首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Ferrolysis is a soil-forming process, which involves destruction of clay minerals due to cyclic reduction and oxidation in acidic and periodically wet soils. The main objectives of this study were as follows: (1) to determine the influence of redox processes on clay mineral transformation in Retisols (Albeluvisols) in the Carpathian Foothills in Poland and (2) to verify the occurrence of ferrolysis in Retisols showing various degrees of bleaching.

Materials and methods

Twelve representative soil profiles were selected for analysis. All were formed entirely from loess except for two profiles, in which the lowermost horizons (2C) had developed from weathered flysch rocks residuum. Soil mineral analysis was done using x-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and Mössbauer spectroscopy (MS).

Results and discussion

The obtained results indicate that the qualitative and quantitative mineral compositions of the clay fraction in the E and Eg horizons obtained from Retisols in the Carpathian Foothills exhibiting marked differences in bleaching (strong, moderate, weak, and lack of bleaching) caused by periodic stagnation of water above a slowly permeable fragipan and cyclic redox processes are the same. The E and Eg horizons are characterized by the presence of 2:1 clay minerals with likely organic interlayer fillings, dioctahedral mica, kaolinite, and chlorite.

Conclusions

The results indicate that (1) redox processes occurring in the soils do not affect clay mineral transformation in Retisols of the Carpathian Foothills in Poland and (2) ferrolysis is not the main soil-forming process operating in these soils. This is most likely because iron-bearing minerals are not abundant in the Retisols and/or undergo eluviation to the lower part of the soil profiles. The lower content of the clay fraction in the E and Eg horizons versus that in the lower soil horizons of the Retisols is related to clay illuviation (lessivage), and not to clay decomposition due to ferrolysis.
  相似文献   

2.
Robert Brinkman 《Geoderma》1977,17(2):111-144
Extensive areas of periodically wet, acid soils in Bangladesh have a seasonally fluctuating pH of the surface horizon and evidence for net clay loss. Morphological, chemical, mineralogical and other data mainly on a typical profile of these surface-water gley soils indicate a clay loss of some 1.5 kg/dm' ; alteration of smectite to a soil chlorite, interlayered material with trapped ferrous iron; the consequent drop in C.E.C. of the clay fraction; and the presence of amorphous silica. The data were used to reconstruct a sequence of three soil forming processes: Vertisol formation, then argilluviation, followed by ferrolysis.Ferrolysis involves, in the wet season: reduction producing ferrous iron, which displaces part of the exchangeable basic cations and aluminium; leaching of bases and part of the aluminium; and interlayer formation by the remaining aluminium while some exchangeable ferrous iron is trapped in the interlayers. In the dry season, oxidation of exchangeable ferrous iron produces exchangeable hydrogen, part of which attacks the clay minerals and is neutralized by liberation of Al, Mg and other ions from the clay structure. Part of the silica remaining from the clay structure is leached out in the next wet season, part accumulates in amorphous form. In soils long used for paddy cultivation, man has concentrated the ferrolysis process in the ploughed layer by the formation of a slowly permeable ploughpan causing strong reduction only in the surface horizon.The hydromorphic albic horizon over more clayey material is indicative of the dominant process in surface-water gley soils. This sequum could usefully have a more important place in soil classification than it has at present, e.g. at great group level.  相似文献   

3.
The particle-size distribution and mineralogical composition of the clay (< 2 μm) and fine-sand (0.25--0.10 mm) fractions in soils of two inland valleys in Abakaliki and Bende, Southeast Nigeria, were investigated to provide basic information on soil-forming processes and agricultural potentials. These soils were silty or clayey, deriving from Cretaceous or Tertiary shale materials. The particle-size distribution and its computation on a clay-free basis revealed relatively remarkable lithologic breaks in a couple of pedons. The effect of lithologic discontinuities on soil mineralogical composition was not, however, conspicuous. Petrographic investigation revealed that quartz predominantly comprised the fine-sand fraction in the soils at both study sites. Nevertheless, the clay mineralogical composition of the soils was a mixture of kaolinite, irregularly interstratified smectite-illite intergrades (S/I), hydroxyl-Al interlayered 2:1 type clays (HICs), vermiculite, smectite, halloysite and illite along with fine-sized quartz in Abakaliki. The soils of Bende predominantly contained smectite, which was partially interlayered with hydroxyl-Al and kaolinite. It is suggested that seasonal floodwater has slowed the disintegration of weatherable clay minerals inherited from the shale, while quartz originating from the sandstone is predominant in the fine-sand fraction. Additionally, a possible soil-forming process observed at the both study sites was ferrolysis, which was indicated by a clear decreasing pattern of HICs downward in the soil profiles. The entry of S/I and vertical distribution patterns for a couple of clay minerals in the pedon suggested that the soils in Abakaliki have developed under the significant influence of aeolian dust delivered by the harmattan. The findings might describe a site-specific deposition pattern of harmattan dusts as well as hydromorphic soil-forming processes in the wetlands of the inland valleys.  相似文献   

4.
It was postulated by Brinkman (1970) that low clay contents in the surface horizon of paddy soils (Planosols) are caused by clay destruction through ferrolysis. In an effort to test this, a rice profile from the site of Brinkman's Eutric Planosol (Salna, Bangladesh) and a neighbouring forest soil (Dystric Cambisol) of the same parent material and particle-size distribution (Bhawal National Park) were investigated. The micro-structure, particle-size distribution, mineral contents, pedogenic oxides, contents of Zr, Ti and K of the fine earth and individual fractions and also the exchangeable ions were studied. The clay fraction of both soils were chloritised by interlaying of hydroxy-Al in the smectite interlayers in the surface horizons and got stabilized. As a result CEC showed some decrease. The forest profile has a loose and uniform brown-yellow surface horizon and is relatively rich in coarse sand at 62–75 cm depth which might be caused by a strong termite activity as observed during sampling. On the contrary, the frequent and alternate reducing and oxidizing conditions have resulted in gleying the top soil and forming iron-oxide films on the surface of aggregates during dry periods in the paddy soil. An evaluation of all results shows that a little clay destruction and an enrichment of silt in the top soil through vertisol formation and also through primary parent material stratification were the reasons for low clay content in epipedons. In forest soil there was a little clay migration, while the epipedon of the paddy soil had low clay in addition, because of selective erosion during heavy rains following the destruction of structure by puddling. The ferrolysis as a dominant factor for a clay-low epipedon is improbable, because the clay loss of the neighbouring forest soil can not be explained by ferrolysis.  相似文献   

5.
The mineralogical composition of agrogray, dark gray, and agro-dark gray soils (Luvic Greyzemic Retic Phaeozems); agro-dark gray residual-calcareous soils (Calcaric Cambic Phaeozems); clay-illuvial agrochernozems (Luvic Chernic Phaeozems); and agrochernozems with migrational–mycelial carbonates (Haplic Chernozems) developed in the forest-steppe of Central Siberia within the Irkutsk Depression has been studied. The clay (<1 μm) fraction separated from these soils consists of mixed-layer minerals with alternating layers of hydromica, smectite, vermiculite, and chlorite; the proportions between them change within the soil profiles. The clay fraction also contains hydromicas, kaolinite, chlorite, and some admixture of the fine-dispersed quartz. Each type of the soils is characterized by its own distribution pattern of clay material with specific alternation of layers in the mixed-layer formations. Mixed-layer minerals of the chlorite–vermiculite type predominate in the upper horizons of texture-differentiated soils. Down the soil profile, the content of mixed-layer mica–smectitic minerals increases. In the clay fraction of arable dark gray-humus soils with residual carbonates, the distribution of the clay fraction and major mineral phases in the soil profile is relatively even. An increased content of well-crystallized kaolinite is typical of these soils. The parent material of agrochernozems has a layered character: the upper horizons are generally depleted of clay, and the middle-profile and lower horizons are characterized by the considerable kaolinite content. In general, the clay material of soils of the Tulun–Irkutsk forest-steppe differs considerably from the clay material of foreststeppe soils developed from loesslike and mantle loams in the European part of Russia. In particular, this difference is seen in the proportions between major mineral phases and between biotitic and muscovitic components, as well as in the degree of crystallinity and behavior of kaolinite and chlorite.  相似文献   

6.
Data on the mineralogical composition of clay in soils of solonetzic complexes of the Priobskoe Plateau and the Kulunda and Baraba lowlands have been generalized. The parent materials predominating in these regions have loamy and clayey textures and are characterized by the association of clay minerals represented by dioctahedral and trioctahedral mica–hydromica, chlorite, kaolinite, and a number of irregular interstratifications. They differ in the proportions between the major mineral phases and in the qualitative composition of the minerals. Mica–hydromica and chlorites with a small amount of smectitic phase predominate on the Priobskoe Plateau and in the Kulunda Lowland; in the Baraba Lowland, the portion of mica–smectite interstratifications is higher. An eluvial–illuvial distribution of clay fraction in solonetzes is accompanied by the acid–alkaline destruction and lessivage of clay minerals, including the smectitic phase in the superdispersed state. This results in the strong transformation of the mineralogical composition of the upper (suprasolonetzic) horizons and in the enrichment of the solonetzic horizons with the products of mineral destruction; superdispersed smectite; and undestroyed particles of hydromica, kaolinite, and chlorite from the suprasolonetzic horizons. A significant decrease in the content of smectitic phase in the surface solodic horizons of solonetzic complexes has different consequences in the studied regions. In the soils of the Priobskoe Plateau and Kulunda Lowland with a relatively low content (10–30%) of smectitic phase represented by chlorite–smectite interstratifications, this phase virtually disappears from the soils (there are only rare cases of its preservation). In the soils of the Baraba Lowland developed from the parent materials with the high content (30–50%) of smectitic phase represented by mica–smectite interstratifications, the similar decrease (by 10–20%) in the content of smectitic phase does not result in its complete disappearance. However, the smectitic phase acquires the superdispersed state and the capacity for migration.  相似文献   

7.
Mineral Composition and Weathering of Soils Derived from Xiashu Loess   总被引:1,自引:0,他引:1  
Mineralogical, physical and chemical analyses of the soils derived from Xiashu loess were carried out. The primary minerals of these soils were found to be mainly composed of light minerals, such as quartz, feldspar and mica, with traces of heavy minerals. Clay minerals, more complicate in composition, were dominated by hydromica, accompanied by smectite, vermiculite, chlorite, kaolinite, 2:1/1:1 randomly interstratified minerals and small amounts of quartz, goethite, lepidocrocite and hematite, Clay minerals were characterized by low crystallinity and fine particle size. In light of the quartz/feldspars ratio of the 0.01-0.05mm silt fraction, and the clay mineral composition, the freeness of iron oxide, and the silica/sesquioxide and silica/alumina ratios in < 0.002mm clay fraction, it is concluded that the weathering intensity of these soils was lower than those of red soil and yellow earth, but higher than that of brown earth, and that the soil allitization, depotassication and hydroxylation of cl  相似文献   

8.
We have selected seven profiles located in a diapiric formation in the North of Spain. The profiles have been analyzed for the mineralogy and the chemical composition of original materials, soils developed above them and clay fractions. Three soils formed on basic rock of volcanic origin (ophite) and rich in alterable minerals, three others formed on clay marl and one soil formed on gypsiferous marl. Plagioclases, pyroxenes, vermiculites, and biotites are the main minerals found in the soil samples and ophitic rocks. Biotite, smectite, chlorite and interstratified chlorite–vermiculite make up the predominant mineralogical association in the clay fraction of the soils. Calcite, biotite and on top of all chlorite are the main minerals in the marls and the soils developed on them, with gypsum predominant in the gypsiferous marl. The mineralogy of its clay fraction is comprised mainly of chlorite and biotite. The variations in content of Al2O3, TiO2 and Na2O in the ophites are considered to be associated with the differences in the evolution of the pyroxenes. The variability of the chemical composition of the Keuper sediments and the soils is attributed more to the chaotic disposition of the Triassic materials in the formation of the diapir than to intense chemical weathering. The low concentrations of silica, iron, and aluminum extractable with ammonium oxalate indicate the low proportion of non-crystalline products. Fundamentally, it is the semiarid conditions in the study zone, together with the processes of extrusion and hydrothermal activity affecting the formation of the diapir, that are responsible for the genesis of the minerals.  相似文献   

9.
This paper describes the conditions for dispersion and flocculation of clays, and the impact of this process on soils of contrasting textures cropped with rice. Clay seems to be translocated down the profiles and along a topographic sequence. The clays are mixed kaolinite–smectite. The cation exchange capacity of these clays exceeds 20 cmolc kg?1. Both the proportion of smectite and clay content increase with increasing depth and from the top to the lower part of the sequence. The pH ranges from 5 to 8. The aluminium oxide content is small. The soil solutions collected during the rainy season were analysed for Fe2+ and major cations. We calculated the sodium adsorption ratios (SAR) taking into account Fe2+ and compared them with the critical coagulation concentration (CCC) found in a previous study. The Fe2+ contributed to a decrease in the SAR of cropped soils. The comparison between SAR, total electrolyte concentrations and CCC values showed that the dispersible clays are likely (i) to disperse in the abandoned and non‐saline fields, (ii) to flocculate in the saline and uncropped soils as a result of the large salt content and in the cropped soils because of either large salt or Fe2+ content, and (iii) to disperse in the flood water and at the surfaces of abandoned fields under rain. No evidence for ferrolysis was found. The observed contrasting textures and clay mineralogy can be explained by clay translocation controlled by salinity and rice farming.  相似文献   

10.
《Geoderma》1987,39(3):193-207
Mineralogies of a soil catena in the Pampa of Ulla Ulla (4,300–4,600 m) and the soils of the steep slopes of the Cordillera de las Muñecas (“steep area”) were investigated. The latter area includes three altitudinal zones: herbaceous zone (3,900–4,800 m), shrub zone (2,700–3,900 m), and mountain forest zone (up to 2,700/2,800 m). The soils were classified according to Soil Taxonomy as Entisols, Mollisols, and Inceptisols. They were mainly derived from quartzitic schists and slope debris. Each horizon of each profile was representatively sampled for analyses.Muscovites and illites were the dominant minerals in the fine silt and clay fraction, respectively. Besides kaolinite, pyrophyllite and vermiculite, regular illite/vermiculite mixed layers, chlorite, feldspar and quartz were detected in both fractions. In a Typic Cryaquent from the Pampa of Ulla Ulla, smectites had been formed. Pyrophyllite, illite/vermiculite mixed layers and chlorite seemed to be unstable under acid conditions in most of these soils.  相似文献   

11.
Soils of the semi-arid area of the El Melah coastal lagoon (NE Tunisia), with a closing evolution dynamic, were studied aiming: (1) the chemical and mineralogical characterization of surface and subsurface layers of soil profiles from locations previously submerged and of soils developed on dunes; (2) to evaluate the dependence on the environment conditions of the geochemical patterns of the soils; and (3) to determine chemical and mineralogical variations with the emersion of the sediments resulting from the decrease in the extent of the area permanently covered by water in the lagoon. The compositional results obtained showed significant differences depending on the environment (littoral plain, old dunes and sandy spit), but soils of the different environmental zones studied do not appear to be significantly polluted as far as trace elements are concerned. Among the elements studied, high element/Sc ratios and variations were found for As, Sb and Zn. Antimony is more concentrated in coarser samples suggesting its adsorption in Fe or Mn oxides coating quartz grain surfaces. Arsenic and zinc may be incorporated into the carbonates structure, as well as adsorbed on, or coprecipitated with, iron oxides. Zinc may also be significantly incorporated in clay minerals. Iron was found to be more oxidized in the cultivated soil from the old dune strand; and more reduced in the sandy spit where ankerite occurs suggesting the reduction of Fe3+ in oxide/hydroxides by microorganisms and incorporation of Fe2+ in carbonates. REE patterns, particularly the HREE/LREE are correlated with carbonates, indicating preferential incorporation of the HREE in carbonates, and of the LREE in clay minerals/iron oxides. High Ga contents were found in soils and sediments rich in clay minerals/Al, suggesting its incorporation in clay minerals structure. Therefore, Ga may be used as an indicator of the clay minerals proportion in sediments and soils. Carbonates, sulphates, besides Fe and/or Mn oxides and clay minerals, appear to play an important role on the trace elements distribution.  相似文献   

12.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

13.
The clay mineralogical composition of soils on volcanic ashes from Mashū and Kamuinupuri-dake volcanoes, Hokkaido, which are rich in cristobalite, was determined using petrological, X-ray diffraction, differential thermal, and selective dissolution and differential infrared spectroscopic methods.

The cristobalite occurred in abundance in every size of fraction from coarse sand to clay and every soli from approximately 1,700 to 8,400 years old, and was concluded to be of igneous origin. The major clay minerals were allophanelike constituents and allophane with some layer silicates as the minor clay mineral, being similar to those of andesitic ash soils and different from those of volcanic ash soils containing abundant quartz. The quartz of volcanic ashes was presumed to bederived from the groundmass-equivalent portion of the ashes which had been formed from magma at a low temperature.  相似文献   

14.
Abstract

Using sequential extractions, total elemental analysis, and X‐ray diffraction, we have investigated the impact of the podzolization process on component composition of the clay fraction in the eluvial horizons of eight more or less podzolized Danish soils. The results indicate that podzolization is highly aggressive towards all clay components in the eluvial horizons eventually leading to their disintegration. The 2:1 layer silicate clay minerals, illite and chlorite, are first transformed into other 2:1 layer silicate clay minerals. After passing through a microcrystalline phase high in Si but low in Al, Fe, Mg, and K, they finally disintegrate completely. Even gibbsite and kaolinite disintegrate under the aggressive conditions, caused among other things by the presence of dissolved complex forming organic molecules in these horizons. Application of lime and fertilizers seems to be able to reverse the process in case of the 2:1 layer silicate clay minerals.  相似文献   

15.
It remains unknown whether there is a consistent relationship between magnetism dynamics and pedogenesis for paddy soils. In this study, three paddy soil chronosequences, derived from purple sandy shale (PS), Quaternary red clay (RC) and red sandstone (RS) in the hilly regions of south China, were studied to identify changes in magnetism during soil development and to understand their implications for pedogenesis. The results show that magnetic susceptibility (MS) and soft isothermal remanent magnetization (IRMs) simultaneously decreased to extremely small values in the anthrostagnic epipedons during the initial stages of cultivation. In contrast, this decrease was limited in the hydragric horizons of the young paddy soils and even increased in some. These changes suggest that MS and IRMs can be enhanced by the oxidation of Fe2+ in acid paddy soils (between pH 5 and 6) or be depressed by anaerobic transformations of ferrimagnetic minerals. The main influence on magnetic properties was time duration and especially reducing degree of artificial submergence, while parent materials played a supportive role. Magnetic enrichments generally occurred in the clay fraction. Ferrimagnetic clay minerals were more easily altered than minerals in the silt and sand fractions. The study also shows that there was no fixed pattern in the relationship between magnetism and paddy pedogenesis and magnetic properties should be used with care when applying them to environments in which redox processes occur.  相似文献   

16.
Changes in the mineralogical composition of the clay fraction (<0.001 mm) sampled from soils of the model lysimetric experiment of Moscow State University have been studied. The mineralogical composition of clay is represented by the paragenetic association of minerals typical of noncalcareous mantle loams in the center of the Russian Plain. The predominant smectitic phase consists of complex mixed-layered minerals (mica-smectite with high and low contents of the smectitic layers, chlorite-smectite with different ratios between the chloritic and smectitic layers) and individual smectites. Tri-and dioctahedral hydromica, kaolinite, chlorite, and clay-sized quartz are present in lower amounts. At the early stages of the experiment, the distribution of the smectitic phase in the soil profile is more contrasting than the distribution of the clay fraction. Under the impact of artificially planted meadows, forests, and agrocenoses, soil profiles with different distribution patterns of the clay fraction are formed. The weakly pronounced eluvial distribution pattern of the clay fraction has been registered. Under spruce and mixed stands, the loss of the clay fraction from the upper horizons is due to the hydrolysis of smectitic minerals in the acidified medium. Under broad-leaved stands, perennial herbs, agroecenoses, and fallow, the depletion of smectites from the upper horizons is due to lessivage. The relative accumulation of hydromica and kaolinite is observed in the uppermost soil layer.  相似文献   

17.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

18.
Qasim, some 500 km north-west of Riyadh, is one of the agriculturally important areas of Saudi Arabia. Silt fractions of the soils of the Wadi ar Rimah and side wadis, classified as Torrifluvents, are characterized by high quartz contents and the universal occurrence of kaolinite and felspar, generally with plagioclase predominant; mica, chlorite and hornblende also generally occur. The clay fractions contain mainly palygorskite and a smectite-mica interstratification with smaller amounts of kaolinite, traces of quartz and occasionally chlorite. Palygorskite generally increases in content with depth. Variations in mineralogy probably reflect changes in depositional conditions rather than pedogenic processes; possible reasons for the high palygorskite content are discussed. Sedentary soils (Torriorthents) reflect the mineralogy of the rock from which they were derived. In clay fractions from salt-marsh soils (Salorthids) calcite reacts strongly with smectite-mica during DTA.  相似文献   

19.
辽宁省西部是低山丘陵区,年平均温度7.1℃,年平均降雨量400—500毫米,降雨集中在夏季,具有明显的大陆性气候特征,干燥度小于1,属半干旱类型.植被为油松柞木和草原灌木丛林.土壤属棕色森林土向栗钙土过渡的褐土地带.母质主要为花岗片麻岩风化物.山麓缓坡和河谷两岸为黄土丘陵.在黄土沉积物覆盖层下,常见红色风化壳露头,即红色粘土层.此外,并有松软易风化岩层,如砂岩、页岩和变质岩等.本区近百年来,由于自然植被受到严重破坏,大量水土流失,土壤侵蚀严重,土壤有机质含量低,成为辽宁省的低产区.因此,鉴定本区不同母质的土壤矿物胶体组成及其特征,不仅可以研究这一特定自然条件下土壤矿物的转化和形成,并且有助于了解土壤特性和肥力特征.  相似文献   

20.
Mineralogical composition of silt and clay fractions (<1.1–5 and 5–10 µm) in heavy loamy agrogrey soils (Luvic Retic Phaeozems) considerably changes both in the vertical (along the soil profile) and horizontal (along soil microcatenas) directions. The eluvial–illuvial distribution pattern of the clay fraction in the podzolized agrogrey soils with the second humus horizon is replaced by the homogeneous distribution in the agrogrey soils with residual carbonates. The distribution of silt fractions in the soil profiles is relatively homogeneous. The clay (<1 µm) fraction of the parent material is represented by the poorly ordered micasmectite interstratifications minerals, the proportion between which changes in the soil profiles in dependence on the particular pedogenetic processes. Hydromicas represent the second important component of the clay fraction. They consist of di- and trioctahedral varieties, the proportion between which changes in the soil profiles. Kaolinite and iron–magnesium chlorite are present in smaller amounts. The second humus horizon is characterized by the lowest content of mica-smectite interstratifications minerals with the high content of smectitic layers and by the lowest content of the clay fraction. Silt fractions are composed of quartz, micas, potassium feldspars, and plagioclases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号