首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 347 毫秒
1.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

2.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

3.
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores at 11 locations along the New South Wales coast, Australia, were selected to investigate the chemical behavior of Zn, Mn, Cr, Co and Pb in these soils. The amount of HCl-extractable Mn was much smaller than the mean value of the total Mn documented for other soils. This may be attributed to enhanced mobilization of Mn from the soils under the extremely acidic and seasonally flooded conditions encountered in the investigated soils. The pH-dependency of soluble Zn and Mn was strongly affected by the availability of acid reactive Zn and Mn compounds. There were fairly good relationships between soluble Zn and acid reactive Zn compounds, and between soluble Mn and acid reactive Mn compounds. Soluble Zn and soluble Mn concentrations were important controls on exchangeable Zn and Mn concentrations, respectively. In contrast to the suggestion by other authors that adsorption of Co was closely associated with Mn oxides present in soils, the exchangeable Co in the investigated acid sulfate soils was not clearly related to the abundance of Mn minerals. In addition to the fact that there are few Mn minerals present in the soils, this might also be because the availability of cation exchange sites on the crystal surfaces of Mn oxides was reduced under extremely acidic conditions.  相似文献   

4.
茶树种植对中国东部黄棕壤酸化的影响   总被引:11,自引:0,他引:11  
Soil acidification is an important process in land degradation around the world as well as in China. Acidification of Alfisols was investigated in the tea gardens with various years of tea cultivation in the eastern China. Cultivation of tea plants caused soil acidification and soil acidity increased with the increase of tea cultivation period. Soil pH of composite samples from cultivated layers decreased by 1.37, 1.62 and 1.85, respectively, after 13, 34 and 54 years of tea plantation, as compared to the surface soil obtained from the unused land. Soil acidification rates at early stages of tea cultivation were found to be higher than those at the later stages. The acidification rate for the period of 0-13 years was as high as 4.40 kmol H+ ha-1 year-1 for the cultivated layer samples. Soil acidification induced the decrease of soil exchangeable base cations and base cation saturation and thus increased the soil exchangeable acidity. Soil acidification also caused the decrease of soil cation exchange capacity, especially for the 54-year-old tea garden. Soil acidification induced by tea plantation also led to the increase of soil exchangeable Al and soluble Al, which was responsible for the Al toxicity to plants.  相似文献   

5.
不同提取剂连续提取下某酸性硫酸盐土壤酸的释放   总被引:5,自引:3,他引:2  
An acid sulfate soil sample was successively extracted with deionized water,1 molL^-1 KCl and 0.0005mol L^-1 Ca(OH)2 solutions.The results showed that only very small amounts of acidity were extracted by deionized water,possibly through slow jarosite hydrolysis.Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH^- being neutralized by the acid released.Successive extration of the sample with KCl removed the largest amounts of acidity from the sample.However,it is likely that the major form of acidity released by KCl extraction was exchangeable acidity.The results also show the occurrence of low or non charged Al and Fe species in water and Ca(OH)2 extracts after first a few extractions .It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.  相似文献   

6.
工业副产品改良土壤酸度和铝毒的潜力   总被引:12,自引:0,他引:12  
It is imperative to choose some low cost, available and effective ameliorants to correct soil acidity in southern China for sustainable agriculture. The present investigation dealt with the possible role of industrial byproducts, i. e., coal fly ash (CFA), alkaline slag (AS), red mud (RM) and phosphogypsum (PG) in correcting acidity and aluminum (Al) toxicity of soils under tea plantation using an indoor incubation experiment. Results indicated that CFA, AS and RM increased soil pH, while PG decreased the pHs of an Ultisol and an Alfisol. The increment of soil pH followed the order of RM > AS > CFA. All the industrial byproducts invariably decreased exchangeable Al and hence increased exchangeable Ca, Mg, K and Na and effective cation exchange capacity. RM, AS and lime decreased total soluble Al, exchangeable Al and organically bound Al. Formation and retention of hydroxyl-Al polymers were the principal mechanism through which Al phytotoxicity was alleviated by application of these amendments. In addition, the heavy metal contents in the four industrial byproducts constituted a limited environmental hazard in a short time at the rates normally used in agriculture. Therefore, the short-term use of the byproducts, especially AS and RM, as amendments for soil acidity and Al toxicity in acid soils may be a potential alternative to the traditional use of mined gypsum and lime.  相似文献   

7.
《土壤圈》2016,(6)
The occurrence of nitri?cation in some acidic forest soils is still a subject of debate.Identi?cation of main nitri?cation pathways in acidic forest soils is still largely unknown.Acidic yellow soil(Oxisol) samples were selected to test whether nitri?cation can occur or not in acidic subtropical pine forest ecosystems.Relative contributions of autotrophs and heterotrophs to nitri?cation were studied by adding selective nitri?cation inhibitor nitrapyrin.Soil NH~+_4-N concentrations decreased,but NO~-_3-N concentrations increased signi?cantly for the no-nitrapyrin control during the ?rst week of incubation,indicating that nitri?cation did occur in the acidic subtropical soil.The calculated net nitri?cation rate was 0.49 mg N kg~(-1)d~(-1)for the no-nitrapyrin control during the ?rst week of incubation.Nitrapyrin amendment resulted in a signi?cant reduction of NO~-_3-N concentration.Autotrophic nitri?cation rate averaged0.28 mg N kg~(-1)d~(-1)and the heterotrophic nitri?cation rate was 0.21 mg N kg~(-1)d~(-1)in the ?rst week.Ammonia-oxidizing bacteria(AOB) abundance increased slightly during incubation,but nitrapyrin amendment signi?cantly decreased AOB amo A gene copy numbers by about 80%.However,the ammonia-oxidizing archaea(AOA) abundance showed signi?cant increases only in the last 2weeks of incubation and it was also decreased by nitrapyrin amendment.Our results indicated that nitri?cation did occur in the present acidic subtropical pine forest soil,and autotrophic nitri?cation was the main nitri?cation pathway.Both AOA and AOB were the active biotic agents responsible for autotrophic nitri?cation in the acidic subtropical pine forest soil.  相似文献   

8.
In the present work, the exchangeable acidity of a red soil colloid and a latosol colloid at different pH during reacting with four neutral salts was measured. The results show that the exchangeable acidity increased with increasing amounts of the neutral salts added, and the relation between them was almost linear. When the amount of the neutral salt added was lower than a certain value, the slope of the line was high, and the slope turned low when the amount exceeded that value, so there was a turning point in each line. The addition amounts of the neutral salts for the turning points were affected by the cation species of the neutral salts, but pH had less effect on them. After the turning points occurred, the exchangeable acidity of the red soil colloid still gradually increased with the addition amounts of the neutral salts, but that of the latosol colloid did not increase any more. The exchangeable acidity in NaClO4, KClO4 and NaCl solutions increased at first, and then decreased with increasing pH, that is to say, peak values appeared. The peak positions of the exchangeable acidity in relation to pH changed with neutral salt solutions and were affected by the surface characteristics of the soil colloids, but not affected by the amounts of the neutral salts added. The exchangeable acidity in the Ba(NO3)2 solution increased continuously with increasing pH. The exchangeable acidity of the red soil colloid was obviously larger than that of the latosol colloid.  相似文献   

9.
PH对红壤微生物生物量碳和生物量磷的影响   总被引:12,自引:2,他引:12  
The impact of pH changes on microbial biomass carbon (Cmic) and microbial biomass phosphorus (Pmic) were examined for 3 red soils under citrus production with different lengths of cultivation. Soil pH significantly affected Cmic and Pmic. The Cmie and Pmic changes, as a function of soil pH, appeared to follow a normal distribution with the original soil pH value at the apex and as pH increased or decreased compared to the original soil pH, Cmic and Pmic declined. Moreover, there were critical pH values at both extremes (3.0 on the acidic side and 8.0 to 8.5 on the alkaline side), beyond which most of microorganisms could never survive. The effect of pH on Cmic and Pmic was also related to the original soil pH. The higher the original soil pH was, the less Cmic or Pmic were affected by pH change. It is suggested that soil microorganisms that grow in a soil environment with a more neutral soil pH range (i.e. pH 5.5-7.5) may have a greater tolerance to pH changes than those growing in more acidic or more alkaline soil pH conditions.  相似文献   

10.
根迹土壤根诱导的化学变化对植物吸收重金属的影响   总被引:4,自引:0,他引:4  
K. R. KIM  G. OWENS  R. NAIDU 《土壤圈》2010,20(4):494-504
It is increasingly recognized that metal bioavailability is a better indicator of the potential for phytoremediation than the total metal concentration in soils; therefore, an understanding of the inffuence of phytoremediation plants on metal dynamics at the soil-root interface is increasingly vital for the successful implementation of this remediation technique. In this study, we investigated the heavy metal and soil solution chemical changes at field moisture, after growth of either Indian mustard (Brassica juncea) or sunffower (Helianthus annuus L.), in long-term contaminated soils and the subsequent metal uptake by the selected plants. In addition, the fractions of free metal ions in soil solution were determined using the Donnan membrane technique. After plant growth soil solution pH increased by 0.2-1.4 units and dissolved organic carbon (DOC) increased by 1-99 mg L-1 in all soils examined. Soluble Cd and Zn decreased after Indian mustard growth in all soils examined, and this was attributed to increases in soil solution pH (by 0.9 units) after plant growth. Concentrations of soluble Cu and Pb decreased in acidic soils but increased in alkaline soils. This discrepancy was likely due to a competitive effect between plant-induced pH and DOC changes on the magnitude of metal solubility. The fractions of free Cd and Zn ranged from 7.2% to 32% and 6.4% to 73%, respectively, and they generally decreased as pH and DOC increased after plant growth. Metal uptake by plants was dependant on the soil solution metal concentration, which was governed by changes in pH and DOC induced by plant exudates, rather than on the total metal concentrations. Although plant uptake also varied with metal and soil types, overall soluble metal concentrations in the rhizosphere were mainly inffuenced by root-induced changes in pH and DOC which subsequently affected the metal uptake by plants.  相似文献   

11.
【目的】酸性硫酸盐土(ASS)酸含量极高,Fe、 Al、 Mn、 As等有毒金属移动性强。许多开发利用方式不仅影响其成土母质黄铁矿的氧化程度并可能带来生态风险,稻作利用被认为是生态风险较低的方式。本研究开展水田和荒地两种利用条件下ASS中酸含量调查研究,探讨稻作利用方式对ASS酸含量的影响。【方法】于2013年8月,在广东省台山市发育于珠江三角洲滨海ASS的水稻田和严重酸化的长期撂荒地采集土壤样品,从土表向下0—300 cm范围内采用宽45 mm的土钻每20 cm采集1个样品,每个剖面共采集15个样品。比较两种利用方式下ASS各土层土壤pH值、 水溶性酸、 交换性酸、 吸持性酸含量,探讨稻作利用方式对ASS酸分布及运移的影响。【结果】珠江三角洲平原ASS的酸含量极高,在0—80 cm深度范围内,总存在酸含量随着土层深度加深而提高,土层深度每下降20 cm,总存在酸含量就平均提高61.62%; 80 cm以下土层总存在酸含量随着土层深度下降逐渐降低,其中80—180 cm深度范围内的降幅较大,土层深度每下降20 cm,总存在酸含量就平均降低61.62%; 当土层深度下降至220 cm时,pH值上升到6.0,酸含量非常低。稻作利用方式显著影响ASS的酸含量及其在土壤剖面的迁移情况。与荒地比较,稻田0—80 cm土层的总存在酸含量显著降低,其中水溶性酸、 交换性酸和吸持性酸含量平均降幅分别为77.01%、 36.75%、 27.74%,水溶性酸和交换性酸的差异达到显著水平,吸持性酸仅在0—20 cm 和60—80 cm土层的差异达到显著水平; 100—120 cm深度范围内稻田的总存在酸含量显著高于荒地,其中水溶性酸、 交换性酸和吸持性酸含量的增幅分别为128.19%、 54.87%、 154.96%,120—240 cm土层中,稻田的交换性酸和吸持性酸含量稍高于荒地,但差异不显著; 240—300 cm土层中,稻田的酸含量与荒地基本相同。总体上,稻作方式改变了ASS中酸在土壤剖面的分布,其中0—80 cm土层中酸含量显著降低,而100—120 cm土层的酸含量显著提高,并以吸持性酸为主要形式固定累积下来。稻田在0—80 cm深度范围内的水溶性硫含量显著低于荒地; 而稻田100—120 cm土层的水溶性硫含量则显著高于荒地,其他土层的差异不显著。水溶性硫与水溶性酸、 交换性酸和吸持性酸均显著正相关,表明稻作利用方式可能通过影响硫酸盐矿物的转化过程而改变ASS的酸分布及迁移。【结论】稻作利用方式显著降低上层土壤酸含量,并加强了酸淋洗下移作用,使100—120 cm土层中的酸含量大幅提高,并以黄钾铁矾等羟基硫酸盐次生矿物暂时吸持固定下来。因此,稻作利用方式有效降低ASS酸含量水平,降低ASS对实地作物的危害作用,但因其强淋溶作用可能加大了对地下水体污染的风险。  相似文献   

12.
酸性硫酸盐土酸消长的水动力机制研究   总被引:8,自引:0,他引:8  
以不同土壤湿度、不同干湿交替周期和原状土自然风干 8个处理进行酸性硫酸盐土 (简称ASS)室内模拟实验。通过对模拟过程内土壤pH、总硫化物性酸度和未氧化双氧水可氧化硫、交换性酸度、硫派生的实际酸度、KCl可提取硫等指标的动态变化过程的跟踪测定和分析显示 ,土壤水分条件是制约ASS酸度及酸形态转化的重要动力机制 ,可导致ASS酸度和酸形态的有规律变化。ASS产酸量和洗酸量受干湿交替周期制约  相似文献   

13.
酸性硫酸盐土的形成、 特性及其生态环境效应   总被引:2,自引:0,他引:2  
酸性硫酸盐土(ASS)是全球沿海周边广泛分布的土壤种类,其铁、 硫元素的生物地球化学过程在全球物质循环过程中具有重要地位,但ASS也是最低质的土壤类型之一。ASS成土母质常形成于富含有机质、 海水浸泡的江口、 海湾等热带亚热带滨海环境,经异化细菌还原海水硫酸盐而形成四方硫铁矿(FeS)、 硫复铁矿(Fe3S4)、 黄铁矿(FeS2)等多种还原态Fe-S矿物沉淀物。ASS成土母质形成过程中的生物活动、 化学反应相当活跃,还原态Fe-S矿物沉淀物将环境中游离的金属、 稀土元素以及痕量元素固定下来,实现海水净化、 金属富集作用。因自然条件变化或者人为干扰等影响,ASS成土母质中的还原态Fe-S矿物被氧化而形成ASS。富含还原性硫化铁矿物的成土母质经一系列复杂反应,被氧化形成氢氧化铁、 酸、 硫酸盐等最终产物,同时伴生多种铁、 硫生物中间产物,以及强酸土壤环境。强酸环境下,铝、 镉、 锰、 砷、 铬等有毒金属的活性大幅提高,而磷、 钾、 锌、 硼等必需营养元素含量显著降低,严重危害实地动植物生长。另一方面,ASS中的酸和活化的重金属随雨水、 径流、 毛细管等途径进入河流、 地下水,威胁周边生态安全。目前,ASS的形成机理已基本被揭示,以及ASS发育过程中的生态环境效应已基本清晰。然而,我国早期学者主要关注ASS的铁、 铝、 硫含量水平,以及ASS发育农田的改良应用,对于ASS的发育过程、 生态功能及风险等尚未形成系统的认识。近年来,随着耕地面积不断萎缩,开发改良ASS等低产田块是提高我国粮食产量水平的重要措施。因此,为了合理开发利用ASS,尽量降低ASS的生态风险,亟需对ASS的形成机理、 发育过程、 土壤特性、 生态环境效应进行全面综述。本文首先对ASS的形成条件与过程进行综述,进一步梳理了ASS中硫的演变和铁的地球化学过程,并着重阐述了ASS的酸性特点,最后对ASS的生态环境效应进行了讨论。结合我国研究现状,展望了进一步研究ASS的主要问题,旨在为科学开发和利用酸性硫酸盐土提供参考。  相似文献   

14.
碱性材料对修复与改良酸性硫酸盐土壤障碍因子的研究   总被引:2,自引:0,他引:2  
易琼  唐拴虎  黄旭  李苹  张发宝  杨少海 《土壤》2016,48(6):1277-1282
采用盆栽试验研究了不同碱性材料(石灰、自研改良剂、钙镁磷肥)对酸性硫酸盐土壤主要障碍因子的修复及其对水稻生长的影响。结果表明,不同碱性材料对土壤理化特性、土壤养分有效性和水稻生长的影响存在明显差异。与常规施肥(NPK)处理相比,自研改良剂(SAM)和钙镁磷肥(CMP1)处理土壤p H增加了1.25和0.92个单位,土壤速效磷含量分别增加了3.1倍和2.6倍,土壤有效铁、有效锰、交换性H+、Al3+含量均大幅下降。SAM与CMP1处理通过提供足够的有效磷并补充钙、镁等元素,有效改善了根系生长环境,从而有效控制铁、锰、铝等元素向地上部转运,进而对作物的生长起到促进作用。SAM和CMP1处理较NPK处理有效促进了关键生育期水稻根系活力并显著增加了水稻籽粒产量,增幅分别达121.1%和105.1%。石灰效果次之。综上,初步认为碱性材料改良酸性硫酸盐土壤的关键在于保证了充足有效磷的同时,提高了土壤p H,降低了土壤金属的毒害。本试验条件下,钙镁磷肥对修复和改良酸性硫酸盐土壤障碍因子效果非常明显,但其成本是自研改良剂的3倍,因此,基于改良剂的成本与长期适用性考虑,自研改良剂可能是该类土壤改良的最佳选择。  相似文献   

15.
广东省酸性硫酸盐水稻土作物产量的主要限制因子分析   总被引:2,自引:0,他引:2  
【目的】酸性硫酸盐水稻土(ASPS,简称反酸田)因强酸严重限制水稻生长,其产量远低于全国平均水平,是我国南方典型中低产田。为了进一步提高反酸田的水稻产量,需要对反酸田土壤的主要限制因子进行分析,以更好地对症下药,有效合理地改良土壤。本研究调查了不同产量水平下酸性硫酸盐水稻田的理化性状,探讨限制水稻生长的关键土壤化学因子,为反酸田的改良提供理论依据。【方法】 根据前期调查结果,选择3种产量水平(4500、 3000、 1500 kg/hm2)的代表性反酸田为研究对象,并以因强酸而撂荒的水稻田作为对照,于2013年6月28日在不同采样点各采集8个耕作层土壤样品,测定其有机质, 酸度, 氮、 磷、 钾养分以及微量元素含量等化学性状指标,比较不同田块间各种化学性状的差异,并通过相关分析、 主成分分析探讨影响反酸田水稻生长的关键土壤化学因子。【结果】反酸田的酸度水平极高,其pH值在3.0~4.0之间,水溶性酸、 交换性酸和吸持性酸含量分别达到0.6~5.6、 2.7~6.3和1.3~14.1 cmol/kg; 不同调查田块的酸度水平差异显著,高产田块的各种形态酸含量均显著低于低产田块,尤以水溶性酸和吸持性酸的差异更明显。随产量水平的降低,反酸田的有效磷、 速效钾含量显著降低,而水溶性硫、 交换性硫、 交换性锰、 交换性铝含量显著提高,交换性钙、 交换性锌、 交换性铜含量差异不显著,反映出缺磷、 缺钾、 硫酸盐含量过高、 铝毒、 锰毒显著限制了反酸田的水稻产量。相关分析表明,土壤有效磷、 速效钾与各种形态酸含量和硫酸盐含量显著负相关,而交换性钙、 锰、 铜、 锌、 铝与各种形态酸含量和硫酸盐含量显著正相关,表明反酸田水稻产量的主要限制化学因子受土壤酸含量及硫酸盐含量的水平影响。主成分分析表明,水溶性硫、 交换性硫、 交换性铝、 交换性酸、 交换性锰、 水溶性酸、 吸持性酸、 pH值、 有效磷、 速效钾等组成一个相对均质的变量群组,概括了64.99%的不同产量水平下反酸田理化性状的总变异度,为影响反酸田产量的主要土壤化学因子。其中水溶性硫、 交换性硫、 交换性铝、 交换性酸、 交换性锰、 水溶性酸、 吸持性酸为影响反酸田产量水平的负效应变量,而pH值、 有效磷、 速效钾为影响反酸田产量水平的正效应变量。【结论】硫酸根含量过高、 铝毒、 锰毒、 酸毒、 缺磷、 缺钾是限制反酸田产量的主要土壤化学因子。酸、 硫酸盐是反酸田的发育产物,是影响广东省反酸田水稻生长的原生及根本性障碍因素,而铝毒、 锰毒、 缺磷、 缺钾等是因土壤中酸、 硫酸盐含量较高时引起的次生障碍因素。因此,在反酸田的改良过程中需以减缓黄铁矿氧化、 促进黄钾铁矾水解,降低耕层土壤酸、 硫酸盐含量为主要目标。  相似文献   

16.
四环素类抗生素在土壤和堆肥中的吸附和降解   总被引:6,自引:0,他引:6  
Two agricultural soils were collected from Dahu and Pinchen counties and swine manure compost (SMC) from Ping-tung County in Taiwan, China to investigate the sorption and dissipation of three tetracyclines (TCs), i.e., oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC), in compost, soils and soil/compost mixtures with different organic carbon (OC) contents. There were seven treatments in total. TCs were most strongly adsorbed to SMC in all treatments due to the high OC content. When SMC was present in the soils, the sorption of TCs was significantly enhanced, which might be attributed to the increased OC content and CEC. The adsorption of TCs showed non-linear adsorption isotherms and fitted well to the Freundlich model. After 49 d of incubation at 25 ℃ in soils and soil/compost mixtures in the dark, TCs elapsed in all substrates, with the time required for 50% degradation (DT50) between 20 and 41 d, and the time for 90% degradation (DT90) between 68 and 137 d. Soil amended with compost enhanced the stability of TCs and reduced their mobility. The dissipation of TCs in a soil environment was slow, indicating that these compounds might be persistent in soil.  相似文献   

17.
The aim of this study was to model the determination of the amount of agricultural limestone necessary to correct acidification in acid sulfate soils (ASS). This study used 14 equations and the chemical variables of the soils including pH, soil organic matter (SOM), potential acidity (H+ Al), sum of bases (BS), potential acidity (T), base saturation (V) and exchangeable Al with KCl. The results indicated that in the studied, the lowest requirements for doses of limestone (DL) were described by the equations DL = 2.906((H+ Al) (45-V)/100)°80, DL = 0.08 + 1.22AlKCl, DL = 0.6T – BS, and DL = 1.5AlKCl, with mean values of 29.5, 30.5, 31.5 and 37.4 t ha?1. In addition, the models with the best correlation for determining the limestone requirements to obtain 80% of the maximum production of sorghum (dry matter) were DL = ?1.43 + 0.9237 (SOM (6-pH)) and DL = ?0.022 + 2.7425 ((H+ Al) (45-V)/100).  相似文献   

18.
Acid sulfate soils (ASS) are characterized by low pH, aluminum (Al), and iron (Fe) toxicity and are typically deficient in phosphate (PO4). The application of phosphorus (P) fertilizer could help reduce the level of exchangeable Al and Fe, thereby improving the rice growth and yield. Five levels of P (0, 20, 40, 60 and 80 kg phosphorus pentoxide (P2O5)/ha) were tested with rice varieties MTL560 in the wet season and MTL480 in the dry season. The optimum rate of P was 60 kg P2O5/ha for rice in the dry season and 80 kg P2O5/ha in the wet season. Soil testing showed at the start of the season that there was sufficient P in the soil. At the end of the season there was a reduction in soil Al and Fe in plots that had P rates above 40 kg P2O5/ha. It is therefore likely that P application reduced Al and Fe toxicity through precipitation and formation of Al-P and Fe-P compounds, which boasted yield, rather amending a soil P deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号