首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis andFraxinus mandshurica were treated in open-top chambers with elevated CO2 concentrations (700 μL·L−1, 500 μL·L−1) and ambient CO2 concentrations (350 μL·L−1) in Changbai Mountain from June to Sept. in 1999 and 2001. The net photosynthetic rate, dark respiration rate, ribulose-1,5-bisphosphate carboxlase (RuBPcase) activity, and chlorophyll content were analyzed. The results indicated the RuBPcase activity of the three species seedlings increased at elevated CO2 concentrations. The elevated CO2 concentrations stimulated the net photosynthetic rates of three tree species exceptP. sylvestriformis grown under 500 μL·L−1 CO2 concentration. The dark respiration rates ofP. koraiensis andP. sylvestriformis increased under concentration of 700 μL·L−1 CO2, out that ofF. mandshurica decreased under both concentrations 700 μL·L−1 and 500 μL·L−1 CO2. The seedlings ofF. mandshurica decreased in chlorophyll contents at elevated CO2 concentrations. Foundation item: This paper was supported by the National Natural Science Foundation of China (No. 30070158). Knowledge Innovation Item of Chinese Academy of Sciences (KZCX2-406) and “Hundred Scientists” Project of Chinese Academy of Sciences. Biography: Zhou Yu-mei (1973-) Ph. Doctor, Assistant Research fellow Institute of Applied Ecology. Chinese Academy of Sciences. Shenyang 110016. P.R. China. Responsible editor: Song Funan  相似文献   

2.
Protoplasts were isolated from the leaves of sterile plants ofPopulus euphratica Oliv. by using 1% Cellulase “Onozuka” RS and 0.25% Pectolyase Y-23 in 0.6m of mannitol solution. Protoplasts were cultured in modified Murashige and Skoog's (MS) medium which contained no ammonium ions but was supplemented with BAP (6-benzylaminopurine), 2,4-D (2,4- dichlorophenoxy-acetic acid), and 1% sucrose at the cell density of 9×104/ml. Cell divisions occurred in every culture medium, especially in the medium containing 0.5 mg/l of BAP and 0.1 mg/l of 2,4-D, in which callus was successfully induced by successive culture through cell cluster formation. Shoots were regenerated from the callus, and their growth was enhanced on 1/2 MS medium containing 0.8 mg/l of BAP. Finally, shoots were rooted and plantlets were regenerated on 1/2 MS medium without a hormone. A part of this paper was presented at the 106th Annual Meeting of the Jpn. For. Soc. (1995).  相似文献   

3.
Four-year-oldPinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol−1) and high CO2 concentrations (500 and 700 μmol·mol−1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42°N, 128°E). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (g s), ratio of intercellular to ambient CO2 concentration (c i/c a) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol−1 CO2. grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol−1CO2). High-[CO2]-grown plants exhibited lowerc i/c a ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However,c i/c a ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle. Foundation Item: This research was supported by National Basic Research Program of China (2002CB412502), Project of Key program of the National Natural Science Foundation of China (90411020) and National Natural Science Foundation of China (30400051). Biography: ZHOU Yu-mei (1973-), female, Ph. Doctor, assistant research fellow, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

4.
The effects of elevated atmospheric CO2 concentrations on the nighttime respiration were examined for two sample branches of a hinoki cypress tree (Chamaecyparis obtusa) growing in the field with an open gas exchange system for a one-year period from July 1994 to June 1995. The branches were of a similar size and located at a similar position within the crown. One branch was subjected to an elevated CO2 concentration of 800 μmol mol−1 and the other was subjected to ambient air which had a CO2 concentration of about 370 μmol mol−1. Nighttime respiration rate was higher in elevated CO2 level than in ambient CO2 level. The relationship between nighttime respiration and the corresponding nighttime air temperature was fitted by the exponential function in every month of the year. The segregation of regression lines between the two CO2 treatments increased gradually as the seasons progressed during the treatment period. TheQ 10 values for nighttime respiration were lower in elevated CO2 (1.9 ≤Q 10 ≤ 3.7) than in ambient CO2 (2.4 ≤Q 10 ≤ 4.5) in every month of the year. TheQ 10 was inversely related to the monthly mean nighttime air temperature in both elevated and ambient CO2. The estimated daily nighttime respiration rate under both CO2 treatments had a similar seasonal pattern, which almost synchronized with the temperature change. The respiration ratio of elevated CO2 to ambient CO2 increased gradually from 1.1 to 1.6 until the end of the experiment. Our results indicate that the CO2 level and the temperature have a strong interactive effect on respiration and suggest that a potential increase in respiration of branches will occur when ambient CO2 increases.  相似文献   

5.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

6.
Pinus sylvestriformis is an important species as an indicator of global climate changes in Changbai Mountain, China. The water use efficiency (WUE) of this species (11-year old) was studied on response to elevated CO2 concentration at 500±100 μL·L−1 by directly injecting CO2 into the canopy under natural condition in 1998–1999. The results showed that the elevated CO2 concentration reduced averagely stomatal opening, stomatal conductance and stomatal density to 78%, 80% and 87% respectively, as compared to normal ambient. The elevated CO2 reduced the transpiration and enhances the water use efficiency (WUE) of plant. The project was supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

7.
The biomass and ratio of root-shoot ofPinus sylvestriformis seedlings at CO2 concentration of 700 μL·L−1 and 500 μL·L−1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to Oct. in 1999. The results showed that doubling CO2 concentration was benefit to seedling growth of the species (500 μL·L−1 was better than 700 μL·L−1) and the biomass production was increased in both above-ground and underground parts of seedlings. Carbon transformation to roots was evident as rising of CO2 concentration. This project is supported by Chinese Academy of Sciences Responsible editor: Chai Ruihai  相似文献   

8.
One-year-old seedlings ofPinus koraiensis, Pinus sylvestriformis, Phellodendron amurense were grown in open-top chambers (OTCs) with 700 and 500 ώmol/mol CO2 concentrations, control chamber and on open site (ambient CO2, about 350 ώmol/mol CO2) respectively at the Open Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, and the growth course responses of three species to elevated CO2 and temperature during one growing season was studied from May to Oct. 1999. The results showed that increase in CO2 concentration enhanced the growth of seedlings and the effect of 700 (ώmol/mol CO2 was more remarkable than 500 ώmol/mol CO2 on seedling growth. Under the condition of doubly elevated CO2 concentration, the biomass increased by 38% in average for coniferous seedlings and 60% for broad-leaved seedlings. With continuous treatment of high CO2 concentration, the monthly-accumulated biomass of shade-tolerantPinus koraiensis seedlings was bigger in July than in August and September, while those ofPinus sylvestriformis andPhellodendron amurense seedlings showed an increase in July and August, or did not decrese until September. During the hot August, high CO2 concentration enhanced the growth ofPinus koraiensis seedlings by increasing temperature, but it did not show dominance in other two species. Foundation Item: This paper was supported by Chinese Academy of Sciences and the Open Research Station of Changbai Mountain Forest Ecosystem.  相似文献   

9.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2. Foundation Item: This paper was supported by Chinese Academy of Sciences. Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

10.
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL·μL-1CO2)处理.处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量.结果表明:在700μL·L-1和1400μL·L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好:外源糖溶液与2100μL·L-1CO2结合,会抑制叶片积累总糖和蛋白质:在700μL·L-1和1400μL·L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别:同700、1400μL·L-1CO2相比,除喷施果糖植株外,2100μL·L-1 CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量:在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性.图6参7.  相似文献   

11.
Zhu Hong 《林业研究》1996,7(2):41-45
The tissue culture of Schloss Mannheim(Rosa Chinensis var.Flaribunda) with full and unsprouting bud of stem segments as the explants was experimented. The result shows that the buds sprouted best on MS medium with the addition of 6-BA 1.0 mg/L, and differentiation was best on MS medium with addition of 6-BA 1.5 + NAA 0.05 + ZT 0.1 mg/L or KT 1.0 + NAA0.05 + ZT 0.1 mg/L. The MS medium with addition of 6-BA 0.3 + NAA 0.0 5+ ZT 0.1 mg/L or KT 0.3 + NAA0.05 + ZT 0.1 mg/L showed a good result for developing strong shoots. 1/2 MS medium with the addition of IBA 0.1 mg/L or IBA 0.1 + NAA 0.02 mg/L had best result for rooting. The plantlets should be transplanted from test-tube to soil when they grew to 2.5 ∼ 4.0 cm high and have 3 ∼ 5 strips short roots. A higher survival rate was obtained under the conditions of controlling humidity and temperature.  相似文献   

12.
Using Agrobacterium-mediated gene transfer, we generated transgenic hybrid sweetgum (Liquidambar styraciflua × L. formosana) overexpressing two types of genes to enhance plant remediation of mercury-contaminated soil and water: bacterial γ-glutamylcysteine synthetase gene (ECS), the first and most important enzyme in phytochelatin synthesis, or various genes encoding a mercuric ion reductase (merA9, merA18, merA77). Hybrid sweetgum proembryogenic masses (PEMs) constitutively overexpressing ECS were able to grow in the presence of 50 μM HgCl2, which inhibited wild-type PEMs, but plantlets regenerated from the PEMs had abnormal form and did not survive for more than a few weeks following germination. In contrast, mature somatic embryos generated from PEMs constitutively overexpressing merA9 and merA18 converted to normal plantlets on germination medium containing 25 μM HgCl2, while control embryos were killed on 25 μM Hg(II)-medium. Transgenic merA plantlets displayed enhanced resistance to Hg(II) and released Hg(0) two to three times more efficiently than the wild-type plantlets.  相似文献   

13.
For the mass production of Koelreuteria bipinnata var. integrifoliola with selected, hybrid or genetically engineered genotypes, one potentially desirable propagation strategy is based on embryo culture. The immature embryo development in vitro from K. bipinnata var. integrifoliola was studied under different conditions of embryo age, basic culture media and plant growth regulators. The results show that: 1) germination rate of grade 3 embryos in immature seeds with 0.6–0.8 cm diameter was 98.9%. The germination rate of grade 2 embryos in immature seeds with 0.4–0.6 cm diameter was 77.8% and the germination rate of grade 1 embryos in immature seeds with 0.4 cm diameter was 15.6%. 2) The amounts of macroelements in MS medium had no clear effect on the germination rate of immature grade 3 embryos and had a modest effect on plantlet growth, where the best medium was MS or 1/2 MS. The rates were all greater than 90%. 3) The germination rate of grade 3 embryos was greater than 87% when the medium contained a low concentration of NAA or no plant growth regulators at all and decreased markedly when BAP alone or BAP and NAA together were added to the media. We suggest that in vitro culture of immature embryos from K. bipinnata var. integrifoliola can be enhanced when a small amount of plant growth regulators is added. The addition of BAP has an adverse reaction to the germination and development of immature embryos.  相似文献   

14.
Eco-physiological responses of seedlings of eight species,Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica andAcer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998–1999). Two concentrations of CO2 were designed: elevated CO2 (700 μmol·mol−1) and ambient CO2 (400 μmol·mol−1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%–40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2. Foundation item: The project was supported by National Key Basic Development of China (G1999043400) and the grant KZCX 406-4, KZCX1 SW-01 of the Chinese Academy of Sciences Biography: WANG Miao (1964-), maie, associate professor in Institute of applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

15.
Forest soil is a huge reserve of carbon in the biosphere. Therefore to understand the carbon cycle in forest ecosystems, it is important to determine the dynamics of soil CO2 efflux. This study was conducted to describe temporal variations in soil CO2 efflux and identify the environmental factors that affect it. We measured soil CO2 efflux continuously in a beech secondary forest in the Appi Highlands in Iwate Prefecture for two years (except when there was snow cover) using four dynamic closed chambers that automatically open after taking measurements. Temporal changes in soil temperature and volumetric soil water content were also measured at a depth of 5 cm. The soil CO2 efflux ranged from 14 mg CO2 m−2 h−1 to 2,329 mg CO2 m−2 h−1, the peak occurring at the beginning of August. The relationship between soil temperature and soil CO2 efflux was well represented by an exponential function. Most of temporal variation in soil CO2 efflux was explained by soil temperature rather than volumetric soil water content. The Q 10 values were 3.7 ± 0.8 and estimated annual carbon emissions were 837 ± 210 g C m−2 year−1. These results provide a foundation for further development of models for prediction of soil CO2 efflux driven by environmental factors.  相似文献   

16.
Synchrony between development of five corn hybrid varieties of various seasonal growing rates (FAO numbers), seasonal flight pattern of male cotton bollworm, Helicoverpa armigera Hb. (Lepidoptera: Noctuidae), as monitored by pheromone traps, and the subsequent appearance of newly hatched larvae on developing cobs were studied at Mezőhegyes, South-Hungary, in 2003 and 2004. The phenological stages of corn hybrids were evaluated using the Iowa State University Scale (R1–R5), the flight of male moths was monitored by large capacity, funnel type of pheromone traps and the appearance of freshly hatched larvae on developing cobs were counted by visual inspection. The synchrony between the flight peak of male moths and the peak apperance of L1 larvae on cobs was investigated by cross-correlation. In 2003 (average daily temperatures 20.7°C, average daily relative humidity 59.9% for the period of 4–18 July) “DK 391”, “DK 443” and “Maraton” hybrid varieties already reached silking stage (R1) by the time when pheromone traps indicated a peak, at 7 July (peak capture at 3-day intervals 755.5 males/traps). The number of L1 larvae peaked on developing cobs of these varieties also at 7 July (7.0, 4.0 and 3.8 larvae/50 cobs, respectively). The synchrony between the flight peak of male moths and the peak appearance of L1 larvae on cobs was proven (LAG = 0). A rather similar trend was observed in “Vilma” hybrid variety: it reached R1 stage at 7 July, and L1 larvae appeared only a few days later (11 July, 3.8 larvae/50 cobs) (LAG = −1). However, “Maxima” hybrid variety reached R1 stage 1 week later (14 July) than the time of peak captures. Here L1 larvae peaked as late as at 18 July (0.8 larvae/50 cobs), i.e., only after the cob had reached R1 stage (LAG = −3). A reverse order of dates of R1 stage and peak capture was observed in “Maxima” in 2004 (average daily temperatures; 22.5°C, average daily relative humidities 72.6% for the period of 15 July–6 August): it reached R1 stage at 19 July, while peak trap captures were recorded at 6 August (peak capture at 3-day intervals 20.5 males/traps). L1 larvae were found in the highest numbers on 2 August (1.5 larvae/50 cobs), practically in synchrony with peak caputres (LAG = 0). “Káma” reached R1 stage in 16 July, and L1 larvae peaked at 2 August (1.3 larvae/50 cobs) (LAG = 0). On the rest of the corn varieties larvae were found only in too numbers for performing statistical analysis. We conclude that in order to predict the appearance of L1 larvae, the phenological stage of the corn variety and the seasonal flight pattern of moths, as measured by large capacity pheromone traps, should be considered in combination. If the corn variety already reached R1 stage, L1 larvae appear on cobs as early as the time of peak flight of moths. However, no young larvae appear on cobs despite of high trap captures, until the corn reaches the R1 stage. These findings are discussed in the view of specifying optimal timing of a pesticide application.  相似文献   

17.
Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.  相似文献   

18.
本文研究了大叶桃花心木(Swietenia macrophylla King)一年生幼苗在经过夜温处理后的光响应曲线和在饱和光强下的CO2反应曲线.结果表明:在大气CO2浓度下,叶片的最佳光合作用温度在25-31℃之间,而在饱和CO2浓度下为31-35℃.在25℃以下光合速率开始降低,主要是由于羧化效率的降低,而当温度超过31℃时,光合速率下降,是因为羧化效率的降低和呼吸速率的增加.CO2浓度对光合的促进作用在低温下受到抑制,这意味着未来在CO2浓度增高的情况下,高浓度的CO2对热带常绿植物光合的促进在冬天低温情况下表现不十分明显.图4参23.  相似文献   

19.
In vitro propagation of a medicinal plant: Tripterygium wilfordii Hook f.   总被引:1,自引:0,他引:1  
In this study a reliable protocol was developed for the establishment of commercial in vitro cultures of Tripterygium wilfordii Hook f.. Juvenile shoots from one-year-old elite plants were used as the source of explants. New axillary shoots were obtained after 30 days of culture on a MS medium supplemented with BAP (2.0 mg·L–1) and NAA (0.1 mg·L–1). The optimal multiplication medium was a modified MS medium supplemented with BAP (1.0 mg·L–1) and NAA (0.1 mg·L–1). This yielded a multiplication rate of 2.4 for each subculture. Slightly more than 92% of shoots rooted when cultured on a modified MS medium containing IBA (0.2 mg·L–1) and acti-vated charcoal (0.5 mg·L–1). Activated charcoal promoted both a strong and a high rooting rate during the rooting phase. Plantlets were transferred to pots for a short acclimatization stage in a greenhouse where 95% of the plantlets survived. This highly reproduci-ble procedure can be adopted for large-scale propagation of T. wilfordii.  相似文献   

20.
Cottonhead windhairdaisy (Saussurea laniceps Hand.-Mazz.) is one of the most famous and important medicinal herbs in China. Illegal collection from wild populations is increasingly threatening the present environment of S. laniceps. Establishment of an efficient method for micropropagation is the best way to change its endangered situation. When mature seeds of S. laniceps were cultured on hormone-free MS medium, plantlets were formed from germinated seeds in 7–10 d. Then 0.5 cm × 0.5 cm leaf explants were transplanted to MS medium supplemented with 1-naphthalene-acetic acid (NAA)/2,4-D and benzyladenine (BA)/KT and callus was achieved 10 d after transfer. Shoot bud regeneration occurred from callus cultured on MS medium supplemented with different growth regulators 20 d after culturing. The regeneration percentages varied with the different components of plant growth regulators. The percent regeneration from callus pretreated at low temperature of 5°C increased significantly compared with those incubated at 23/20°C directly. Optimal regeneration was observed with explants on media supplemented with 1.5 mg&#8226;L–1 BA plus 0.2 mg&#8226;L-1 NAA. In the presence of 0.2 mg&#8226;L–1 NAA in half-strength MS, 78% of the shoots formed roots. Plantlets from explants showed 63% survival after acclimatization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号