首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A dominant or partially dominant gene for sensitivity to photoperiod in mungbean strain PI 180311 was identified and labeled Ps. The gene was expressed when strain P1180311, or crosses involving PI 180311 were grown in 16- or 14-hour photoperiods but was not expressed when the populations were grown in a 12-hour photoperiod or in the field at Columbia, Missouri. Dominance × dominance epistatic effects were indicated as governing days to flower in absence of the obvious effect of the Ps gene. A gene A for purple hypocotyl was independent of the gene Ps.Contribution No. 7894 from the Missouri Agriculture Experiment Station.  相似文献   

2.
Summary Forty strains of mungbeans, including all of the entries in the 1st and 2nd International Mungbean Nurseries (IMN), were grown in plant growth chambers in photoperiods of 12, 13, 14, 15, and 16 hours and mean temperatures of 18, 23, and 28°C. Results show that (1) mungbean strains differ in their flowering response to photoperiod and to mean temperature; (2) increasing the photoperiod of reducing the mean temperature delayed flowering, the amount of delay varied with the strain: (3) variations in mean temperature may alter the effect of the photoperiod on flowering in particular strains. Twenty-five strains which flowered in all photoperiod-temperature treatments could be divided into four groups, each group being successively later in flowering. The remaining 15 strains could be divided into four groups, according to their failure to flower within 105 days in specific photoperiod-temperature treatments. Flowering response in the growth chamber is useful in explaining flowering response in the 2nd IMN at three locations varying from 14°N to 49°N latitude.Contribution No 7516 from the Missouri Agricultural Experiment Station.  相似文献   

3.
Summary Mungbean is an important source of vegetable protein for the growing population in many developing countries of South East Asia. Its production is limited due to its susceptibility to diseases and insect pests besides many other undesirable agronomic traits. Strategies for increasing and stabilising its production have been to develop varieties resistant to diseases, pests and with other desirable agronomic traits. Genetic improvement of this crop by classical breeding has met with limited success due to the lack of sufficient and satisfactory level of genetic variability within germplasm. Recent advances in biotechnology have offered the opportunity to develop new germplasms. The development of such technologies largely depends on efficient regeneration of sexually mature plants from organs, tissues and protoplasts. An overview of plant regeneration by direct or indirect organogenesis and embryogenesis is presented. The use of in vitro and molecular techniques such as somaclonal variation, screening for various desirable traits, interspecific crossing and genetic transformation to supplement conventional breeding, for genetic improvement of this crop is described. The advantages and limitations of these techniques along with directions for future research are discussed.  相似文献   

4.
Phytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek]. Quantitative trait loci (QTL) were identified for phytic acid P (PAP), total P (TP), and inorganic P (IP) in mungbean seeds and seedlings, and for flowering, maturity and seed weight, in an F2 population developed from a cross between low PAP cultivated mungbean (V1725BG) and high PAP wild mungbean (AusTRCF321925). Seven QTLs were detected for P compounds in seed; two for PAP, four for IP and one for TP. Six QTLs were identified for P compounds in seedling; three for PAP, two for TP and one for IP. Only one QTL co-localized between P compounds in seed and seedling suggesting that low PAP seed and low PAP seedling must be selected for at different QTLs. Seed PAP and TP were positively correlated with days to flowering and maturity, indicating the importance of plant phenology to seed P content.  相似文献   

5.
Phytic acid (PA) is the main storage organic form of phosphorus (P) in seeds of cereals and legumes. It is a strong inhibitor against the absorption of nutrients in monogastric animals. The objective of this study was to determine the variation of total P (TP) in seeds of mungbean germplasm and investigate the inheritance of seed P compound and phytate contents. TP content in seeds of 250 accessions were found to range from 2.34 to 5.75 mg/g. The inheritance was studied in the F2 population derived from a cross between 2 accessions with the lowest and highest PA contents, viz. V1658BBR and V1141BG. Broad-sense heritability estimates of TP, inorganic P (IP), and phytate P (PhyP) contents were 80.8, 78.6 and 80.7%, respectively. The 9:7 segregation ratio of F2 population in this study indicated that high TP and PhyP were controlled by dominant alleles at 2 independent loci of major genes showing duplicated recessive epistasis.  相似文献   

6.
The study was an exploratory in nature conducted using a large number of mungbean (Vigna radiata L. Wilczek) genotypes of diverse growth habit and adaptive characters. Soil flooding induced changes in eleven morpho-physiological characters of one-week old seedlings of 530 mungbean genotypes was compared in the study. The first and second principal components (PC) of principal component analysis (PCA) results accounted for 58 and 14%, respectively of the total variations of mungbean genotypes. The variation for first PC was composed mainly of relative dry weight (DW) of shoot and leaf as well as total DW. The second PC distinguished the genotypes that produced larger root system. There were seven clusters distinguished in the cluster analysis. The genotypes in cluster 4 and 6 performed better in respect of relative total DW and relative root DW, respectively and hence having flooding tolerance. The genotypes in clusters 7 and 1 performed very poorly and those of under clusters 3, 2 and 5 were moderate to poor. D2 analysis indicated that the clusters differed significantly from each other. Discriminant function analysis (DFA) reaffirmed that more than 90% of the genotypes were correctly assigned to clusters. Both PCA and DFA confirmed that the relative total DW followed by shoot and leaf DW as well as leaf area were the major discriminatory variables and the root : shoot ratio and root DW were the secondary important variables to distinguish genotypes into groups. In this study, multivariate analyses were used in identifying the mungbean genotypes of desirable traits for flooding tolerance.  相似文献   

7.
Summary Extent of heterosis for seed yield is an indicator for transgressive segregation in cross of self-pollinated crops. However, the extent of heterosis is thought to be related to the genetic diversity among the parents. Isoenzymic variation was used for estimating the genetic diversity. Eight varieties of green gram (Vigna radiata) were characterized for esterase, amylases, phosphatases, catalase and peroxidase isoenzymes. Differences in these systems were used to calculate a diversity index (D.I.). Hybrids produced from an inbred pair having higher D.I.'s outyielded those with low D.I.'s. However, the correlation (r) between D.I. and heterosis for seed yield was not consistent in different seasons but some of the desirable crosses could be singled out on the basis of D.I.  相似文献   

8.
K. S. Reddy 《Plant Breeding》2009,128(5):521-523
Powdery mildew (PM) is one of the important foliar diseases of mungbean. Resistance sources have been identified in India and the inheritance studies showed that complete resistance (RO) was controlled by two dominant genes, Pm1 , Pm2 . The breakdown of complete resistance (RO) into moderate resistance (R2) by race-2 (Akola) has been reported. It is assumed that the change in resistance reaction is due to a mutation in the pathogen. The present investigation was carried out with a view to screen germplasm, cultivars and mutants for identification of complete resistance (RO) sources against race-2 and to study their inheritance. 'Mulmarada', a local mungbean cultivar from Maharashtra state of India was identified as a complete resistance (RO) source for race-2. The inheritance of Mulmarada's resistance (RO) was studied. The F1 and the segregation in F2 and F3 showed that the complete resistance (RO) in 'Mulmarada' is controlled by a single dominant gene, which is different from the earlier identified Pm1 and Pm2 resistance genes. Mulmarada's resistance gene is designated as Pm3 for PM resistance.  相似文献   

9.
Six intervarietal crosses involving two resistant and three susceptible genotypes of mungbean were attempted with the objectives to determine the mode of inheritance of gene‐specific Mungbean Yellow Mosaic Virus (MYMV) resistance. An infector row technique along with artificial inoculation was used for evaluating parents, F1, F2 and F3 plants for MYMV resistance. Disease scoring for MYMV indicated that F1s were highly susceptible as were the susceptible parents while resistant parent exhibited resistant reaction. The F2 progeny segregated in the ratio of 9 S:3 MS:3 MR:1 R suggesting that the resistance was governed by digenic recessive genes (rm1 and rm2). When one gene (rm1) was present in the homozygous recessive condition in different plants, it conferred moderately susceptible (MS) reaction, whereas when other gene (rm2) was in homozygous condition, moderately resistant (MR) reaction was obvious. When both genes (rm1 and rm2) were present together in the homozygous recessive condition, resistant reaction (R) was observed. The F2 segregation explained on the basis of phenotypic expression was further confirmed by F3 segregation.  相似文献   

10.
S. P. Mishra    A. N. Asthana  Lallan  Yadav 《Plant Breeding》1988,100(3):228-229
Inheritance of Cercospora leaf spot resistance in mungbean was studied in 20 crosses involving crosses of resistant × susceptible, resistant × resistant, susceptible × susceptible lines. 3:1 ratio was observed in all 14 F2s involving resistant × susceptible parents. The inheritance of Cercospora leaf spot resistance is thus controlled by a single recessive gene. Our results are contradictory to observations of Thaklk et al. (1977 a, b) who found monogenic dominant inheritance of Cercospora leaf spot resistance in mungbean.  相似文献   

11.
Summary Studies on the inheritance pattern of bacterial leaf spot (BLS), yellow mosaic (YM) and Cercospora leaf spot (CLS) reactions in crosses of BLS and YM resistant/tolerant but CLS susceptible × CLS resistant but BLS and YM susceptible parents indicated that resistances to BLS and CLS were governed by single dominant genes, whereas YM tolerance was a monogenic recessive character. The studies also indicated that these three genes were inherited independently. The simple inheritance pattern and independent assortment of the genes governing resistance/tolerance to these diseases suggest that the usual breeding methods will be adequate to develop multi-disease resistant mungbean cultivars.Paper XII in the series Studies on resistance in crops to bacterial diseases in India.  相似文献   

12.
13.
Powdery mildew disease caused by the fungus Erysiphe polygoni D.C. is an important disease of mungbean. Loss can be more serious if the disease attacks at seedling stage. In this paper, we report genetics of the resistance to powdery mildew disease in mungbean using a recombinant inbred line (RIL) population derived from a cross between the susceptible parent “KPS1” and the resistant parent “VC6468-11-1A”. Five hundred and ninety-two RILs were developed by random descending from 200 F2 plants. The population was evaluated against the fungus in field and greenhouse conditions. The data were analyzed following a nested design for selfpollinating plants to determine genetic heritability of powdery mildew resistance. The severity of the infestation was measured by using disease index (DI) and area under disease progress curve (AUDPC). Both values showed continuous distribution in the RILs. Under field conditions, the narrow-sense heritability of DI and AUDPC were 0.67 and 0.48, respectively. While under greenhouse conditions, the values were 0.68 and 0.62, respectively. The results suggested that the resistance is quantitatively inherited with high heritability and predominantly additive gene action. To develop powdery mildew-resistant mungbean varieties, the plant breeder can select for resistant lines by using standard selection procedures for self-pollinating crops, viz. pedigree selection, bulk selection, early generation testing, and single-seed descent.  相似文献   

14.
Yellow mosaic disease (YMD) caused by mungbean yellow mosaic virus (MYMV) is the most important disease of mungbean, causing great yield loss. The present investigation was carried out to study the inheritance and identify molecular markers linked with MYMV resistance gene by using F1, F2 and 167 F2 : 8 recombinant inbred lines (RILs) developed from the cross ‘TM‐99‐37’ (resistant) × Mulmarada (susceptible). The F1 was susceptible, F2 segregated in 3S:1R phenotypic ratio and RILs segregated in 1S:1R ratio in the field screening indicating that the MYMV resistance gene is governed by a single recessive gene. Of the 140 RAPD primers, 45 primers showing polymorphism in parents were screened using bulked segregant analysis. Three primers amplified specific polymorphic fragments viz. OPB‐07600, OPC‐061750 and OPB‐12820. The marker OPB‐07600 was more closely linked (6.8 cM) with a MYMV resistance gene as compared to OPC‐061750 (22.8 cM) and OPB‐12820 (25.2 cM). The resistance‐specific fragment OPB‐07600 was cloned, sequenced and converted into a sequence‐characterized amplified region (SCAR) marker and validated in twenty genotypes with different genetic backgrounds.  相似文献   

15.
A species level germplasm collection representing 76% of known taxa in the genus Vigna subgenus Ceratotropis was evaluated for resistance to two species of bruchid beetles, Callosobruchus chinensis and C. maculatus. Seven taxa consisting of 29 accessions were found to be resistant to C. chinensis and 4 taxa consisting of 24 accessions were found to be resistant to C. maculatus. This compared with no resistant accessions being found in several hundred landrace accessions of mungbean, V. radiata var. radiata, in the same subgenus. Sometimes resistance was found in all accessions of a particular taxon, such as complete resistance to both C. chinensis and C. macualtus in V. umbellata. Other taxa showed intra taxon variation for resistance such as V. reflexo-pilosa andV. minima. The levels and patterns of resistance among taxa were diverse. The results suggest that various factors cause resistance to bruchid in the subgenus Ceratotropis. While the number of eggs laid on seeds generally reflected seed size, one small seeded cultivar of V. mungo var. mungo, black gram, had an unusually high number of eggs laid per seed. No correlation was found between seed size and levels of resistance. The species level germplasm collection, which reflects the core collection concept in trying to maximize genetic diversity in a limited number of accessions, has enabled a large number of potentially useful sources of resistance to bruchid beetles to be found efficiently. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Seedcoat colour in greengram (Vigna radiata (L.) Wilczek.) is a useful marker for genetic studies and varietal identification. Its mode of inheritance was examined in five crosses among nine parents which differed for seedcoat colour. Four of the parents had sap green seedcoat colour while the others had raw sienna, brownish green, densely black spotted, black and greenish yellow seedcoat colour, respectively. At the F2 generation, no more than 20 different colour classes were observed. The segregation in F3 and backcross generations indicated that at least five major genes were involved in seedcoat colour inheritance. Sap green seemed to be dominant over raw sienna. The segregation ratios further indicated the role of non-allelic gene interactions (epistasis) in inheritance of seedcoat colour. Gene symbols were assigned to each colour and genotypes to each parent.  相似文献   

17.
Summary The inheritance of seed weight in cowpea was examined in a field planting of the parents, reciprocal F1s, F2s and backcrosses to both parents of a cross between TVu 1977-OD (small seeded) and ACC 70002 (large).Seed weight was inherited quantitatively and small seed was partially domiminant to large seed size. Gene action was predominantly additive but dominance and additive × additive epistatic effects were also significant.Broad and narrow sense heritabilities were 85.1±5.3% and 75.4±18.6% respectively. The minimum number of loci involved in the inheritance of seed size was eight, and each gene pair contributed up to 1.02 g increase to seed weight. The estimate of genetic advance from F2 to F3 generations with 5% selection intensity was 3.58 g.International Institute of Tropical Agriculture, Semi-Arid Food Grain Research and Development Project/National Cowpea Improvement Program, B.P. 1783, Ouagadougou, Upper Volta.Department of Primary Industries, Hermitage Research Station, Warwick 4370, Queensland, Australia.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT Center, Patancheru, P.O. 502 324, A.P., India.  相似文献   

18.
The influence of different weed types (grass, broadleaved and sedge species) on growth and yield parameters of mungbean ( Vigna radiata L. Wilczek) was evaluated under field conditions. The presence of all types of weeks had the most significant effect on growth and yields of mungbean. Broadleaved species alone had a greater adverse effect than grasses, and the influence of sedges was the lowest. The adverse effect of weeds was most prominent on vegetative growth. The influence on yield components reduced with time. However, the adverse impact of weeds on yields was similar to that on vegetative growth. A significant correlation between weed biomass and yield loss was observed. The study indicated the critical competitive period to be in the vegetative phase. Some possible implications for selective weeding are presented.  相似文献   

19.
The effect of water stress and its subsequent recovery on the photosynthesis, productivity and water status, was examined in three mungbean varieties ( Vigna radiata L. Wilczek) i.e. PS 16, P 105 and Pusa Baisakhi. The variety P 105 was found relatively less susceptible to water stress compared to high susceptibility in Pusa Baisakhi and PS 16. The adverse effect of stress was comparatively higher at the post-flowering and pod development stages. It was observed that variety P 105 had inherently maintained higher water status by retaining higher water potential and water content under water stress condition, thereby effectively reducing the water loss. The higher transpiration rate in this variety regulates the flow of water within the plant. This type of regulation of water flow and maintenance of high water status in P 105 helped to resist the adverse effect of water stress on photosynthesis and productivity. Such adaptation mechanism was not observed in varieties PS 16 and Pusa Baisakhi. The recover) mechanism was, however, operated efficiently in susceptible varieties PS 16 and Pusa Baisakhi particularly for recouping the vegetative growth, but its effect could not be retained for reproductive characters, wherein also variety P 105 due to its efficient partitioning system yielded better than other cultivars.  相似文献   

20.
王丽侠  程须珍  王素华  刘岩 《作物学报》2013,39(7):1172-1178
种皮色泽和花青甙显色是绿豆(Vigna radiata)的重要性状,可在纯度鉴定、辅助选择育种等研究中发挥作用。本研究以绿豆核心种质种皮色泽、花青甙显色性状分析为基础,配制杂交组合,根据不同世代的表型调查,探讨绿豆种皮颜色、光泽和花青甙显色等性状的遗传特征。结果表明,绿种皮对黄种皮为单基因控制,绿色为显性;黑种皮对绿种皮为单基因控制,黑色为显性。绿豆种皮光泽不符合简单性状的遗传规律,且不同组合间后代的表型分布存在差异。绿豆种皮色与光泽间并无连锁关系。植株各部位的花青甙显色对不显色为显性,均符合简单单基因的分离规律。进一步分析表明,不同部位花青甙显色的相关性不一致,其中控制幼茎色基因与控制复叶基部花青甙显色基因紧密连锁在一起,或为一个基因,而控制龙骨瓣花青甙显色的基因与其他相关基因的遗传连锁程度最低。本文对绿豆种皮相关性状及植株花青甙显色性状的遗传分析将为这些性状的育种利用及深入研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号