首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We explored environmental and genetic factors affecting seasonal dynamics of starch and soluble nonstructural carbohydrates in needle and twig cohorts and roots of Scots pine (Pinus sylvestris L.) trees of six populations originating between 49 degrees and 60 degrees N, and grown under common garden conditions in western Poland. Trees of each population were sampled once or twice per month over a 3-year period from age 15 to 17 years. Based on similarity in starch concentration patterns in needles, two distinct groups of populations were identified; one comprised northern populations from Sweden and Russia (59-60 degrees N), and another comprised central European populations from Latvia, Poland, Germany and France (49-56 degrees N). Needle starch concentrations of northern populations started to decline in late spring and reached minimum values earlier than those of central populations. For all populations, starch accumulation in spring started when minimum air temperature permanently exceeded 0 degrees C. Starch accumulation peaked before bud break and was highest in 1-year-old needles, averaging 9-13% of dry mass. Soluble carbohydrate concentrations were lowest in spring and summer and highest in autumn and winter. There were no differences among populations in seasonal pattern of soluble carbohydrate concentrations. Averaged across all populations, needle soluble carbohydrate concentrations increased from about 4% of needle dry mass in developing current-year needles, to about 9% in 1- and 2-year-old needles. Root carbohydrate concentration exhibited a bimodal pattern with peaks in spring and autumn. Northern populations had higher concentrations of fine-root starch in spring and autumn than central populations. Late-summer carbohydrate accumulation in roots started only after depletion of starch in needles and woody shoots. We conclude that Scots pine carbohydrate dynamics depend partially on inherited properties that are probably related to phenology of root and shoot growth.  相似文献   

2.
The superoxide dismutase (SOD EC 1.15.1.1) activity in Scots pine (Pinus sylvestris) and Norway spruce (Picea abies L. Karst.) needles in urban and rural trees of northern Finnish populations was studied. Enzyme activity was higher in pine than in spruce needles. Two pine clones from eastern Finland and Lapland revealed great differences in specific SOD enzyme activity.  相似文献   

3.

Scots pine ( Pinus sylvestris L.) and Norway spruce [ Picea abies (L.) Karst.] seedlings were exposed to high phosphorus (HP) or low phosphorus (LP) availability for one growing season in the open field, and to combined P availability and elevated ozone (O 3 ) concentrations (0, 55, 110 and 210 ppb for Scots pine and 0, 40, 75 and 150 ppb for Norway spruce, respectively) for 28 days in controlled laboratory chambers. Compared with HP, the LP treatment reduced Scots pine current-year (C) shoot and root dry masses and Norway spruce total dry mass, whereas the highest O 3 concentrations increased the magnesium concentration of Scots pine C needles and P concentrations of the C needles of both tree species. Chlorophyll a, a+b and carotenoid concentrations of Scots pine C needles were significantly higher in the LP treatment compared with HP under the highest O 3 concentration (210 ppb). In the mesophyll tissue of C needles of both tree species, LP treatment increased the size of mitochondria and elevated O 3 -induced granulation of chloroplast stroma and disintegration of cytoplasm. Exposure to elevated O 3 concentrations increased swelling of chloroplast thylakoids and reduced the amount of vacuolar tannin in the LP Scots pine C needles. The results suggest disturbances in needle photosynthetic machinery due to acute exposure to the combination of elevated O 3 and low P availability. However, clear additive effects were found only in needle P concentrations < 1 mg g -1 in short-term O 3 exposure.  相似文献   

4.
To trace any possible effects of air pollution stress and injuries on trees around a city centre, needles of Scots pine (Pinus Syivestris L.) and Norway spruce (Picea abies (L.) Karst.) from sites of different distances and directions from Stockholm were analysed. Comparisons were made between needles of different ages, a half to three and a half years old (C ‐ C + 3) for pine up to six and a half years old (C ‐ C + 6) for spruce. Epicuticular waxes, studied by scanning electron microscopy (SEM), showed age‐dependent but site‐independent changes. Different age‐patterns were found in the pine and spruce needles but no dust coverings or lesions were detected, irrespective of the sites. A proportionally increasing peroxidase activity (EC 1.11.1.7) with increasing needle‐age up to the third year was observed in both species. No certain indication of site‐effects, expressed by an unproportional increase of the enzyme activity with increasing needle‐age could be found. Chlorophyll a and b, phaeophytin a and b and carotenoid analyses on the corresponding materials only indicated disturbances in trees from some scattered sampling plots. Thus, neither could the pigment analyses reveal any signs of a general pollution stress in pine and spruce trees from the area in question.  相似文献   

5.
JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

6.
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings were grown for 50 days in growth chambers in an ambient or twice ambient carbon dioxide concentration ([CO2]) at a day/night temperature of 19/12 degrees C or 23/16 degrees C. Although elevated [CO2] (EC) had only slight effects on the growth parameters measured, elevated temperature (ET) increased above ground dry mass of both species. Among treatments, biomass accumulation of both species was greatest in the combined EC + ET treatment. The EC treatment induced thylakoid swelling and increased numbers of plastoglobuli observed in Scots pine needles. Although EC had little effect on Rubisco protein or N concentration of needles, ET had a large effect on N-containing compounds and enhanced N allocation from 1-year-old needles. Terpenoids were more responsive to EC and ET than total phenolics. Generally, terpene concentrations were reduced by EC and increased by ET. Increased terpenoid concentrations in response to ET might be associated with thermotolerance of photosynthesis. In Norway spruce, EC decreased total phenolic concentrations in needles, probably as a result of increased growth. We conclude that, in seedlings of these boreal species, the effects of elevated [CO2] on the studied parameters were small compared with the effects of elevated temperature.  相似文献   

7.
Pensa M  Jalkanen R 《Tree physiology》2005,25(10):1265-1271
Latitudinal variation in needle longevity of conifers in response to climatic variability is a well-known phenomenon, but its significance has only rarely been studied. Scots pine (Pinus sylvestris L.) stands were investigated in four locations in Lapland (northern Finland and northern Sweden, 67-68 degrees N) and in four locations in Estonia (59 degrees N) to test the hypothesis that plasticity in needle longevity results in similar needle biomass per foliated shoot length across latitudes. The needle-trace method (NTM) revealed the dynamics of needle fascicles attached to stem shoots. Long-term mean needle age was 2 years greater in Lapland than in Estonia. In both regions, mean needle age was strongly and negatively related to yearly needle-fascicle production rate relative to the number of needles on the same shoot axis. Although significantly fewer needle-fascicles were produced annually in trees in Lapland than in Estonia, the overall number of fascicles attached to the stem shoots, needle-fascicle density and individual needle dry mass did not differ between regions. Consequently, needle biomass per foliated shoot length was similar in trees in both regions. Thus, our results support the theory that plasticity in needle longevity helps Scots pine to compensate for reduced needle production so that the same foliar biomass per shoot is retained under a wide range of growth conditions.  相似文献   

8.
We previously traced 10B-enriched boric acid from shoots to roots to demonstrate the translocation of boron (B) in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. To gain a more detailed understanding of B translocation, we sought: (1) to demonstrate B retranslocation directly, by showing that foliar-applied 10B is located in the new growth after dormancy; and (2) to assess whether shoot-applied B affects growth in the long term. We applied 10B-enriched boric acid to needles of Scots pine and Norway spruce seedlings. After a dormancy period and 9 weeks of growth, small but significant increases in the 10B isotope were found in the new stem and needles of both species. In Scots pine, the total B concentration of the new stem was also increased. Both species contained polyols, particularly pinitol and inositol. Boron-polyol complexes may provide a mechanism for mobilizing B in these species. To determine the long-term effects of applied B, seedlings were grown for two growing seasons after the application of 10B to shoots. In Norway spruce, the proportion of 10B in the root systems and current needles of the harvest year was slightly higher than in the controls, and in Scots pine root systems, marginally so. The B treatment had no effect on growth of Norway spruce seedlings. In Scots pine seedlings, the B treatment caused a 33% increase in total dry mass and significantly increased the number of side branches.  相似文献   

9.
Cytological injuries in needles of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] were studied at light and electron microscope level in northern Finland. Needle samples were taken from fertilized (mainly with nitrogen) and nonfertilized trees during winter 1980. The results are discussed in relation to the severe climate and growth response of the trees.  相似文献   

10.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

11.
Influence of tree-to-tree competition on nutrient resorption is still not well understood. To contribute filling this gap, we assessed the effects of thinning (0, 20 and 30 % extraction of basal area) and canopy type (beech–pine vs. pine subplots) on needle dry weight, needle length, nutrient content and nutrient resorption (N, P and K) in Scots pine (Pinus sylvestris) needles of different cohorts, 8–9 years after thinning. Thinning and canopy type often concurrently affected needle morphology (e.g. lighter and shorter needles in 30 % thinning, heavier and longer needles in pine canopy on the first year of study) and nutrient content (e.g. decrease in N, P and K in 30 %; N, P and K higher in pine canopy on the first year of study). However, effects of thinning appeared only in older cohorts for N and P but were found in old and new cohorts for needle dry weight, needle length and K, indicating that some thinning effects remained after 8–9 years. Canopy effects on morphology and nutrient content were more frequent in recent cohorts, in relation to an increase in beech cover over time. While no clear effects of thinning on the nutrient resorption were observed, higher values were observed in the pine than in the mixed canopy, which could be related to a higher Scots pine stem growth in those patches. The observed differences between treatments will likely increase as the stand develops, probably leading to beech trees being dominant, and as future thinnings are carried out.  相似文献   

12.
Needle samples of six provenances each of lodgepole pine (Pinus contorta Dougl. var. latifolia) and Scots pine (Pinus sylvestris L.), originating from latitudes 55 to 68 degrees N in western Canada and northern Sweden, were collected during the autumn and subjected to freezing temperatures in the range of -8 to -29 degrees C on three occasions in September and October. Needle injury was assessed by two different methods: visual assessment and chlorophyll a fluorescence. Chlorophyll a fluorescence data showed a highly significant correlation with the visual assessments of injury, indicating that the technique can be used as a simple, non-destructive and objective measure for rapid detection of freezing injury and for ranking of needle materials with respect to development of cold acclimation. The analyses showed that, during the autumn, lodgepole pine needles were more hardy and acclimated to low temperatures earlier than Scots pine needles.  相似文献   

13.
The objective of this study was to compare the survival and volume of conifer stands at 26 years of age with their status at planting. Survival, growth and damage were studied in eight clear felled stands regenerated in 1972. Five of the areas were planted with Norway spruce (Picea abies (L.) Karst.) and three with Scots pine (Pinus sylvestris L.). The plantings were examined in 1972 and 1974. In 1974, the number of living undamaged planted seedlings was low (10–15%). However, the number of undamaged seedlings was supplemented by naturally regenerated conifer and birch seedlings. The total number of undamaged seedling in 1974 was equivalent to 20–30% of the number of seedlings planted. In 1998, the main species in three stands had changed from Norway spruce to Scots pine, and in one stand from Norway spruce to birches. Actual volume in 1998 for the stands was compared to stand volume generate according to five scenarios based on recommended and actual seedling number in 1972 and 1974. The actual volume was 64% of that expected if the recommended number of trees had been planted. Naturally regenerated Scots pine and Norway spruce increased stand density in 1998. The actual volume was 37% higher than the average volume in the surrounding county. On average, 36% of the trees were damaged. More than 50% of the total damage was caused by moose (Alces alces L.). For Scots pine, moose or other browsing animals damaged 30% of the trees. The results of this study indicate that the 1998 volume was higher than expected, considering the low number of undamaged seedlings in 1974. This was mainly due to the large amount of naturally regenerated plants. In addition, the results indicate that the volume could have been higher if the initial conditions had been better. Despite the low number of undamaged seedlings in 1974, seven of the eight studied stands produced a higher volume than the average stand for the region. In practise, high numbers of seedlings should be planted on scarified areas. In most cases there will be a supply of naturally regenerated seedlings.  相似文献   

14.
Norway spruce trees in the subalpine forests of the European Alps are frequently attacked by the needle rust Chrysomyxa rhododendri. The obligate parasite undergoes a complex life cycle with a host shift between rhododendrons (Rhododendron sp.) and Norway spruce [Picea abies (L.) Karsten] and causes a yellowing and defoliation of the current-year needles in summer. Infected trees show several anatomical, morphological and physiological modifications, including a decrease in pigment content and net photosynthesis of infected needles, lower biomass production and reduced radial and height growth. The consequences are diminished timber yield and cripple growth. Because of repeated heavy infections in recent years, forest managers report increasing difficulties in both natural regeneration and afforestation at high elevation sites, where rhododendrons occur. This review gives a summary of the present knowledge about the effects of C. rhododendri infections on Norway spruce, including so far unpublished findings and with particular attention to the phenomena of resistant trees. Implications for subalpine forests and counter strategies are discussed.  相似文献   

15.
The effect of soil scarification on decomposition of green Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) needles and mineral nutrient release was investigated. The treatments studied were ploughing, disk trenching, mound on inverted humus and untreated control. The study was conducted on two clear‐felled sites with different ground moisture conditions, located in south Sweden. The needles decomposed and released their contents of N and Ca considerably faster on scarified areas than on untreated ones. For P, Mg and especially K, only minor differences between scarified and untreated areas were established. At the wet site, needle decomposition and nutrient mineralization were generally affected to the same extent by all three scarification methods studied. At the dry to fresh site, mounding and ploughing enhanced needle decomposition and nutrient mineralization more than disk trenching. The effect of different scarification methods on the long‐term production capacity of soils is discussed.  相似文献   

16.
The spatial distribution of plant-available mineral nutrients in forest soils is often highly heterogeneous. To test the hypothesis that local nutrient enrichment of soil leads to increased root proliferation in the nutrient-rich soil zone, we studied the effects of nutrient enrichment on the growth and nutrient concentrations of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) roots. Three-year-old seedlings were grown for 9 months in split-root containers filled with nutrient-poor forest mineral soil, with one side supplemented with additional mineral nutrients. Root dry weight and root length in Scots pine and Norway spruce were increased in the nutrient-supplemented soil compared with the nonsupplemented side, whereas root growth in Douglas-fir was unaffected by nutrient enrichment. Of the three species examined, Norway spruce exhibited the highest root and shoot growth and the highest nutrient demand. Specific root length (m g(-1)) and the number of root tips per unit root length were not affected by local nutrient addition in any of the species. Despite increased root growth in Norway spruce and Scots pine in nutrient-supplemented soil, their root systems contained similar nutrient concentrations on both sides of the split-root container. Thus, coniferous trees may respond to local nutrient supply by increased root proliferation, but the response varies depending on the species, and may only occur when trees are nutrient deficient. As a response to local nutrient enrichment, increases in root dry matter or root length may be better indicators of pre-existing nutrient deficiencies in conifers than increases in root nutrient concentrations.  相似文献   

17.
Conidia of Gremmeniella abietina infected and caused disease symptoms in annual shoots of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings. In Norway spruce shoots the infection remained largely latent, with only a few seedlings showing symptoms. Mycelial growth inside the shoots was faster in Scots pine than in Norway spruce and was favoured by low temperature in both hosts. The shoots of Norway spruce seedlings had higher endophyte populations than those of Scots pine, and the populations were decreased by low temperatures. Reductions in the normal epiphytic or endophytic flora by acid mist treatments seemed to favour the development of G. abietina.  相似文献   

18.
Roots of 1‐year‐old containerized seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) were experimentally frozen in December. The seedlings were then grown for 3 weeks in a growth chamber and evaluated with regard to root growth capacity (RGC) and shoot elongation. The subsequent RGC of Scots pine declined as root zone temperatures were lowered from ‐6°C to ‐11°C and from ‐11°C to ‐16°C. Almost no root growth was observed after exposure to ‐20°C. Shoot growth was also negatively affected by low root temperatures but less than root growth. Low root temperatures did not affect Norway spruce as much as Scots pine, although root and shoot growth of Norway spruce were reduced after exposure to the lowest test temperatures (‐16°C and ‐20°C). The length of exposure, ranging between 1 and 8 hours had no effect on subsequent growth.  相似文献   

19.
Photosynthesis in evergreen conifers is characterized by down-regulation in autumn and rapid up-regulation in spring. This seasonal pattern is largely driven by temperature, but the light environment also plays a role. In overwintering Scots pine (Pinus sylvestris L.) trees, PSII is less down-regulated and recovers faster from winter stress in shaded needles than in needles exposed to full sunlight. Because the effect of light on the seasonal acclimation of PSII has not been quantitatively studied under field conditions, we used the rate constants for sustained thermal energy dissipation and photochemistry to investigate the dynamics and kinetics of the seasonal acclimation of PSII in needles exposed to different light environments. We monitored chlorophyll fluorescence and needle pigment concentration during the winter and spring in Scots pine seedlings growing in the field in different shading treatments, and within the crowns of mature trees. The results indicated that differences in acclimation of PSII in overwintering Scots pine among needles exposed to different light environments can be chiefly attributed to sustained thermal dissipation. We also present field evidence that zeaxanthin-facilitated thermal dissipation and aggregation of thylakoid membrane proteins are key mechanisms in the regulation of sustained thermal dissipation in Scots pine trees in the field.  相似文献   

20.
Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号