassica carinata (Bbcc) and black‐seeded B. napus (AACC). Three different interspecific crossing approaches were undertaken. Approaches 1 and 2 were designed directly to develop yellow‐seeded B. napus while approach 3 was designed to produce a yellow‐seeded CC genome species. Approaches 1 and 2 differed in the steps taken after trigenomic interspecific hybrids (ABC) were generated from B. carinata×B. rapa crosses. The aim of approach 1 was to transfer the yellow seed colour genes from the A to the C genome as an intermediate step in developing yellow‐seeded B. napus. For this purpose, the ABC hybrids were crossed with black‐seeded B. napus and the three‐way interspecific hybrids were self‐pollinated for a number of generations. The F7 generation resulted in the yellowish‐brown‐seeded B. napus line, No. 06. Crossing this line with the B. napus line No. 01, resynthesized from a black‐seeded B. alboglabra x B. rapa var.‘yellow sarson’ cross (containing the yellow seed colour genes in its AA genome), yielded yellow‐seeded B. napus. This result indicated that the yellow seed colour genes were transferred from the A to the C genome in the yellowish‐brown seed colour line No. 06. In approach 2, trigenomic diploids (AABBCC) were generated from the above‐mentioned trigenomic haploids (ABC). The seed colour of the trigenomic diploid was brown, in contrast to the yellow seed colour of the parental species. Trigenomic diploids were crossed with the resynthesized B. napus line No. 01 to eliminate the B genome chromosomes, and to develop yellow‐seeded B. napus with the AA genome of ‘yellow sarson’ and the CC genome of B. carinata with yellow seed colour genes. This interspecific cross failed to generate any yellow‐seeded B. napus. Approach 3 was to develop yellow‐seeded CC genome species from B. alboglabra×B. carinata crosses. It was possible to obtain a yellowish‐brown seeded B. alboglabra, but crossing this B. alboglabra with B. rapa var.‘yellow sarson’ failed to produce yellow seed in the resynthesized B. napus. The results of approaches 2 and 3 demonstrated that yellow‐seeded B. napus cannot be developed by combining the yellow seed colour genes of the CC genome of yellow‐seeded B. carinata and the AA genome of ‘yellow sarson’.  相似文献   

3.
W. K. Heneen  K. Brismar   《Plant Breeding》2001,120(4):325-329
Most oilseed rape, Brassica napus, cultivars are black‐seeded. The progenitor species, Brassica rapa, has either yellow or black seeds, while known cultivars of the other progenitor species Brassica oleracea/alboglabra have black seeds. To determine which chromosomes of B. alboglabra are carriers of seed colour genes, B. rapaalboglabra monosomic addition lines were produced from a B. napus resynthesized from yellow‐seeded B. rapa and brown/black‐seeded B. alboglabra. Eight out of nine possible lines have been developed and transmission frequencies of the alien chromosomes were estimated. Three B. alboglabra chromosomes in three of these lines influenced seed colour. B. rapa plants carrying alien chromosome 1 exhibited a maternal control of seed colour and produced only brown seeds, which gave rise to plants with either yellow or brown seeds. However, B. rapa plants carrying alien chromosome 4 or another as yet unidentified alien chromosome exhibited an embryonal control of seed colour and produced a mixture of yellow and brown seeds. The yellow seeds gave rise to yellow‐seeded plants, while the brown seeds gave rise to plants that yielded a mixture of yellow and brown seeds, depending on the absence or presence, respectively, of the B. alboglabra chromosome. Consequently, both maternal and embryonal control of seed colour are expected to contribute to the black‐seeded phenotype of oilseed rape.  相似文献   

4.
The inheritance of siliqua orientation and seed coat colour in Brassica tournefortii was investigated using four genotypes varying in these two characters. The F1, F2 and backcross generations of two crosses were used for studying the segregation pattern of the traits. The plants were classified for seed colour as having brown or yellow seeds and for siliqua orientation as having upright, semi‐spread or spread siliqua. Seed colour was found to be under monogenic control with brown being dominant over yellow. Siliqua orientation was under digenic polymeric gene action: upright siliqua was produced by the presence of two dominant genes and spread siliqua by two recessive genes. The absence of even a single dominant gene resulted in a third type of siliqua orientation, semi‐spread siliqua.  相似文献   

5.
X. P. Liu    J. X. Tu    B. Y. Chen  T. D. Fu 《Plant Breeding》2005,124(1):9-12
A yellow‐seeded doubled haploid (DH) line no. 2127‐17, derived from a resynthesized Brassica napus L., was crossed with two black‐seeded Brassica cultivars ‘Quantum’ and ‘Sprint’ of spring type. The inheritance of seed colour was investigated in the F2, and BC1 populations of the two crosses and also in the DH population derived from the F1 of the cross ‘Quantum’× no. 2127‐17. Seed colour analysis was performed with the colorimeter CR‐300 (Minolta, Japan) together with a visual classification system. The immediate F1 seeds of the reciprocals in the two crosses had the same colour as the self‐pollinated seeds of the respective black‐ and yellow‐seeded female parents, indicating the maternal control of seed colour. The F1 plants produced yellow‐brown seeds that were darker in colour than the seeds of no. 2127‐17, indicating the partial dominance of yellow seed over black. In the segregating BC1 progenies of the two crosses, the frequencies of the black‐ and yellow‐seeded plants fit well with a 1 : 1 ratio. In the cross with ‘Quantum’, the frequencies of yellow‐seeded and black‐seeded plants fit with a 13 : 3 ratio in the F2 progeny, and with a 3 : 1 ratio in the DH progeny. However, a 49 : 15 segregation ratio was observed for the yellow‐seeded and black‐seeded plants in the F2 progeny of the cross with ‘Sprint’. It was postulated from these results that seed colour was controlled by three pairs of genes. A dominant yellow‐seeded gene (Y) was identified in no. 2127‐17 that had epistatic effects on the two independent dominant black‐seeded genes (B and C), thereby inhibiting the biosynthesis of seed coat pigments.  相似文献   

6.
B. Y. Chen  W. K. Heneen 《Euphytica》1992,59(2-3):157-163
Summary Seed colour inheritance was studied in five yellow-seeded and one black-seeded B. campestris accessions. Diallel crosses between the yellow-seeded types indicated that the four var. yellow sarson accessions of Indian origin had the same genotype for seed colour but were different from the Swedish yellow-seeded breeding line. Black seed colour was dominant over yellow. The segregation patterns for seed colour in F2 (Including reciprocals) and BC1 (backcross of F1 to the yellow-seeded parent) indicated that the black seed colour was conditioned by a single dominant gene. Seed colour was mainly controlled by the maternal genotype but influenced by the interplay between the maternal and endosperm and/or embryonic genotypes. For developing yellow-seeded B. napus genotypes, resynthesized B. napus lines containing genes for yellow seed (Chen et al., 1988) were crossed with B. napus of yellow/brown seeds, or with yellow-seeded B. carinata. Yellow-seeded F2 plants were found in the crosses that involved the B. napus breeding line. However, this yellow-seeded character did not breed true up to F4. Crosses between a yellow-seeded F3 plant and a monogenomically controlled black-seeded B. napus line of resynthesized origin revealed that the black-seeded trait in the B. alboglabra genome was possibly governed by two independently dominant genes with duplicated effect. Crossability between the resynthesized B. napus lines as female and B. carinata as male was fairly high. The sterility of the F1 plants prevented further breeding progress for developing yellow-seeded B. napus by this strategy.  相似文献   

7.
Development of yellow-seeded Brassica napus of double low quality   总被引:3,自引:0,他引:3  
M. H. Rahman    M. Joersbo  M. H. Poulsen   《Plant Breeding》2001,120(6):473-478
Two yellow‐seeded white‐petalled Brassica napus F7 inbred lines, developed from interspecific crosses, containing 26–28% emcic acid and more than 40 μmol glucosinolates (GLS)/g seed were crossed with two black/dark brown seeded B. napus varieties of double low quality and 287 doubled haploid (DH) lines were produced. The segregation in the DH lines indicated that three to four gene loci are involved in the determination of seed colour, and yellow seeds are formed when all alleles in all loci are in the homozygous recessive state. A dominant gene governed white petal colour and is linked with an erucic acid allele that, in the homozygous condition, produces 26–28% erucic acid. Four gene loci are involved in the control of total GLS content where low GLS was due to the presence of recessive alleles in the homozygous condition in all loci. From the DH breeding population a yellow‐seeded, yellow‐petalled, zero erucic acid line was obtained. This line was further crossed with conventional B. napus varieties of double low quality and, following pedigree selection, a yellow seeded B. napus of double low quality was obtained. The yellow seeds had higher oil plus protein content and lower fibre content than black seeds. A reduction of the concentration of chromogenic substances was found in the transparent seed coat of the yellow‐seeded B. napus.  相似文献   

8.
B. Zhang    C. M. Lu    F. Kakihara  M. Kato 《Plant Breeding》2002,121(4):297-300
The effect of genome composition and cytoplasm on petal colour was studied in Brassica. Three accessions of yellow‐petalled B. rapa (2n= 20, AA) were crossed with a white‐petalled B. oleracea var. alboglabra (2n= 18, CC) and with three cream‐yellow‐petalled B. oleracea var. gongylodes (2n= 18, CC) to produce resynthesized B. napus (2n= 38, AACC or CCAA) and sesquidiploids (2n= 29, AAC or CAA). Petal colour was measured with a Hunter automatic colour difference meter. The results revealed that petal colour in Brassica is controlled by nuclear genes and by cytoplasmic factors. Additive and epistatic gene effects were involved in the action of nuclear genes. When crosses were made between yellow‐petalled B. rapa and white‐petalled B. oleracea var. alboglabra, significant additive, epistatic and cytoplasmic effects were found. White petal colour was partially epistatic over yellow petal colour. When crosses were made between yellow‐petalled B. rapa and cream‐yellow‐petalled B. oleracea var. gongylodes, only epistatic effects were detected. Yellow petal colour was epistatic over cream‐yellow.  相似文献   

9.
Five parents of common vetch (Vicia sativa L.) having orange/beige cotyledon colour, brown/white testa colour, purple/green seedling colour and purple/white flower colour were crossed as a full diallele set. The inheritance patterns of cotyledon, testa or seed coat colour, flower and seedling colour, were studied by analyzing their F1, F2, BC1 and BC2 generations. The segregation pattern in F2, BC1 and BC2, showed that cotyledon colour was governed by a single gene with incomplete dominance and it is proposed that cotyledon colour is controlled by two allelic genes, which have been designated Ct1 and Ct2. Testa colour was governed by a single gene with the brown allele dominant and the recessive allele white. This gene has been given the symbol H. Two complementary genes governed both flower and seedling colours. These flower and seedling colour genes are pleiotropic and the two genes have been given the symbols S and F.  相似文献   

10.
J. P. Singh  I. S. Singh 《Euphytica》1992,66(3):231-233
Summary Four grey mottled seed coat colour lentil lines/cultivars were crossed to one brown seed coat colour cultivar. The F1 hybrids were brown seeded in all the crosses. Segregation pattern for seed coat colour in F2 and F3 generations revealed that it is under control of a single dominant gene, which is present in the parent UPL 175 while a recessive gene is responsible for grey mottled seed coat colour in Pant L 406, Pant L 639, LG 120 and Rau 101.  相似文献   

11.
M.K. Emami  B. Sharma 《Euphytica》2000,115(1):43-47
The inheritance of testa (seed coat) colour and interaction of cotyledon and testa colours were studied in seven crosses of lentil (Lens culinaris Medik.) involving parents with black, brown, tan or green testa and with orange, yellow or dark green cotyledons. Analysis of F2 and F3 seed harvested from F1 and F2 plants, respectively, revealed that although black testa is dominant over nonblack testa, its penetrance is not complete since both F1 plants and heterozygous F2 plants produced varying proportions of seeds with either black or nonblack testa. The F2 populations of the crosses between parents with brown and tan, as well as brown and green, testa segregated in the ratio of 3 brown : 1 tan and 3 brown : 1 green, respectively, indicating monogenic dominance of brown testa colour over tan or green. The expression of testa colour was influenced by cotyledon colour when parents with brown or green testa are crossed with those having orange or green cotyledons. Thus F2 seeds from these crosses with a green testa always had green cotyledons and never orange cotyledons. F2 seeds from these crosses with a brown testa always had orange cotyledons and never green cotyledons. These results suggest diffusion of a soluble pigment from the cotyledons to the testa. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A diversity arrays technology (DArT) map was constructed to identify quantitative trait loci (QTL) affecting seed colour, hairy leaf, seedling anthocyanin, leaf chlorosis and days to flowering in Brassica rapa using a F2 population from a cross between two parents with contrasting traits. Two genes with dominant epistatic interaction were responsible for seed colour. One major dominant gene controls the hairy leaf trait. Seedling anthocyanin was controlled by a major single dominant gene. The parents did not exhibit leaf chlorosis; however, 32% F2 plants showed leaf chlorosis in the population. A distorted segregation was observed for days to flowering in the F2 population. A linkage map was constructed with 376 DArT markers distributed over 12 linkage groups covering 579.7 cM. The DArT markers were assigned on different chromosomes of B. rapa using B. rapa genome sequences and DArT consensus map of B. napus. Two QTL (RSC1‐2 and RSC12‐56) located on chromosome A8 and chromosome A9 were identified for seed colour, which explained 19.4% and 18.2% of the phenotypic variation, respectively. The seed colour marker located in the ortholog to Arabidopsis thaliana Transparent Testa2 (AtTT2). Two QTL RLH6‐0 and RLH9‐16 were identified for hairy leaf, which explained 31.6% and 20.7% phenotypic variation, respectively. A single QTL (RSAn‐12‐157) on chromosome A7, which explained 12.8% of phenotypic variation was detected for seedling anthocyanin. The seedling anthocyanin marker is found within the A. thaliana Transparent Testa12 (AtTT12) ortholog. A QTL (RLC6‐04) for leaf chlorosis was identified, which explained 55.3% of phenotypic variation. QTL for hairy leaf and leaf chlorosis were located 0–4 cM apart on the same chromosome A1. A single QTL (RDF‐10‐0) for days to flowering was identified, which explained 21.4% phenotypic variation.  相似文献   

13.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

14.
B. R. Choudhary    P. Joshi  S. Rama  Rao 《Plant Breeding》2002,121(4):292-296
Interspecific hybridization is an important tool to elucidate intergenomic relationships, transfer characters across species and develop synthetic amphidiploids, and it has been widely applied for improving Brassicas. The objective of the present study was to create genetic variability in Brassica through interspecific hybridization. Crosses between Brassica juncea (AABB, 2n= 36), and Brassica rapa (AA, 2n = 20) vars toria, yellow sarson, and brown sarson were attempted, and the hybrid derivatives were advanced to the F4 generation. Hybrids were obtained from the crosses B. juncea× toria and B. juncea× yellow sarson. The F1 plants were vigorous and intermediate to the parents in many morphological traits. The meiotic study of AAB hybrids showed 10 II + 8 I in the majority (71.8%) of cells analysed. A maximum of 12 and a minimum of seven bivalents were also observed in a few cells. The occurrence of multivalent associations (trivalents to pentavalents) at diakinesis/metaphase I and a bridge‐fragment configuration at anaphase I were attributed to homoeology between A and B genomes. A high percentage of plants resembling B. juncea was observed in the F2 generation. Transgressive segregation in both directions was found for plant height, primary branches, main raceme length, siliquae on main raceme, siliqua intensity, seeds per siliqua and seed yield. There were significant differences for the 14 characters in the F4 derivatives. Moderate to high estimates of phenotypic and genotypic coefficients of variation, broad‐sense heritability, and expected genetic advance were found for seed yield, 1000‐seed weight, siliquae per plant, seeds per siliqua and days to flowering. Intergenomic recombination, reflected as wide variation in the hybrid progenies, permitted the selection of some useful derivatives.  相似文献   

15.
M. H. Rahman   《Plant Breeding》2001,120(4):363-364
A yellowish brown‐seeded Brassica alboglabra was resynthesized from a (B. alboglabra×Brassica carinata) ×B. alboglabra cross, followed by self‐pollination. The resynthesized B. alboglabra lost the allele of the isozymic locus glucosephosphate isomerase‐2 (GPI‐2) from natural B. alboglabra, which was replaced by an allele from the corresponding genome in B. carinata. A simple Mendelian segregation of these two alleles was observed in the F2 population of a natural × resynthesized B. alboglabra cross. Furthermore, these two alleles segregated independently from the seed colour.  相似文献   

16.
R.S. Sangwan  G.P. Lodhi 《Euphytica》1998,102(2):191-193
Inheritance of flower colour and pod colour in cowpea (Vigna unguiculata L. Walp.) has followed a qualitative pattern. Purple flower colour is dominant over white flower colour, whereas black pod colour is partially dominant over white pod colour. A segregation ratio of 3 purple:1 white flowers in F2 generations of two crosses indicated that white flower colour is controlled by a single recessive. Segregation ratio of F2 1 white:2 light black:1 black indicated that black pod colour is partially dominant over white pod colour and is governed by one gene. These results were further confirmed by backcross generations. White flower and pod colour are controlled by single recessive genes on separate chromosome. Gene symbols were assigned. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The purpose of this study was to investigate variation of and relationships among seed colour, seed weight and seed oil content in cultivated flax (Linum usitatissimum L. ssp. usitatissimum). Seed from 2934 flax genebank accessions recently grown at Saskatoon, SK, Canada, originating from 72 countries was used to describe the variation of the seed characters. The dominant seed colour of the accessions was medium brown (2730 accessions, 93.0%), followed by yellow (126 accessions, 4.3%). Based on single observations for all accessions, the overall mean and standard deviation was 5.95 ± 1.22 mg/seed for seed weight and 38.3 ± 1.74% for oil concentration. Within three infraspecific groups of flax, seed weight, oil concentration and oil amount per seed increased in the following order: fibre flax (convar. elongatum), intermediate flax (convar. usitatissimum), large‐seeded flax (convar. mediterraneum). The world collection exceeded the range of variation of seed weight and oil concentration found in 52 North American cultivars. There was a weak, positive association of higher oil concentration with higher seed weight (r2 = 0.32; P < 0.001). Yellow‐seeded flax had a higher seed weight (6.31 vs. 5.92 mg/seed) and oil concentration (39.4% vs. 38.3%) than brown‐seeded flax. There was a tendency for yellow seed colour to be associated with higher oil concentration in all seed weight classes. The results suggested that indirect selection for increased seed oil concentration in flax is possible by selection for higher seed weight and yellow seed colour.  相似文献   

18.
Summary Seed colour is considered as an important breeding objective in Ethiopian mustard and other Brassica species, but its measurement is usually subjective rather than objective. For this reason we studied the potential of visible reflectance spectroscopy (VRS) combined with factorial analysis and multivariate calibration to predict seed colour in seeds of Ethiopian mustard. A total of 8331 samples were screened in the range 400–2500 nm with a near infra-red reflectance spectroscopy (NIRS) spectrophotometer. A common factor analysis was performed using 1148 samples and spectral data from 400 to 700 nm. It was found that four common factors explained 99.9% of the variance. Three of these factors were associated with colour characteristics of the seeds. Factor 1 separated yellow, yellow-brown and brown seeded samples, factor 3 separated brown from reddish-brown samples and factor 4 separated complete yellow from greenish-yellow samples. Calibration equations were developed for each factor, which allowed seed colour in those samples not included in factor analysis to be predicted. This study demonstrated that seed colour prediction can be incorporated into NIRS routine analysis with instruments that incorporate the visible spectral region.  相似文献   

19.
Summary Inheritance models for flower colour and extra petals in Potentilla fruticosa L. were developed by conducting controlled crosses between different cultivars and advanced selections. Parents were crossed in all combinations and floral character segregation of progenies were recorded. Preliminary models for flower colour include two whitening genes (W1 and W2) and two yellowing genes (Y1 and Y2) with the action of a bleaching gene also implicated. The cyanic flower colour model developed involves background petal colour, cyanic pigments and distribution and temperature sensitivity genes. The extra petals model involves a two gene switch, D1 and D2 to turn on the production of up to five extra petals and a modifier gene, Dm that accounts for an additional one to five extra petals. Either D1 or D2 must be recessive to initiate extra petal production. Dm must also be recessive to enable production of an additional 1–5 petals.  相似文献   

20.
Recombinant inbred lines (RILs) derived from a cross between Brassica rapa L. cv. ‘Sampad’, and an inbred line 3‐0026.027 was used to map the loci controlling silique length and petal colour. The RILs were evaluated under four environments. Variation for silique length in the RILs ranged from normal, such as ‘Sampad’, to short silique, such as 3‐0026.027. Three QTL, SLA3, SLA5 and SLA7, were detected on the linkage groups A3, A5 and A7, respectively. These QTL explained 36.0 to 42.3% total phenotypic variance in the individual environments and collectively 32.5% phenotypic variance. No additive × additive epistatic interaction was detected between the three QTL. Moreover, no QTL × environment interaction was detected in any of the four environments. The number of loci for silique length detected based on QTL mapping agrees well with the results from segregation analysis of the RILs. In case of petal colour, a single locus governing this trait was detected on the linkage group A2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号