首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-tree water use of nine Pinus cembra trees was estimated in the treeline ecotone of the Central Austrian Alps. Sap flow density using Granier-type thermal dissipation probes and environmental parameters was monitored along an elevational gradient from the forest limit up to treeline and finally mediating the krummholz limit throughout two growing seasons. Normalized sap flow density (Q s) was significantly correlated with solar radiation (R s) and vapor pressure deficit (D) throughout the treeline ecotone. Multiple regression analysis indicated that at the forest limit and at treeline, D had a similar effect on Q s than R s. At the krummholz limit by contrast, D had a greater effect on Q s than R s due to partially stomatal closure and wind-induced clustering of the needles, which impaired their response to available irradiance. Whole-tree water use scaled to crown surface area estimated for an entire growing (172 days) declined from 449 mm at the forest limit to 274 mm at treeline and was 251 mm at the krummholz limit, which is within the values estimated for other European forest ecosystems. Nevertheless, the observation above the forest limit in the central Tyrolean Alps tree transpiration scaled to crown surface area is comparable to the water use of adjacent low-stature vegetation, which should also be taken into account when forecasting potential effects of global change on the water balance of the treeline ecotone.  相似文献   

2.
Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen (N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels (0, 50, 150, and 300 kg N ha?1 a?1, applied monthly, expressed as CK, LN, MN, HN, respectively) in three replicates. After 6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity (EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK, LN, MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+, EA, and Al/Ca, and exchangeable Al3+ in HN increased by 70% compared to CK. Soil base cations (Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3?–N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4+–N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon, incorporated organic carbon, or particulate organic carbon. This study suggests that increasing N deposition could increase soil NO3?–N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.  相似文献   

3.
Canopy transpiration (E c) of a 50-year-old Pinus canariensis Chr. Sm. Ex DC. stand at tree line in Tenerife, Canary Islands, was estimated continuously throughout a year from March 1, 2008, to February 28, 2009, by means of xylem sap flow measurements. E c varied markedly throughout the entire year generally following the seasonal trends in soil water availability and varied between 0.89 mm day?1 under the conditions of non-limiting soil water availability and close to zero under soil drought. This is because canopy conductance declined significantly with increasing evaporative demand and thus significantly reduced tree water loss, and this decrease was more pronounced during the soil drought. Total annual E c was 79.6 mm, which is significantly below the values estimated for other Mediterranean forest ecosystems and even 70 % lower than the value estimated for a P. canariensis forest at 1,650 m a.s.l. where the soil water content was higher than at the tree line site. Therefore, these results highlighted the importance of drought stress in tree line ecotone and should be taken more into account in semiarid tree lines.  相似文献   

4.
运用分形理论,以豫西石质丘陵区土壤为供试材料,分析了天然次生林、荒草地、混交林、杨树林、耕地等5种土地利用方式的土壤颗粒分形特征及其与土壤各粒级含量、理化性质之间的关系。结果表明:1)研究区土壤细粒化较明显,具有一定的水土保持效应;2)5种用地方式分形维数平均值介于2.510~2.629之间,分维值大小依次为天然次生林>耕地>杨树林>混交林>荒草地,可以在一定程度上反映石质丘陵区水土流失的程度;3)土壤颗粒分形维数与土壤颗粒含量存在较强相关性,即土壤中黏粒含量越高,尤其是0.002~0.001 mm粒级含量越高,分形维数越大;4)研究区土壤颗粒分形维数与速效钾含量呈显著正相关,与其它理化性质的相关性均不明显。  相似文献   

5.
A study was conducted at Msekera Regional Agricultural Research Station in eastern Zambia to (1) describe canopy branching properties of Acacia angustissima, Gliricidia sepium and Leucaena collinsii in short rotation forests, (2) test the existence of self similarity from repeated iteration of a structural unit in tree canopies, (3) examined intra-specific relationships between functional branching characteristics, and (4) determine whether allometric equations for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Measurements of basal diameter (D10) at 10cm aboveground and total height (H), and aboveground biomass of 27 trees were taken, but only nine trees representative of variability of the stand and the three species were processed for functional branching analyses (FBA) of the shoot systems. For each species, fractal properties of three trees, including fractal dimension (Dfract), bifurcation ratios (p) and proportionality ratios (q) of branching points were assessed. The slope of the linear regression of p on proximal diameter was not significantly different (P < 0.01) from zero and hence the assumption that p is independent of scale, a pre-requisite for use of fractal branching rules to describe a fractal tree canopy, was fulfilled at branching orders with link diameters >1.5 cm. The proportionality ration q for branching patterns of all tree species was constant at all scales. The proportion of q values >0.9 (fq) was 0.8 for all species. Mean fractal dimension (Dfract) values (1.5?1.7) for all species showed that branching patterns had an increasing magnitude of intricacy. Since Dfract values were ≥1.5, branching patterns within species were self similar. Basal diameter (D10), proximal diameter and Dfract described most of variations in aboveground biomass, suggesting that allometric equations for relating aboveground tree biomass to fractal properties could accurately predict aboveground biomass. Thus, assessed Acacia, Gliricidia and Leucaena trees were fractals and their branching properties could be used to describe variability in size and aboveground biomass.  相似文献   

6.
In order to explore the forest soil physical property in the Three Gorges Reservoir areas, the fractal theory was adopted to study the soil fractal features of the four typical forest stands (mixed Pinus massoniana-broadleaf forests, evergreen broadleaved forests, Phyllostachys pubescens forests and evergreen broadleaved shrub forests) in Jinyun Mountain, Chongqing City, and they were compared with arable land. It has been proposed that the model can be used for the analysis of the relationship between the fractal dimensions and the properties of forest soil. The impacts of fractal dimensions on the soil properties were analyzed with the elasticity analysis and marginal yield analysis. Results showed that the fractal dimension of particle size distribution (PSD), the micro-aggregate size distribution (ASD) and the soil pore size distribution (SPD) can be used as the indices to evaluate the soil structure. In the typical stands of Jinyun Mountain, the fractal dimension of PSD is 2.7–2.9, the ASD is 2.5–2.8, and the SPD is 2.3–2.8. The soil structure of evergreen broadleaved shrub forests performed best in PSD, ASD and SPD, and the soil of P. pubescens forests is the worst. There were some relationships among the PSD, ASD, SPD and some soil properties in the different forests and farmland. The related coefficients are over 0.5. Based on the elasticity analysis and marginal yield analysis, the effect of PSD was more than those of ASD and SPD. Obviously, the further study on the fractal theory application in soil structure and soil properties has important significance. __________ Translated from Science of Soil and Water Conservation, 2006, 4(4): 39–46 [译自: 中国水土保持科学]  相似文献   

7.
采用空间代替时间的方法,研究了茂兰喀斯特森林自然恢复中土壤团聚体有机碳含量与团聚体分形特征。结果表明:同一恢复阶段的同一土层中1 2 mm、0.5 1 mm团聚体质量百分比(4.74%52.37%)与其质量百分比有机碳贡献率(2.87%59.98%)均高于0.25 0.5 mm、<0.25 mm团聚体;相同土层中的相同粒级团聚体土壤有机碳含量(0 10 cm土层23.47 55.82 g·kg-1,>20 cm土层14.36 36.80 g·kg-1)与其质量百分比有机碳含量(0 10 cm土层1.34 22.12 g·kg-1,>20 cm土层0.57 11.93 g·kg-1)均随植被自然恢复呈增加趋势;同一恢复阶段的相同粒级团聚体土壤有机碳含量(0 10 cm土层23.47 55.82 g·kg-1,>20 cm土层14.36 36.80 g·kg-1)与其质量百分比有机碳含量(0 10 cm土层1.34 22.12 g·kg-1,>20 cm土层0.5711.93 g·kg-1)随土层加深呈减少趋势;同一恢复阶段的同一土层团聚体中1 2 mm团聚体中有机碳含量(16.9053.43 g·kg-1)最低但其质量百分比有机碳含量(5.24 22.12 g·kg-1)最高;随植被自然恢复土壤团聚体分形维数在0 10 cm土层(2.01 2.16)呈增加趋势、在>20 cm土层(2.04 2.24)呈减小趋势;喀斯特森林植被自然恢复中土壤结构演化的核心可能是上层土壤细化和下层土壤粗化;喀斯特森林植被自然恢复中土壤结构有所改善;土壤团聚体分形维数可以作为喀斯特植被自然恢复中土壤有机碳质量评价的指标;加强保护喀斯特森林使其自然恢复,既有利于土壤结构的改善与减少侵蚀,也有利于土壤有机碳循环和累积。  相似文献   

8.
Mediterranean ecosystems are global hotspots of biodiversity threaten by human disturbances. Growing evidence indicates that regeneration of Mediterranean forests can be halted under certain circumstances and that successional stages can become notoriously persistent. The Mediterranean sclerophyllous forest in central Chile is been largely transformed into savannas dominated by the invasive legume tree Acacia caven as result of interacting management and ecological factors. We used multi-temporal satellite imagery to study the transition dynamics of these major vegetation types over the last four decades (1975-2008). Vegetation changes were related to indicators of resource availability (topography, water availability, solar radiance), potential propagule availability (distance to forest remnant patches) and disturbance regimes (grazing, fire occurrence and distance to roads and cities). During this study period, forests were mostly converted into Acacia savannas (46.1%). Acacia savanna was the most persistent natural vegetation type. The probability of sclerophyllous forest degradation into Acacia savanna increased on drier northern-exposed slopes, close to roads and further away from forest remnants. In contrast, forest regeneration from Acacia savanna was higher on moister southern-exposed slopes and closer to forest remnants. Acacia savannas are increasingly being converted into cultivated land on the moister locations or switching into a bare soil state in locations close to cities and further away from forest remnants. These results highlight the vulnerability of diverse sclerophyllous forests and its increasing conversion into persistent Acacia savannas in the Mediterranean region of central Chile and identify the ecological conditions for successful conservation and restoration of the native sclerophyllous forest vegetation that can be used for sensible land use planning.  相似文献   

9.
On some landscapes periodic fire may be necessary to develop and maintain oak-dominated savannas. We studied the effects of two annual prescribed burns to determine their effect on microbial activity and soil and litter nutrients 1 year after the last burn. Surface litter and soil from the upper 0–5 cm soil layer in three developing savannas (oak-hickory, Quercus-Carya), oak-hickory-pine (Quercus-Carya-Pinus), and pine (Pinus) were collected one year after the second of two annual prescribed burns. Surface litter was analyzed for nutrients and soil was analyzed for phospholipid fatty acids (PLFAs) and nutrients. Surface litter chemistry differed across the three savannas for potassium (K) and boron (B), being significantly (P < 0.05) higher for unburned forest than for burned forest. Among savannas, only sulfur (S) was higher for the pine savanna and B for the oak-hickory savanna, both were higher for unburned forest than for burned forest. For soil, calcium (Ca) and B differed across savannas, being higher for burned forest than for unburned forest. Among savannas, soil pH, Ca, and B concentrations were higher in soil from burned forest than from unburned forest. Total PLFA differed among savannas, but was not affected by burning treatments. However, the amounts of biomarkers for Gram-positive and Gram-negative bacteria were higher while the amount of biomarker for fungal PLFA was lower for burned forest than for unburned forest. Our results indicate that the two annual prescribed burns moderately affected PLFA microbial community structure and litter and soil nutrient concentrations. However, the long-term effects of fire on these study sites are not known and merit further study.  相似文献   

10.
Understory vegetation controls, in a significant way, the regeneration of overstory trees, carbon sequestration and nutrient retention in tropical forests. Development and organization of understory vegetation depend 3n climate, edaphic and biotic factors which are not well correlated with plant community structures. This study aimed to ~xplore the relationships between understory vegetation and abiotic factors in natural and planted forest ecosystems. A non-metric multidimensional scaling (NMS) ordination technique was applied to represent forest understory vegetation among five forest communities, i.e., a dry miscellaneous forest (DMF), a sal mixed forest (SMF), a teak plantation (TP), a low-land miscellaneous forest (LMF) and a savanna area (SAV) of the Katerniaghat Wildlife Sanctuary, located in northern India. Microclimatic variables, such as photosynthetically active radiation (PAR), air temperature (AT), soil Lemperature (ST), ambient atmospheric CO2 concentration, absolute air humidity (AH), physical and chemical soil ~roperties as well as biological properties were measured. Understory species were assessed via 100 random quadrats (5 m x 5 m) in each of the five forests in which a total of 75 species were recorded encompassing 67 genera from 37 families, consisting of 32 shrubs and 43 plant saplings. DMF was the most dense forest with 34,068 understory individuals per ha of different species, whereas the lowest understory population (13,900 per ha) was observed in the savanna. Ordination and correlation revealed that microclimate factors are most important in their effect compared to ~daphic factors, on the development of understory vegetation in the various forest communities in the north of India.  相似文献   

11.
Homegardens are a common feature of indigenous dwellings in the savannas of Roraima, northern Brazil. In order to evaluate the effect of homegardens on soils, samples were taken in 5 sites each in the categories new homegardens (0–10-years old), established homegardens (15–35-years old) and old homegardens (more than 40-years old) and in adjacent savanna in Araçá Indigenous Land, Roraima, Brazil. For comparison, samples were also taken in forest islands located nearby, on a different soil type, under 10-year-old forest fallows and high forest. P and K showed the greatest increases over time in homegarden soils, in comparison with levels found in adjacent savanna and under forest. Ca and Mg also increased in comparison to adjacent savanna, but levels were less than found in forest soils, most likely due to the different parent material. Zn and Fe also showed increases in homegarden soils over time. Cu and Mn levels showed little relation to homegarden age, suggesting greater effects of factors of soil formation than anthropogenic influences. Values for pH were slightly higher in homegardens than in adjacent savanna, while Al was lower, although these changes were poorly fit by regression models. Soil organic matter increased over time under homegardens, but still was lower than levels found under fallows and forest. Soil fertility improvement under indigenous homegardens can be attributed mainly to deposition of residues around dwellings, although further investigation is needed on the role of trees in accessing nutrient pools at greater depths in savanna soils.  相似文献   

12.
The dominant base cations (BC; i.e., Ca2+, Mg2+, K+, and Na+) are important in buffering soil and water acidity in both terrestrial and aquatic ecosystems. Ca2+, Mg2+, and K+ are also important in many plant physiological functions. Because BC availability is affected by changes in the nitrogen (N) cycle, we conducted a meta-analysis of previously published data to determine if N fertilization alters the availability of BC in terrestrial and stream ecosystems across biomes. We include data from 107 independent studies published in 62 different articles, taking a holistic perspective on BC by examining their responses to added N in plant foliage, bulk soil, soil solution, and stream water. Our results suggest N fertilization may accelerate BC loss from terrestrial ecosystems over time periods less than five years. We found that N additions resulted in an overall 24% decrease in the availability of exchangeable Ca2+, Mg2+, and K+ in the bulk soil of boreal forest, temperate forest, and grassland biomes. Collectively, responses of BC in boreal forest, temperate forest, tropical forest, and grassland biomes increased following N fertilization by about 71% in soil solution and 48% in stream waters. Additionally, BC responses in foliage decreased in boreal forest and temperate forest biomes following N additions over time periods less than five years, but there were no significant changes over longer time periods. Despite large short-term shifts in BC responses following N additions, we did not find evidence of widespread negative impacts on ecosystems over time periods greater than five years. This analysis suggests effects of N addition on the availability of exchangeable BC may diminish over time. Although the effects on BC can be substantial over periods less than five years, there is little available evidence that N fertilization has had large-scale detrimental effects on the availability of BC needed for plant growth within terrestrial or aquatic ecosystems.  相似文献   

13.
Seasonal variation in nutrient status of a floodplain soil was studied in a silver maple (Acer saccharinum L.) forest in central Illinois. Statistically significant temporal differences were measured in the concentration of NH4-N, NO3-N, and extractable P. Patterns of variation in NH4-N and NO3-N were related to organic C content and mineralization processes in the soil. Variation in extractable P was affected by flood-induced anaerobic conditions and soil pH. Temporal variation in soil nutrient status was one of the most dynamic features of nutrient cycling in the floodplain forest ecosystem. The potential for seasonal variation in the availability of nutrients should be considered when chemical data are used to characterize forest soil fertility and site productivity. Samples should be collected at several points in time if possible.  相似文献   

14.
Reducing the canopy cover (e.g., forest thinning) is one of the most commonly employed forest silvicultural treatments. Trees are partially removed from a forest in order to manage tree competition, thus favoring the remaining and often the most valuable trees. The properties of the soil are affected by forest thinning as a result of changes in key microclimatic conditions, microbial communities and biomass, root density, nutrient budgets and organic matter turnover. The aim of this study was to determine the soil microbial biomass C, N and respiration (basal respiration) in a black pine (Pinus nigra Arn. subsp. pallasiana) forest in the Mudurnu district of Bolu Province (Western Black Sea Region, Turkey). Whereas forest thinning was found to cause increases in the soil temperature, microbial biomass C and N and organic C, it was found to decrease the soil moisture, basal respiration and metabolic quotient (qCO2). As expected, soil organic C exhibited a strong impact on soil microbial biomass C, N and basal respiration. It was concluded that the influence of forest thinning on the microbial biomass and soil respiration was the combined result of changing microclimatic conditions and soil properties, such as forest litter, soil temperature, soil moisture, soil pH and soil organic matter.  相似文献   

15.
Climate, organisms, topographic relief, and parent material interacting through time are the dominant factors that control processes of soil formation and determine soil properties. In both forest and savanna ecosystems, trees affect soil properties through several pathways. Trees alter inputs to the soil system by increasing capture of wetfall and dryfall and by adding to soil N via N2-fixation. They affect the morphology and chemical conditions of the soil as a result of the characteristics of above- and below-ground litter inputs. The chemical and physical nature of leaf, bark, branch, and roots alter decomposition and nutrient availability via controls on soil water and the soil fauna involved in litter breakdown. Extensive lateral root systems scavenge soil nutrients and redistribute them beneath tree canopies. In general, trees represent both conduits through which nutrients cycle and sites for the accumulation of nutrients within a landscape. From an ecological perspective, the soil patches found beneath tree canopies are important local and regional nutrient reserves that influence community structure and ecosystem function. Understanding species-specific differences in tree-soil interactions has important and immediate interest to farmers and agroforesters concerned with maintaining or increasing site productivity. Lessons from natural plant-soil systems provide a guide for predicting the direction and magnitude of tree influences on soil in agroforestry settings. The challenge for agroforesters is to determine under what conditions positive tree effects will accumulate simultaneously within active farming systems and which require rotation of cropping and forest fallows.  相似文献   

16.
Soil microbial communities may respond to anthropogenic increases in ecosystem nitrogen (N) availability, and the microbial response may ultimately feed back on ecosystem carbon and N dynamics. We examined the long-term effects of chronic N additions on soil microbes by measuring soil microbial biomass, composition and substrate utilization patterns in pine and hardwood forests at the Harvard Forest Chronic N Amendment Study. Functional and structural genes for important N cycling processes were studied using DNA community profiles. In the O horizon soil of both stands, N additions decreased microbial biomass C as determined by chloroform fumigation-extraction. Utilization of N-containing substrates was lower in N-treated pine soils than in the controls, suggesting that N additions reduced potential microbial activity in the pine stand. Counts of fungi and bacteria as determined by direct microscopy and culture techniques did not show a clear response to N additions. Nitrogen additions, however, strongly influenced microbial community DNA profiles. The ammonia monooxygenase gene (amoA) generally was found in high N-treated soils, but not in control soils. The nifH gene for N2-fixation was generally found in all soils, but was more difficult to amplify in the pine N-treated soil than the controls, suggesting that the population of N2-fixers was altered by N additions. The 16S rDNA gene for Nitrobacter was found in all samples, but distinct differences among DNA profiles were observed in the pine B horizon in the control, low N, and high N-treated plots. Our findings indicate that chronic N additions decreased chloroform microbial carbon and altered microbial community profiles. These changes in microbial community structure may be an important component of the response of terrestrial ecosystems to human-accelerated N supply.  相似文献   

17.
Macro- (C, N, P, K, Ca and Mg) and micronutrient (Fe, Mn, Cu and Zn) reservoirs were estimated in the O (Oi+Oe+Oa) and in the A (0–10 cm depth) soil horizons of four stands of Nothofagus pumilio (lenga) from Tierra del Fuego which differ in their forestry characteristics. The type of soil layer (O and A) and the forest structure, as related to above-ground biomass storage, were assessed as a factor of variation in the nutrient reservoirs of both soils layers. Nutrient reservoirs showed similar ranges in both soil layers for total organic C (34–65 Mg ha?1), total N (1.5–3.5 Mg ha?1), rapidly available Ca (1.3–2.7 Mg ha?1) and Mg (0.18–0.36 Mg ha?1). Rapidly available K, available P, and medium-term available Fe and Cu were accumulated preferentially in A the horizons, whereas medium-term available Mn and Zn were mainly stored in the O horizons. The forest structure was not a statistically significant factor of variation on the nutrient reservoirs in the O horizons, although a legacy effect of the accumulated above-ground biomass on nutrient reservoirs in this soil layer can not be discarded. On the contrary, the pools of total organic C, total N, rapidly available K and medium-term available Cu and Zn in the A horizons varied significantly with the different forest structure. In terms of lenga forests sustainability, uppermost soils layers should be preserved as they accumulate most of the soil fertility which is essential for lenga regeneration after logging. The inclusion of the assessment of soil fertility in the management plans of the lenga forests in the ecotone of the Argentinean Tierra del Fuego is strongly recommended, as it will contribute to ensure a successful regeneration of lenga in logged areas.  相似文献   

18.
The distribution and movement of N, P, K, Na, Mg, and Ca were studied in southeastern Australia in a 37—year-old Pinus radiata plantation and in a nearby Eucalyptus obliqua — Eucalyptus dives forest of the same age and of the same type as that which had been replaced by the P. radiata plantation. The soil beneath the P. radiata plantation contained significantly less total N and exchangeable K, Mg, and Ca than that beneath the eucalypt forest. No large accumulation of nutrients was found in either the litter or the trees in the P. radiata plantation relative to that in the eucalypt forest. However, there was a slightly greater accumulation of N and K in the P. radiata biomass than in the eucalypt biomass. The annual soil nutrient balance obtained by subtracting outputs (mineral soil leachate + biomass incorporation) from inputs (precipitation + mineral weathering) indicated a more favourable balance for each nutrient in the soil beneath the eucalypts than in the soil beneath the pines. Calculations suggested that these balances could only partially account for the differences in soil nutrient quantities between eucalypt and pine ecosystems. It was hypothesized that these differences are also partially explainable in terms of the nutrient losses accompanying two fires which had occurred in the pine plantation area. Nitrogen balances in this study were incomplete because several potentially important fluxes were not measured.  相似文献   

19.
运用跟踪监测方法,针对集约栽培雷竹林生长立地条件和覆盖技术措施,分析以砻糠为物料的覆盖措施下林地土壤养分和物理结构的变化状况,揭示其与栽培措施之间的相互关系。结果表明:耕作层0~15cm的土壤养分状况好转,表现为有机质、速效磷、速效钾等含量增加,土壤保肥能力增强;土壤结构状况深受覆盖措施影响,颗粒直径为0.25 mm和0.25~0.5 mm的团聚体颗粒含量明显增加,土壤团粒结构的分形维数为2.453~3.113;连续覆盖3次以上的土壤容重下降至0.93~1.07 g/cm3。研究表明,生产上应根据雷竹林覆盖状况和养分变动特点,对栽培措施做出调整,避免雷竹林因生长负荷增大而引起土壤退化。  相似文献   

20.
In Canada's eastern boreal forest, the stagnant growth of black spruce (Picea mariana (Mill.) BSP) seedlings is often observed in the presence of ericaceous shrubs such as Kalmia angustifolia L. Many mechanisms, including allelopathic interference, reduced soil N mineralization, soil enzymes inhibition, and direct resource competition have been proposed to explain poor spruce growth in the presence of Kalmia. However, the relative importance of direct competition versus indirect interference remains unclear. Our objective was thus to adequately isolate the “Kalmia effect” from other growth-limiting factors and to determine if removal of Kalmia also resulted in fundamental changes in the biochemical properties of the forest floor. By sampling plots established in 2000, we evaluated how Kalmia eradication and spot fertilization influenced soil nutrient availability, N mineralization rates, microbial basal respiration and biomass, as well as planted black spruce seedling growth, dimensions, and foliar nutrient concentrations 6 years later. We measured higher extractable-P, mineralizable-N, seedling dimensions and growth rates, as well as lower extractable-K, total-K, basal respiration and microbial biomass, in plots without Kalmia than in those where Kalmia had been maintained from 2000 to 2006. Our results thus confirmed that Kalmia eradication over 6 years not only improved the growth and nutrition of black spruce seedlings, but also resulted in fundamental changes in the biochemical properties of the forest floor. We demonstrated that along with direct competition for resources, Kalmia interferes indirectly with black spruce by modifying nutrient cycling and energy fluxes in soil. Higher indices of available C in plots with Kalmia corroborates that Kalmia tannins or rhizodeposition may reduce N mineralization by stimulating microbial immobilization, a relation that however needs to be confirmed with longer term laboratory incubations. Our results indicated that although it had a positive influence on seedling growth, the fertilization effect was confined to the first few years following treatment application, and failed to influence soil processes as did Kalmia eradication. Further monitoring will indicate if the increased litterfall in fertilized plots will eventually initiate a second wave of fertilizer-induced changes to soil processes, as observed in other ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号