共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overall, we found that leaf-level net photosynthetic rates were enhanced by atmospheric CO2 enrichment throughout the season until early November; however, sun leaves showed a greater response to atmospheric CO2 enrichment than shade leaves. Elevated [CO2] did not affect leaf longevity, emergence date or abscission date of sun leaves or shade leaves. Leaf number and leaf area per shoot were unaffected by CO2 treatment. A simple shoot photosynthesis model indicated that elevated [CO2] stimulated photosynthesis by 60% in sun shoots, but by only 3% in shade shoots. Whole-shoot photosynthetic rate was more than 12 times greater in sun shoots than in shade shoots. In senescent leaves, elevated [CO2] did not affect residual leaf nitrogen, and nitrogen resorption was largely unaffected by atmospheric CO2 enrichment, except for a small decrease in shade leaves. Overall, elevated [CO2] had little effect on the number of leaves per shoot at any time during the season and, therefore, did not change seasonal carbon gain by extending or shortening the growing season. Stimulation of carbon gain by atmospheric CO2 enrichment in sweetgum trees growing in the Duke Forest FACE experiment was the result of a strong stimulation of photosynthesis throughout the growing season. 相似文献
2.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal. 相似文献
3.
To investigate whether sun and shade leaves respond differently to CO2 enrichment, we examined photosynthetic light response of sun and shade leaves in canopy sweetgum (Liquidambar styraciflua L.) trees growing at ambient and elevated (ambient + 200 microliters per liter) atmospheric CO2 in the Brookhaven National Laboratory/Duke University Free Air CO2 Enrichment (FACE) experiment. The sweetgum trees were naturally established in a 15-year-old forest dominated by loblolly pine (Pinus taeda L.). Measurements were made in early June and late August 1997 during the first full year of CO2 fumigation in the Duke Forest FACE experiment. Sun leaves had a 68% greater leaf mass per unit area, 63% more leaf N per unit leaf area, 27% more chlorophyll per unit leaf area and 77% greater light-saturated photosynthetic rates than shade leaves. Elevated CO2 strongly stimulated light-saturated photosynthetic rates of sun and shade leaves in June and August; however, the relative photosynthetic enhancement by elevated CO2 for sun leaves was more than double the relative enhancement of shade leaves. Elevated CO2 stimulated apparent quantum yield by 30%, but there was no interaction between CO2 and leaf position. Daytime leaf-level carbon gain extrapolated from photosynthetic light response curves indicated that sun leaves were enhanced 98% by elevated CO2, whereas shade leaves were enhanced 41%. Elevated CO2 did not significantly affect leaf N per unit area in sun or shade leaves during either measurement period. Thus, the greater CO2 enhancement of light-saturated photosynthesis in sun leaves than in shade leaves was probably a result of a greater amount of nitrogen per unit leaf area in sun leaves. A full understanding of the effects of increasing atmospheric CO2 concentrations on forest ecosystems must take account of the complex nature of the light environment through the canopy and how light interacts with CO2 to affect photosynthesis. 相似文献
4.
Seedlings of Betula pendula Roth were grown with their root systems separated between two soil compartments. Four treatments were imposed: (i) adequate irrigation in both compartments (WW, controls); (ii) adequate irrigation in one compartment and drought in the other compartment (WD); (iii) drought in both compartments (DD); and (iv) half of the root system severed and the remainder kept well-watered (root excision, RE). Predawn leaf water potential, stomatal conductance, soil-to-leaf specific hydraulic conductance, and root and leaf growth decreased in DD-treated seedlings, which also displayed severe leaf shedding (30% loss in leaf area). The DD treatment also resulted in increased concentrations of abscisic acid (ABA) and its glucose ester in the xylem sap of roots and shoots compared to concentrations in control seedlings (about 200 versus 20 nM). Despite the difference in xylem sap concentrations, total ABA flux to the shoots was similar in the two treatments (1-2 pmol ABA m(-2) leaf area s(-1)) as a result of reduced transpiration in the DD-treated seedlings. Compared with root growth in control plants, root growth increased in the RE-treated plants and decreased in the drying compartment of the WD treatment; however, the RE and WD treatments only slightly reduced leaf expansion, and had no detectable effects on shoot water relations or ABA concentrations of the root and shoot xylem sap. We conclude that short-term soil water depletion affecting only 50% of the root system does not cause a measurable stress response in birch shoots, despite root growth cessation in the fraction of drying soil. 相似文献
5.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots. 相似文献
6.
Container-grown black spruce (Picea mariana (Mill.) B.S.P.) seedlings were planted in trays containing a sand and peat mixture, and placed in a climate-controlled greenhouse. One group of seedlings was kept well-watered, and another group was subjected to three cycles of drought. Gas exchange analysis showed that mesophyll photosynthetic function was largely unimpaired by drought. In contrast, stomatal conductance was sensitive to drought, although it became less sensitive with each drought cycle. Both stomatal and mesophyll conductances increased with time in control and drought-stressed seedlings, but mesophyll conductance increased with time more rapidly than did stomatal conductance. Limitation of photosynthetic rate was dominated by the mesophyll. In control seedlings, relative stomatal limitation increased from 6 to 16% by the end of the experiment. In drought-stressed seedlings, relative stomatal limitation of photosynthesis reached 40% during the first drought, but decreased to near control values immediately after rewatering. Because the third, most severe drought had only a minor effect on stomatal conductance, relative stomatal limitation of photosynthesis was similar to that in control seedlings by the end of the experiment. Inhibition of ontogenetic change during drought stress may be responsible for the apparent acclimation of mesophyll photosynthetic processes. We conclude that it would be more effective to select for high photosynthetic capacity than for reduced stomatal sensitivity when breeding for increased drought resistance in black spruce seedlings. 相似文献
7.
Leaf growth, rate of leaf photosynthesis and tissue water relations of shoots of Eucalyptus marginata Donn ex Sm. (jarrah) seedlings were studied during a soil drying and rewatering cycle in a greenhouse experiment. Rates of leaf growth and photosynthesis were sensitive to water deficits. The rate of leaf growth decreased linearly with predawn leaf water potential to reach zero at -1.5 MPa. Rate of leaf growth did not recover completely within the first three days after rewatering. Midday photosynthetic rates declined to 40% of those of well-watered seedlings at a predawn leaf water potential of -1.0 MPa and reached zero at -2.2 MPa. Photosynthetic rate recovered rapidly following rewatering and almost fully recovered by the second day after rewatering. All tissue water relations parameters, except the bulk modulus of elasticity, changed significantly as the soil dried and recovered completely by the third day after rewatering. Changes in osmotic pressure at full turgor of 0.4 MPa indicated considerable capacity for osmotic adjustment. However, because there was little osmotic adjustment until predawn leaf water potential fell below -1.5 MPa, this capacity would not have enhanced seedling growth, although it may have increased seedling survival. The sensitivity of photosynthesis and relative water content to water deficits suggests that greenhouse-grown E. marginata seedlings behave like mesophytic plants, even though E. marginata seedlings naturally grow in a drought-prone environment. 相似文献
8.
The influence of shading intensity on growth, morphology and leaf gas exchange of mangosteen (Garcinia mangostana L.) seedlings was investigated over a 2-year period. Diurnal gas exchange studies revealed significantly higher carbon gain for leaves grown in 20 or 50% shade compared to leaves grown in 80% shade. Seedlings grown in 20 or 50% shade accumulated significantly more dry weight than seedlings grown in 80% shade during the 2-year study period. Seedlings grown in decreased shade showed decreased leaf size, increased leaf thickness, lower specific leaf area (SLA) and higher stomatal frequency. Less shaded seedlings also allocated relatively more dry matter to roots than shaded seedlings and exhibited a significant reduction in leaf area relative to total plant dry weight (leaf area ratio). Increased leaf number, enhanced branching and shorter internodes resulted in a more compact appearance of less shaded seedlings. Irrespective of light conditions, mangosteen seedlings exhibited inherently slow growth because of low photosynthetic rates per unit leaf area, low SLA, low leaf area ratios and inefficient root systems. 相似文献
9.
The effects of the interaction between high growth temperatures and water stress on gas-exchange properties of Populus nigra saplings were investigated. Water stress was expressed as a function of soil water content (SWC) or fraction of transpirable soil water (FTSW). Isoprene emission and photosynthesis (A) did not acclimate in response to elevated temperature, whereas dark (R(n)) and light (R(d)) respiration underwent thermal acclimation. R(d) was ~30% lower than R(n) irrespective of growth temperature and water stress level. Water stress induced a sharp decline, but not a complete inhibition, of both R(n) and R(d). There was no significant effect of high growth temperature on the responses of A, stomatal conductance (g(s)), isoprene emission, R(n) or R(d) to FTSW. High growth temperature resulted in a significant increase in the SWC endpoint. Photosynthesis was limited mainly by CO(2) acquisition in water-stressed plants. Impaired carbon metabolism became apparent only at the FTSW endpoint. Photosynthesis was restored in about a week following rewatering, indicating transient biochemical limitations. The kinetics of isoprene emission in response to FTSW confirmed that water stress uncouples the emission of isoprene from A, isoprene emission being unaffected by decreasing g(s). The different kinetics of A, respiration and isoprene emission in response to the interaction between high temperature and water stress led to rising R(d)/A ratio and amount of carbon lost as isoprene. Since respiration and isoprene sensitivity are much lower than A sensitivity to water stress, temperature interactions with water stress may dominate poplar acclimatory capability and maintenance of carbon homeostasis under climate change scenarios. Furthermore, predicted temperature increases in arid environments may reduce the amount of soil water that can be extracted before plant gas exchange decreases, exacerbating the effects of water stress even if soil water availability is not directly affected. 相似文献
10.
• Context Root growth is a characteristic to which nursery personnel is particularly attentive. The increase in root growth of white
spruce seedlings in the autumn relies on the current season’s photosynthates. Needle hardening or a decrease in the mass of
photosynthetically active foliage as a result of early frost may negatively affect the seedling’s photosynthetic capacity
and its ability to fuel root growth. 相似文献
11.
The relationship between carbon exchange rate (CER) and internal CO(2) concentration was measured in leaves of saplings of Liquidambar styraciflua L. (sweetgum) and Pinus taeda L. (loblolly pine) grown from seed for more than 14 months at atmospheric CO(2) concentrations of either 350 or 500 microl l(-1). An elevated concentration of CO(2) during growth reduced CER at any given internal CO(2) concentration in sweetgum, but not in loblolly pine. Stomatal limitation of CER showed little response to concentration of CO(2) during measurement, but was higher in both species when grown at 500 than at 350 microl l(-1) CO(2). The net effect of a long-term increase in CO(2) concentration from 350 to 500 microl l(-1) was an increase in CER of loblolly pine, but a slight decrease in CER of sweetgum. It is suggested that the depression of CER in sweetgum resulted from a reduction in the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase. 相似文献
12.
The solution culture method was used to study the effect of increasing nitrogen on the growth and pho-tosynthesis of poplar seedlings under 100 mmol L-1 NaCl stress. I Increase in nitrogen reduced stomatal limitation of leaves under NaCl stress, improved utilization of CO2 by mesophyll cells, enhanced photosynthetic carbon assimi-lation capacity, significantly alleviated saline damage of NaCl, and promoted the accumulation of aboveground and root biomass. I Increased nitrogen enhanced photochemical efficiency (ΦPSⅡ) and electron transport rates, relieved the reduction of maximum photochemical efficiency (Fv/Fm) under NaCl, and reduced the degree of photoinhibition caused by NaCl stress. Increased nitrogen applications reduced the proportion of energy dissipating in the form of ineffective heat energy and hence a greater proportion of light energy absorbed by leaves was allocated to photo-chemical reactions. Under treatment with increased nitro-gen, the synergistic effect of heat dissipation and the xanthophyll cycle in the leaves effectively protected pho-tosynthetic PSⅡ and enhanced light energy utilization of leaves under NaCl stress. The increased nitrogen promoted photosynthetic electron supply and transport ability under NaCl stress evident in enhanced functioning of the oxygen-evolving complex on the electron donor side of PS Ⅱ. It increased the ability of the receptor pool to accept electrons on the PSII electron acceptor side and improved the sta-bility of thylakoid membranes under NaCl stress. Therefore, increasing nitrogen applications under NaCl stress can promote poplar growth by improving the effi-ciency of light energy utilization. 相似文献
13.
Thailand rosewood(Dalbergia cochinchinensis)is a vulnerable high value tree species in subtropical and tropical Southeast Asia. The demand for the rehabilitation of the natural habitat of the species requires high-quality seedlings. However, current fertilizer regimes tend to deliver a coarse rate of fertilizers that result in a low uptake efficiency and a high risk of nutrient excess. Exponential fertilization is an effective approach to promote seedling quality through identifying an optimum d... 相似文献
14.
Growth and gas exchange characteristics were studied in pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) seedlings grown in hydroponic culture in the presence of N (50 mg l(-1)) and transferred at the start of their second growing season to tap water at 5, 8, 12, 16 or 20 degrees C (air temperature between 18-20 degrees C) for 3 weeks (pine) or 5 weeks (spruce). Root growth of both species was completely inhibited at root temperatures of 5 and 8 degrees C, but increased almost exponentially as root temperature increased. Shoot growth was maximal at 12 degrees C in both pine and spruce and decreased at low root temperatures. In both species, CO(2) uptake was decreased at low root temperatures and appeared to be influenced by the pattern of nitrogen retranslocation. In pine seedlings, as root temperature increased, an increasing proportion of the total nitrogen pool was retranslocated to the new shoot, whereas in spruce seedlings nitrogen was retranslocated to the roots. Differences in the retranslocation of nitrogen in the two species were reflected in the amount of soluble protein in needles, which at the end of the experiment increased with increasing root temperature in pine, but decreased in spruce. Our data suggest that in spruce, but not pine, CO(2) uptake was limited by the amount of Rubisco. 相似文献
15.
We evaluated the effects of elevated carbon dioxide concentration ([CO2]) and two nutrient regimes on stem growth rate, annual ring structure and temporal variations in photosynthetic characteristics of seedlings of Japanese larch (Larix kaempferi (Lamb.) Carr.). Seedlings were grown in phytotron chambers in an ambient (360 ppm) or an elevated (720 ppm) [CO2] in two nutrient regimes for one growing season. Elevated [CO2] reduced stem height and increased stem basal diameter compared with ambient [CO2]. The effect of elevated [CO2] on growth tended to be greater at high-nutrient supply than at low-nutrient supply. Elevated [CO2] had no significant effect on ring width or the number of tracheids per radial file. There was no obvious difference in cell wall thickness or the relative area of the cell wall between seedlings grown in ambient or elevated [CO2]. Although growth in elevated [CO2] resulted in a slight increase in cell diameter, the increase had a relatively minor effect on the relative area of the cell wall. Net assimilation rate increased in response to elevated [CO2]; however, the increase in whole-crown photosynthetic rate (Total Agrowth) in seedlings in the elevated [CO2] treatment was minimal because of the smaller specific needle area and acclimation of the photosynthetic characteristics of the needles to the growth [CO2]. In conclusion, we observed no obvious enhancement in the capacity for carbon fixation in Japanese larch seedlings grown in the presence of elevated [CO2] that might be attributable to changes in stem growth. However, elevated [CO2] caused changes in the temporal pattern of stem growth and in some anatomical features of the tracheids. 相似文献
16.
Experiments were conducted on 1-year-old western red cedar (Thuja plicata Donn.) seedlings to determine the response of illuminated foliage to reversible changes in total photosynthetic foliage area (L(A)). Reductions in L(A) were brought about by either shading the lower foliage or by reducing the ambient CO2 concentration (c(a)) of the air surrounding the lower part of the seedling. In the latter case, the vapor pressure was also changed so that transpiration rates (E) could be manipulated independently of photosynthetic rates (A). We hypothesized that following such treatments, short-term compensatory changes would occur in stomatal conductance (g(s)) and A of the remaining foliage. These changes would occur in response to hydraulic signals generated by changes in the water potential gradient rather than changes in the distribution of sources and sinks of carbon within the seedling. When a portion of the foliage was shaded, there was an immediate reduction in whole-seedling E and a concomitant increase in g(s), A and E in the remaining illuminated foliage. However, the intercellular CO2 concentration did not change. These compensatory effects were fully reversed after the shade was removed. When the lower foliage A was reduced to < 0 micromol m-2 s-1, by shading or lowering c(a), and E was either unchanged or increased (by adjusting the vapor pressure deficit), there was no significant increase in g(s) and A in the remaining foliage. We conclude that compensatory responses in illuminated foliage occur only when reductions in L(A) are accompanied by a reduction in whole-plant E. The relationship between the reduction in whole-seedling E and the increase in A is highly linear (r2 = 0.68) and confirms our hypothesis of the strong regulation of g(s) by hydraulic signals generated within the seedling. We suggest that the mechanism of the compensatory effects is a combination of both increased CO2 supply, resulting from increased g(s), and a response of the rate of carboxylation, possibly related to the activity of Rubisco. 相似文献
17.
The relationships between hydraulic and photosynthetic properties in plants have been widely studied, but much less is known about how these properties are linked to water-source partitioning, the spatial and temporal separation of water sources in ecosystems. Plant water-source partitioning is often influenced by the proximity of groundwater from the natural surface. We studied the water acquisition strategy and hydraulic and photosynthetic properties of Tuart (Eucalyptus gomphocephala D.C.), a large coastal tree species that occupies seasonally dry habitats underlain by superficial aquifers. Our goal was to quantify water-source partitioning as the proportion of xylem water derived from the vadose and saturated zones with respect to stage of development and proximity of groundwater. We then sought to associate the proportional contribution of a given water source with xylem hydraulic and photosynthetic properties, thus conferring a linkage. Seedlings were more inclined to use surface soil water when rainfall recharge of the upper profile occurred, suggesting that they maintained or rapidly developed a proportionally high amount of functional roots in the upper, seasonally dry, soil profile. This strategy was associated with a lower xylem-area-specific hydraulic conductivity (K(S)), leaf-area-specific hydraulic conductivity (K(L)) and maximum photon yield of photosystem II (F(V)/F(M)). In contrast, trees acquired water from a variety of sources in different seasons and had a higher K(S), K(L) and F(V)/F(M). Despite the higher K(S) and K(L) in trees, the midday hydrodynamic water potential gradient from soil to leaves, ΔΨ, was similar. We conclude that there was a linkage between hydraulic and photosynthetic properties with the partitioning of water sources and that this adaptation to long-term hydrological regimes accommodated the different hydraulic characteristics and hydrological environments of trees versus seedlings. 相似文献
18.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area. 相似文献
19.
Early growth and physiology of longleaf pine ( Pinus palustris Mill.) seedlings were studied in response to light, water and nitrogen under greenhouse conditions. The experiment was conducted with 1-year-old seedlings grown in 11.3 l pots. The experimental design was a split-plot factorial with two levels (low and high) of each of the factors, replicated in three blocks. The four factorial combinations of water and nitrogen were randomly applied to 15 pots (sub-plots) in each of the light treatment (main plot). Data were collected on survival, root collar diameter (RCD), and height on a monthly basis. Biomass (shoot, root and needle), leaf area index, specific needle area, and needle nutrient (N, P, K, Ca, and Mg) concentrations were determined following final harvest after 16 months. Physiological data (net photosynthesis and transpiration) were collected monthly from March to July during the second growing season. Height and RCD were significantly influenced by nitrogen and water and by the interaction between them with no apparent effect of light. Seedlings grew 93% taller in the high nitrogen and well watered (HNWW) treatment compared to the low nitrogen and water stressed (LNWS) treatment. Similarly, a significant increase (78%) in RCD was observed for seedlings in the HNWW treatment over the LNWS treatment. Light, along with water and nitrogen, played an important role in seedling biomass growth, especially when water was not limiting. Biomass partitioning (as measured by root:shoot ratio) was affected only by nitrogen and water. Nutrient stress had a greater influence on carbon allocation (69% increase in root:shoot ratio) than water stress (19% increase). Net photosynthesis (Pnet) was significantly higher for seedlings in the high resource than in the low resource treatments with significant light×water and nitrogen×water interactions. Transpiration rate was higher (75%) under the WW treatment compared to the WS treatment. Longleaf pine seedlings grown under the LNWW treatment had the lowest foliar nitrogen (0.71%) whereas seedlings in the HNWS treatment had the highest (1.46%). Increasing the availability of light (through larger canopy openings or controlling midstory density) and soil nitrogen (through fertilization) may not result in greater Pnet and improved seedling growth unless soil water is not limiting. 相似文献
20.
为了探究外源油菜素内酯(BR)对不同温度(8、28、38℃)下香椿幼苗生长的调节作用,以盆栽5月龄香椿幼苗为试材,以喷施清水为对照,研究外源油菜素内酯对不同温度下香椿幼苗生物量、叶绿素含量、光合特性、叶绿素荧光特性的影响。结果表明;外源BR处理可提高不同温度下香椿幼苗叶绿素的含量,显著提高香椿幼苗生物量和干物质积累量,使香椿幼苗叶片组织加厚,叶片相对含水率(RWC)提升,并且提高了香椿幼苗的净光合速率(P_n)、气孔导度(Gs)、最大光化学效率(F_v/F_m)、实际光化学效率(ΦPSⅡ)和光化学猝灭系数(qP),降低了胞间CO_2浓度(C_i)、蒸腾速率(T_r)、初始荧光(F_o)、非光化学猝灭系数(qN)。综上所述:喷施油菜素内酯可以促进适温下(28℃)香椿幼苗植株的生长,提高香椿幼苗在温度胁迫下的缓解作用和适应能力。 相似文献
|