首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effects of Hg, As, Pb, Cu, Cd, and Cr (1, 2, and 5 mg L?1 each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L?1) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L?1. The harmful effects of the metals were, in general, found by the treatments in the order: Cd 〉 Hg 〉 Cu 〉 As 〉 Pb 〉 Cr. There was no significant change in these parameters at 1 mg L?1 of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L?1 each.  相似文献   

2.
Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop was irrigated with water containing Cd and Pb at 20 mg L?1, thereby adding 260 mg pot?1 of each metal. Amendments included calcium carbonate at 6 or 12%, gypsum at 50 or 100% of the soil gypsum requirement, farm manure at 7.50 or 15.00 g kg?1 soil, and a control. Amendments decreased ammonium bicarbonate diethylenetriaminepentaacetic acid (AB-DTPA)–extractable Cd and Pb concentrations and uptake by wheat. Dry matter, concentration, uptake, and extractability of Cd and Pb were greater in sandy loam soil compared with those in sandy clay loam soil irrespective of amendments. Sequential extraction showed that more metals were extracted from the control in all fractions and that predominantly metals were found in the carbonate fraction.  相似文献   

3.
Retention of Cd, Cu, Pb and Zn by Wood Ash, Lime and Fume Dust   总被引:2,自引:0,他引:2  
Heavy metals are of interest due to their deleterious impacts on both human and ecosystem health. This study investigated the effectiveness of wood ash in immobilizing the heavy metals Pb, Cd, Cu and Zn from aqueous solutions. The effects of initial metal concentrations, solution pH, ash dose and reaction time on metal sorption, as well as the metal sorption mechanisms were studied. To investigate the effect of initial metal concentrations, solutions containing Cd, Zn (25, 50, 75, 100 or 125 mg L?1), Cu (25, 50, 75, 100, 125, 150 or 175 mg L?1) or Pb (250, 500, 750, 1000, 1250, or 1500 mg L?1) were reacted with 10 g L?1 ash for two hours. For the effect of pH, solutions containing 100 mg L?1 of Cd, Cu or Zn or 1500 mg L?1 of Pb were reacted with 15 g L?1 ash over a pH range of 4 to 7. The wood ash was effective in immobilizing the four metals with a sorption range of 41–100 %. The amounts of metals retained by the ash followed the order of Pb > Cu > Cd > Zn. As expected, absolute metal retention increased with increasing initial metal concentrations, solution pH and ash dose. Metal retention by the ash exhibited a two-phase step: an initial rapid uptake of the metal followed by a period of relatively slow removal of metal from solution. Metal retention by the ash could be described by the Langmuir and Freundlich isotherms, with the latter providing a better fit for the data. Dissolution of calcite /gypsum minerals and precipitation of metal carbonate/sulfate like minerals were probably responsible for metal immobilization by the ash in addition to adsorption.  相似文献   

4.
To determine the effects of irrigation water quality, plants were irrigated with normal potable water [0.25 dS m?1 electrical conductivity (EC), 25 mg L?1 sodium (Na), 55 mg L?1 chloride (Cl)], treated effluent (0.94 dS m?1 EC, 122 mg L?1 Na, 143 mg L?1 Cl) and saline water with low salinity (1.24 dS m?1 EC, 144 mg L?1 Na and 358 mg L?1 Cl) and high salinity (2.19 dS m?1 EC, 264 mg L ?1Na and 662 mg L?1 Cl) for snow peas, and high salinity (3.07 dS m?1 EC, 383 mg L?1 Na and 965 mg L?1 Cl) and very high salinity (5.83 dS m?1 EC, 741 mg L?1 Na and 1876 mg L?1 Cl) for celery. The greater salts build up in the soil and ion toxicity (Cl and Na) with saline water irrigation contributed to significantly greater reduction in root and shoot biomass, water use, yield and water productivity (yield kg kL?1 of water used) of snow peas and celery compared with treated effluent and potable water irrigation. There was 8%, 56% and 74% reduction in celery yield respectively with treated effluent, high salinity and very high salinity saline water irrigation compared with potable water irrigation. The Na concentration in snow peas shoots increased by 54%, 234% and 501% with treated effluent, low and high salinity saline water irrigation. Similarly, the increases in Na concentration in celery shoots were 19%, 35% and 82%. The treated effluent irrigation also resulted in a significant increase in soil EC, nitrogen (N) and phosphorus (P) content compared with potable water irrigation. The heavy metals besides salts build up appears to have contributed to yield reductions with treated effluent irrigation. The study reveals strong implications for the use of saline water and treated effluent for irrigation of snow peas and celery. The salt build up within the root zone and soil environment would be critical in the long-run with the use of saline water and treated effluent for irrigation of crops. To minimize the salinity level in rhizosphere, an alternate irrigation of potable water with treated effluent or low salinity level water may be better option.  相似文献   

5.
The removal and fate of runoff-derived heavy metals in a 1-yr old detention pond system were investigated during climatic conditions typical of the U.S. maritime Northwest. The catchment was a medium-sized, suburban parking lot near Portland, Oregon. Water samples from runoff, the detention pond system, and pond effluent were collected and analyzed for dissolved and particulate Cu. Copper was the dominant toxic metal for the study site, while analysis of selected samples for Pb and Cd showed these metals to be minor pollutants. Total Cu in runoff varied among different storm events over a wide range of concentrations (< 2 to 33 µg L?1), while total Cu levels in pond effluent remained within a fairly narrow range (5 to 12 µg L?1), Sediment samples collected from the detention pond system were analyzed for Cu in two size fractions (< 63 µm and < 125 µm). Copper was found to be deposited in the pond sediments in a small but highly concentrated plume (up to 130 mg kg?1), extending axially from the runoff inlet pipe. Overall, results from this study showed that low-cost, small-scale detention ponds can be a useful management practice for runoff from parking lot areas and can be of value in preserving the integrity of receiving waters.  相似文献   

6.
The increasing number of cases of soil contamination by heavy metals has affected crop yields, and represents an imminent risk to food. Some of these contaminants, such as cadmium (Cd) and lead (Pb), are very similar to micronutrients, and thus can be absorbed by plants. This study evaluated the translocation of increasing amounts of cadmium and lead and the effects of these metals in the production of beans. Bean plants were grown in nutrient solution Clark and subjected to increasing levels of Cd (from 0 to 0.5 mg L?1) and Pb (from 0 to 10 mg L?1). Cadmium concentration of 0.1 mg L?1 translocated 39.8% to the shoot, and dry matter production was reduced by 45% in shoots and 80% in roots, compared to the control treatment. Lead showed impaired movement in the plant, however the concentration of 1.0 mg L?1 was observed in 5.7% of metal translocation to the leaves. The concentration of 10 mg L?1 Pb reduced dry matter production of roots and shoots in 83% and 76%, respectively, compared to the control treatment.  相似文献   

7.
A greenhouse assay using an arugula (Eruca sativa L.) hydroponics system was carried out to evaluate the following effects of increasing amounts of cadmium and lead in nutritive solution: (a) production; (b) translocation of cadmium (Cd) and lead (Pb) throughout the plants; (c) possible interactions of Cd and Pb with other mineral elements, transition metals, essential to plants; (d) tolerance limits to Cd and Pb with regard to production; and (e) chelating interaction of Cd and Pb with root substances. The absorption of Cd and Pb increased with increasing dosages in solution. Roots accumulated larger amounts of metals than shoots. Plants develop better with less than 0.025 mg L?1 of Cd, with a damaging Cd concentration of 1 mg L?1. The tolerable Pb concentration was up to 10 mg L?1. Cadmium and Pb translocate poorly in plants and their deleterious effect is due to the deposit of very stable chelates in roots.  相似文献   

8.
Aquatic mosses have been used to study four accidental discharges of the heavy metals Cd, Zn and Hg or the chlorinated hydrocarbons pentachlorophenol (PCP) and lindane in highly contrasting river types. Hg, PCP and lindane moss concentrations reached 880, 4500 and 350 ng g?1, respectively. In the case of Cd and Zn, water samples and transferred bioindicators were taken simultaneously throughout an accidental discharge. The very high dissolved metal concentrations reached during this accident (9 mg L?1 Zn, 90 μg L?1 Cd) induced accumulation by the mosses of up to 28 mg g?1 for Zn and 225 μg g?1 for Cd. The increase in concentrations in the mosses was as rapid and substantial as in the water, the time lag due to accumulation kinetics being almost zero. On the other hand, the memory effect enabled mosses to retain marked evidence of Cd, Zn, Hg, PCP and lindane up to 13 days after the accident when difference from background levels can hardly be detected in the water. The four case studies, which killed fish, but not the mosses, show that the previously established scales of quality based on the analysis of aquatic mosses are well suited to estimating the potential damage to the aquatic ecosystem as a whole.  相似文献   

9.
The toxic effects and accumulation of the heavy metals, Cd, Cu, and Zn by the sheath forming blue-green alga Chroococcus paris were investigated. All three of the metals were bound rapidly. Approximately 90% of the total amount of the added metal was bound within 1 min. Further significant binding occurred at a slower rate. The maximum metal binding capacity, as determined by filtration studies, was determined to be 53, 120, and 65 mg g?1 dry algal weight for Cd, Cu, and Zn, respectively. Binding curves for the metals followed the Langmuir adsorption isotherm model. The amount of metal bound increased with increasing pH. Metal binding increased significantly when pH was increased from 4 to 7. Nearly all of the metal was found to be rapidly EDTA extractable. Metals were found to be increasingly toxic to growing cultures in the order, Zn, Cd, and Cu. All of the metals studied exhibited toxic effects at concentrations greater than 1.0 mg L?1. The lowest concentrations used which showed detectable toxicity were 0.1 mg L?1 for Cu and >0.4 mg L?1 for Cd and Zn.  相似文献   

10.
The effects of cadmium and copper on larval metamorphosis and mortality of cultured Capitella sp Y were investigated. Metatrochophore larvae were exposed to 0.013 (control), 0.030, 0.080, 0.120, and 0.170 mg Cd L?1 and 0.017 (control), 0.025, 0.060, and 0.075 mg Cu L?1 for 34 days. Larval mortality significantly (p < 0.01) increased with increasing Cd and Cu concentrations (Kruskal-Wallis test), with similar effects for both metals for day 10 (LC50 = 0.035 mg Cd L?1 and 0.035 mg Cu L?1). Metamorphosis was inhibited in larvae exposed to the two metals in the absence of food, the effect of Cu being the most severe. This study suggests that Cd and Cu exposure could be harmful to early developmental stages of Capitella sp Y producing a delay in recruitment into natural populations.  相似文献   

11.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

12.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

13.
The capacity of microalgae to accumulate heavy metals has been widely investigated for its potential applications in wastewater (bio)treatment. In this study, the ability of Desmodesmus pleiomorphus (strain L), a wild strain isolated from a polluted environment, to remove Cd from aqueous solutions was studied, by exposing its biomass to several Cd concentrations. Removal from solution reached a maximum of 61.2 mg Cd g?1 biomass by 1 day, at the highest initial supernatant concentration used (i.e., 5.0 mg Cd L?1), with most metal being adsorbed onto the cell surface. Metal removal by D. pleiomorphus (strain ACOI 561), a commercially available ecotype, was also assessed for comparative purposes; a removal of 76.4 mg Cd g?1 biomass was attained by 1 day for the same initial metal concentration. Assays for metal removal using thermally inactivated cells were also performed; the maximum removal extent observed was 47.1 mg Cd g?1 biomass, at the initial concentration of 5 mg Cd L?1. In experiments conducted at various pH values, the highest removal was achieved at pH 4.0. Both microalga strains proved their feasibility as biotechnological tools to remove Cd from aqueous solution.  相似文献   

14.
Land treatment is increasingly being utilized as a method of waste disposal for both sewage effluent and sludges. While there has been considerable attention directed toward the fate of metallic constituents of sewage sludges, there have been fewer studies of the fate and mobility of metals appled to soils in sewage effluent. This study was undertaken utilizing secondarily treated sewage effluent amended to contain less than 1 mg l?1 each of Cd, Cu, Ni, Pb, and Zn. The effluent was applied weekly for a period of 1 yr on large undisturbed monoliths of four diverse soils enclosed in lysimeters and sprigged to common bermudagrass (Cynodon dactylon L.). Soil samples were collected periodically and extracted with DTPA to measure plant available metals. Vegetation was harvested, weighed, subsampled and analyzed for total metal content. Total plant uptake of Cd, Cu, Pb, and Ni during the year was less than 1% of that applied. Vegetative uptake of Zn was as high as 2%. Metal uptake was greatest in the soil with the lowest initial pH. Heavy metal concentrations in plant tissue exhibited a cyclic trend. A similar increasing cyclic trend was evident in the DTPA extractable metals in the surface 0 to 12.5 cm of the treated soils. Decreases in plant and DTPA extractable metals occurred when the soils dried, allowing O2 to enter. Vegetative concentrations of Cd, Cu, and Ni exceeded normal ranges of 0.2 to 0.8, 4 to 15, and 1.0 mg kg?1, respectively, for vegetation while Pb and Zn were near normal. Only Cd concentration of vegetation posed a threat to grazing animals.  相似文献   

15.
Soil contamination with heavy metals is of great concern worldwide because of its negative effects on human health and environment. The objective of this study was to evaluate the influence of poultry manure on cadmium (Cd) adsorption characteristics in soils from ten different land uses and to determine the effects of Cd adsorption on soil properties. Laboratory experiments were carried out using Cd concentrations ranging from 0 to 160 mg Cd L?1 and poultry manure rates ranging from 0 to 8% w/w basis. Results showed that all the soils exhibited varying capacity to adsorb Cd with values ranging from 28.78 to 130.2 mgkg?1; 126.2 to 153.5 mgkg?1 and 126.2 to 156.1 mgkg?1 for 0%, 4% and 8% poultry manure at 160 mgkg?1 initial Cd concentrations, respectively. Lowest Cd adsorbed (28.78 mgkg?1) was recorded in samples from 6 months fallow and highest (156.1 mgkg?1) from vegetable field. On the average, capacity to adsorb Cd was 72.1%, 99.7% and 95.3% with 0%, 4% and 8% applied poultry manure, respectively. Organic carbon, CEC, pH were significantly correlated with Cd adsorption. Poultry manure use will increase Cd adsorption and decrease Cd in the environment.  相似文献   

16.
The data on the effects of the concentrations (0.5, l, 2, 5 mg L?1) of the heavy metals, Hg, As, Pb, Cu, Cd, and Cr on changes in growth population of a fecal coliform bacterium Escherichia coli (in term of number of E. coli per 100 mL water) showed a gradual decline in growth population of the fecal coliform bacterium with the increase of exposure time, as well as concentrations of the metals over control data. The effects were markedly recorded with the treatment of 5 mg L?1. In general, the harmful effects of the metals on growth population of E. coli were found by the treatments in the order: Cd>Ph>Cu>As>Hg>Cr.  相似文献   

17.
Numerous studies have attempted to relate the ability of microorganisms to tolerate heavy metals added to artificial media to metal concentrations found in the environment from which the microbes were originally isolated. Organic and inorganic components of artificial media, however, may bind and chelate metals, thus reducing the biological activity/potency of these metals. We varied the concentration of various components of HM (HEPES — MES) medium and determined their effects on Cd toxicity to Rhizobium leguminosarum biovar trifolii. Varying the concentrations of Ca, Mg and agar in the medium had no effect on Cd toxicity. Increasing additions of HEPES, MES, phosphate, and yeast extract significantly reduced the observed severity of Cd toxicity. When 3 mg L?1 phosphate was added to the medium, the Cd maximum resistance level (MRL) was 2 gmg mL?1. When, however, the addition of phosphate was increased to 660 mg mL?1, the MRL to Cd was 18 μg mL?1. These results clearly demonstrate that Cd toxicity to microorganisms is significantly influenced by the composition of the media used in toxicity testing.  相似文献   

18.

Plant growth and mineral element accumulation in Brassica juncea var. crispifolia (crisped-leaf mustard) under exposure to lanthanum (La) and cadmium (Cd) were studied by employing a hydroponic experiment with a complete two-factorial design. Four levels of La (0.05–5.0 mg L?1) and two levels of Cd (1.0 and 10.0 mg L?1) were used in this experiment. Lanthanum did not improve plant growth in this experiment. Addition of La (≥ 1.0 mg L?1) or Cd (≥ 10 mg L?1) to the solution inhibited root elongation. Lanthanum treatments reduced accumulations of iron (Fe), manganese (Mn), and zinc (Zn) in roots, and Mn in shoots. Lanthanum at ≥ 1.0 mg L?1 limited the Cd translocation from roots to shoots and thus decreased the accumulation of Cd in shoots. Cadmium had no influence on La accumulations in roots, but inhibited the accumulation of La in shoots. The study results suggest that applications of rare earth elements in vegetables would be potentially risky to human health.  相似文献   

19.
Heavy metal phytoextraction is a soil remediation technique, which makes use of plants in removing contamination from soil. The plants must thus be tolerant to heavy metals, adaptable to soil and climate characteristics, and able to take up large amounts of heavy metals. Most of the high biomass productive plants such as, maize, oat and sunflower are plants, which do not grow in cold climates or need intensive care. In this study three “weed” plants, Borago officinalis; Sinapis alba L. and Phacelia boratus were investigated for their ability to tolerate and accumulate high amounts of Cd and Pb. Pot experiments were performed with soil containing Cd and Pb at concentrations of up to 180 mg kg?1 and 2,400 mg kg?1 respectively. All three plants showed high levels of tolerance. Borago officinalis; and Sinapis alba L. accumulated 109 mg kg?1 and 123 mg kg?1 Cd, respectively at the highest Cd spiked soil concentration. Phacelia boratus reached a Cd concentration of 42 mg kg?1 at a Cd soil concentration of 100 mg kg?1. In the case of Pb, B. officinalis and S. alba L. displayed Pb concentrations of 25 mg kg?1 and 29 mg kg?1, respectively at the highest Pb spiked soil concentration. Although the Pb uptake in P. boratus reached up to 57 mg kg?1 at a Pb spiked soil concentration of 1,200 mg kg?1, it is not suitable for phytoextraction because of its too low biomass.  相似文献   

20.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号