首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The depletion of the nitrofuran drugs furazolidone, nitrofurazone, furaltadone, and nitrofurantoin and their tissue-bound metabolites [3-amino-2-oxazolidinone (AOZ), semicarbazide (SC), 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), and 1-aminohydantoin (AH), respectively] were examined in the muscle of channel catfish following oral dosing (1 mg/kg body weight). Parent drugs were measurable in muscle within 2 h. Peak levels were found at 4 h for furazolidone (30.4 ng/g) and at 12 h for nitrofurazone, furaltadone, and nitrofurantoin (104, 35.2, and 9.8 ng/g respectively). Parent drugs were rapidly eliminated from muscle, and tissue concentrations fell below the limit of detection (1 ng/g) at 96 h. Peak levels of tissue-bound AMOZ and AOZ (46.8 and 33.7 ng/g respectively) were measured at 12 h, and of SC and AH (31.1 and 9.1 ng/g, respectively) at 24 h. Tissue-bound metabolites were measurable for up to 56 days postdose. These results support the use of tissue-bound metabolites as target analytes for monitoring nitrofuran drugs in channel catfish.  相似文献   

2.
Nitrofurans were broadly used as an extremely effective veterinary antibiotic especially in pig and poultry production farms. Because of fears of the carcinogenic effects on humans, the nitrofurans were banned from use in livestock production in many countries, including the European Union. The present study examines the accumulation, distribution, and depletion of furaltadone and nifursol and of their tissue-bound metabolites [3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ) and 3,5-dinitro-salicylic acid hydrazine (DNSAH), respectively, in poultry edible tissues (muscle, liver, and gizzards) following administration to chickens of therapeutic and subtherapeutic concentrations of both compounds. Nitrofurans determination was performed by high-performance liquid chromatography-diode array detection and liquid chromatography-tandem mass spectrometry, respectively, for feeds and for poultry tissues. Furaltadone and nifursol, in very low concentrations, were found in samples of muscle, liver, and chicken's gizzard collected from slaughtered animals after 5 weeks of treatment and no withdrawal time period. When a withdrawal time period of 3 weeks was respected, no detectable nitrofuran parent compounds was observed in all of the studied matrices. For AMOZ, concentrations of 270 μg/kg in meat, 80 μg/kg in liver, and 331 μg/kg in gizzard were determined after administration of a medicated feed with furaltadone (132 mg/kg), 3 weeks after withdrawal of treatment. For DNSAH, the concentration values obtained are much lower than those observed for AMOZ. For meat, liver, and gizzard, DNSAH concentrations of 2.5, 6.4, and 10.3 μg/kg, respectively, were determined, after administration of a medicated feed with nifursol (98 mg/kg), 3 weeks after withdrawal of treatment. The gizzard could be considered a selected matrix for nitrofuran residues evaluation in poultry, due to its capacity of retaining either nitrofuran parent compounds or metabolites in higher concentrations, regardless of the administered dose or of the respected withdrawal time period.  相似文献   

3.
A sensitive and selective isotope dilution liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESIMS/MS) method is presented for the simultaneous analysis of the metabolites of four nitrofuran veterinary drugs, that is, furazolidone, furaltadone, nitrofurantoin, and nitrofurazone, in honey samples. The method entails a combined hydrolysis of protein-bound drug metabolites and derivatization of the resulting metabolites with 2-nitrobenzaldehyde (NBA) during an overnight incubation, followed by a liquid-liquid extraction and a cleanup on a polymeric solid-phase extraction cartridge. Mass spectral acquisition is carried out in the positive ion mode by applying multiple reaction monitoring (MRM) of three diagnostic transition reactions for each analyte under survey. A reliable quantification is obtained by the use of one deuterated analogue per analyte (NBA-d(4) derivative). The method has been validated in honey according to the European Union criteria for the analysis of veterinary drug residues in food. Expressed in underivatized nitrofuran metabolite concentrations, the decision limits (CCalpha) ranged within 0.07-0.46 microg/kg, and the detection capabilities (CCbeta) were within 0.12-0.56 microg/kg. The method has been successfully applied in a survey of honeys of various geographical origins, showing that furazolidone is the main nitrofuran antibiotic administered to treat bacterial diseases of bees.  相似文献   

4.
An analytical method has been developed for the determination of total bound and extractable residues of the nitrofuran drugs furazolidone, nitrofurazone, furaltadone, and nitrofurantoin in milk of dairy cows. The method involves overnight acid hydrolysis and simultaneous derivatization of the released side chains with 2-nitrobenzaldehyde. During hydrolysis, the bound metabolites are hydrolyzed to the side chains. After pH adjustment and solid-phase extraction cleanup, the derivatives are detected and quantitated using a liquid chromatography-tandem mass spectrometry system with an atmospheric pressure chemical ionization interface. Validation of the method is accomplished by fortifying control milk with a mixture of side chains at 1, 2, and 4 ng/g. Internal standards are added at the beginning of the procedure to compensate for matrix effects and recovery losses. Method accuracies range from 83 to 104% with coefficients of variation less than 13% for all four analytes. The limits of detection are相似文献   

5.
A method was developed for the determination and confirmation of furazolidone, nitrofurazone, furaltadone, and nitrofurantoin as their side-chain residues in honey using liquid chromatography-tandem mass spectrometry (LC-MS/MS). An initial solid-phase extraction cleanup of the honey samples was followed by overnight hydrolysis and derivatization of the nitrofuran side-chain residues with 2-nitrobenzaldehyde. After pH adjustment and liquid-liquid extraction, the extracts were assayed by LC-MS/MS using electrospray ionization in the positive ion mode. The method was validated at concentrations ranging from 0.5 to 2.0 ppb with accuracies of 92-103% and coefficients of variation of < or =10%. The lowest calibration standard used (0.25 ppb) was defined as the limit of quantitation for all four nitrofuran side-chain residues. The extracts and standards were also used for confirmatory purposes. Honey from dosed beehives was assayed to study the stability of the nitrofuran residues and to demonstrate the effectiveness of the method.  相似文献   

6.
An analytical method was developed for the determination of bound residues of the nitrofuran drugs furazolidone, nitrofurazone, furaltadone, and nitrofurantoin with a sensitivity of 1 ppb in shrimp. In this procedure, shrimp tissue is prewashed with solvents followed by overnight acid hydrolysis, during which the side chains of the bound residues are released and simultaneously derivatized with 2-nitrobenzaldehyde. After liquid-liquid extraction cleanup, the derivatives are detected and quantitated using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) with an atmospheric pressure chemical ionization interface. The method was validated using control shrimp fortified with each side-chain analyte at 1, 2, and 4 ppb. Method accuracies were >80% with coefficients of variation of <20% for all four analytes. Tissues from dosed shrimp were assayed to demonstrate the effectiveness of the method for recovering bound residues of nitrofurans. In shrimp dosed with nitrofurans, nitrofurantoin exhibited the lowest level of bound residues.  相似文献   

7.
Little is known about the metabolism of acetylenic (C&tbd1;C) compounds commonly used in the formulation of pesticides. To better understand the in vivo reactivity of this bond, we examined the metabolism of propargyl alcohol (PA), 2-propyn-1-ol, used extensively in the chemical industry. [1,2,3-(13)C, 2,3-(14)C]PA was administered orally to male Sprague-Dawley rats. Approximately 56% of the dose was excreted in urine by 96 h. Major metabolites were characterized, directly, in the whole urine by one- and two-dimensional (13)C NMR. To determine the complete structures of metabolites of PA, rat urine was also subjected to TLC followed by purification of separated TLC bands on HPLC. The purified metabolites were identified by (13)C NMR and mass spectrometry and by comparison with available synthetic standards. The proposed metabolic pathway involves oxidation of propargyl alcohol to 2-propynoic acid and further detoxification via glutathione conjugation to yield as final products: 3, 3-bis[(2-(acetylamino)-2-carboxyethyl)thio]-1-propanol, 3-(carboxymethylthio)-2-propenoic acid, 3-(methylsulfinyl)-2-(methylthio)-2-propenoic acid, 3-[[2-(acetylamino)-2-carboxyethyl]thio]-3-[(2-amino-2-carboxyethyl)t hio]-1-propanol and 3-[[2-(acetylamino)-2-carboxyethyl]sulfinyl]-3-[2-(acetylamino)-2-car boxyethyl]thio]-1-propanol. These unique metabolites have not been reported previously and represent the first example of multiple glutathione additions to the carbon-carbon triple bond.  相似文献   

8.
The concentrations of heterocyclic aromatic amines (HAAs) were determined, by liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-ESI-MS/MS), in 26 samples of beef, pork, and chicken cooked to various levels of doneness. The HAAs identified were 2-amino-3-methylimidazo[4,5- f]quinoline, 2-amino-1-methylimidazo[4,5- b]quinoline, 2-amino-1-methylimidazo[4,5- g]quinoxaline (I gQx), 2-amino-3-methylimidazo[4,5- f]quinoxaline, 2-amino-1,7-dimethylimidazo[4,5- g]quinoxaline (7-MeI gQx), 2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline, 2-amino-1,6-dimethyl-furo[3,2- e]imidazo[4,5- b]pyridine, 2-amino-1,6,7-trimethylimidazo[4,5- g]quinoxaline, 2-amino-3,4,8-trimethylimidazo[4,5- f]quinoxaline, 2-amino-1,7,9-trimethylimidazo[4,5- g]quinoxaline, 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP), 2-amino-9 H-pyrido[2,3- b]indole, and 2-amino-3-methyl-9 H-pyrido[2,3- b]indole. The concentrations of these compounds ranged from <0.03 to 305 parts per billion (micrograms per kilogram). PhIP was the most abundant HAA formed in very well done barbecued chicken (up to 305 microg/kg), broiled bacon (16 microg/kg), and pan-fried bacon (4.9 microg/kg). 7-MeI gQx was the most abundant HAA formed in very well done pan-fried beef and steak, and in beef gravy, at concentrations up to 30 microg/kg. Several other linear tricyclic ring HAAs containing the I gQx skeleton are formed at concentrations in cooked meats that are relatively high in comparison to the concentrations of their angular tricyclic ring isomers, the latter of which are known experimental animal carcinogens and potential human carcinogens. The toxicological properties of these recently discovered I gQx derivatives warrant further investigation and assessment.  相似文献   

9.
To identify the compounds evoking the characteristic cereal-like, sweet aroma of oat flakes, an aroma extract dilution analysis (AEDA) was applied to a distillate prepared by solvent extraction/vacuum distillation from commercial oat flakes. Among the nine aroma-active compounds detected by gas chromatography-olfactometry and AEDA in the flavor dilution (FD) factor range of 4-1024, eight odorants, for example, (E)-beta-damascenone, (Z)-3-hexenal, and butanoic acid, showed only low FD factors. However, one odorant eliciting the typical cereal, sweet aroma of the flakes was detected with the highest FD factor of 1024. By mass spectrometry and nuclear magnetic resonance measurements followed by a synthesis, (E,E,Z)-2,4,6-nonatrienal, exhibiting an intense oat flake-like odor at the extremely low odor threshold of 0.0002 ng/L in air, was identified as the key odorant of the flakes. By means of a newly developed stable isotope dilution analysis using synthesized, carbon-13-labeled nonatrienal as the internal standard, a concentration of 13 mug of (E,E,Z)-2,4,6-nonatrienal per kilogram of the flakes was measured. Model studies suggested linolenic acid as the precursor of nonatrienal in oats.  相似文献   

10.
Biotransformation of the environmental pollutant 3-methyl-4-nitrophenol (MNP), a newly characterized estrogenic chemical, and the primary breakdown product of the heavily used insecticide fenitrothion was investigated using a common soil fungus. In 96 h, daily culture sacrifice, extraction, and analysis showed that the filamentous fungus, Aspergillus niger VKM F-1119, removed more than 85% of the MNP present in solution (original concentration = 25 mg/L), mostly through biodegradation. Additionally, in 16-day time-course studies, A. niger was capable of biotransformation of MNP at concentrations as high as 70 mg/L. Gas chromatography mass spectroscopy (MS) analyses of culture fluid extracts indicated the formation of four metabolites: 2-methyl-1,4-benzenediol, 4-amino-3-methylphenol, and two singly hydroxylated derivatives of MNP. Culture scale up and metabolite analysis by liquid chromatography MS resulted in the confirmation of the original metabolites plus the detection of an azo derivative metabolite that has not been previously reported before during MNP biodegradation by any micro-organisms.  相似文献   

11.
The metabolism of fonofos, a thiophosphonate insecticide, was investigated in mature lettuce (Latuca sativa), beet (Beta vulgaris), and wheat (Triticum aestivum). Six new metabolites were identified by LC-MS and LC-MS-MS analysis using fast atom bombardment (FAB) and packed capillary LC columns with application of the on-column focusing technique. These methods provided the sensitivity required to identify unknown metabolites that were present in the mature plants at only 20-230 ppb. Structural elucidation was facilitated by use of fonofos labeled with both carbon-14 and carbon-13 in the phenyl ring. In all three plants fonofos was converted to a glucose conjugate of thiophenoxylactic acid. Oxidation of the glucose conjugate gave isomeric sulfoxides in all species examined. Thiophenoxylactic acid was found esterified to malonic acid in lettuce. In beets, S-phenylcysteine was found as its malonic acid amide. A second metabolite unique to beets was N-(malonyl)-[2[(ethoxyethylphosphinothionyl)oxy]phenyl]cysteine. This novel structure was confirmed by synthesis.  相似文献   

12.
A method is reported for the determination of atrazine, simazine, and their respective dealkylated chlorotriazine metabolites in ground, surface, and finished drinking water. Water samples are diluted 1:4 in an injection vial prior to analysis using liquid chromatography/electrospray ionization-mass spectrometry/mass spectrometry (LC/ESI-MS/MS). The lower limit of method validation is 0.10 microg/L (ppb) for 2-chloro-4-(ethylamino)-6-isopropylamino)-s-triazine (atrazine, G-30027), 2-chloro-4, 6-(diethylamino)-s-triazine (simazine, G-27692), 2-amino-4-chloro-6-(isopropylamino)-s-triazine (deethylatrazine, DEA, or G-30033), 2-amino-4-chloro-6-(ethylamino)-s-triazine (deisopropylatrazine, DIA, or G-28279), and 2,4-diamino-6-chloro-s-triazine (didealkylatrazine, DDA, or G-28273). The overall mean procedural recoveries (and % relative standard deviations) for atrazine, simazine, DEA, DIA, and DDA are 98 (4.4), 102 (3.6), 99 (4.8), 103 (4.0), and 109% (4.8%), respectively, in finished drinking water; 108 (2.7), 104 (5.4), 113 (4.5), 111 (5.2), and 105% (5.3%), respectively, in groundwater; and 96 (6.9), 103 (4.2), 102 (4.4), 102 (5.2), and 102% (8.2%), respectively, in surface water. The method validation was conducted under U.S. EPA FIFRA Good Laboratory Practice Guidelines 40 CFR 160.  相似文献   

13.
Rat liver tissue homogenates were utilized for in vitro enzymatic conversion of 2,6-diethylaniline (DEA) to the important alachlor metabolite 4-amino-3,5-diethylphenyl sulfate (ADEPS), which was also generated as a radiolabeled standard for use in metabolism studies. ADEPS formation in rodents is associated with the production of other reactive metabolites implicated in alachlor rodent carcinogenesis, making dependable access to an ADEPS standard highly desirable. (14)C-DEA was oxidized by rat liver microsomes to (14)C-4-amino-3,5-diethylphenol, which was further converted to ADEPS via addition of the phosphosulfate transferase cofactor adenosine-3'-phosphate-5'-phosphosulfate. Microprobe NMR was used in conjunction with high-resolution mass spectrometry to fully characterize the resulting (14)C-ADEPS and confirm its structure. Because microgram quantities sufficed for full characterization, the enzymatic transformation provides a viable alternative to radiosynthesis of (14)C-ADEPS.  相似文献   

14.
Thirty-nine fungal metabolites 1-39, including two new alkaloids, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6) and 3-hydroxyfumiquinazoline A (16), were isolated from the fermentation broth of Aspergillus fumigatus LN-4, an endophytic fungus isolated from the stem bark of Melia azedarach. Their structures were elucidated on the basis of detailed spectroscopic analysis (mass spectrometry and one- and two-dimensional NMR experiments) and by comparison of their NMR data with those reported in the literature. These isolated compounds were evaluated for in vitro antifungal activities against some phytopathogenic fungi, toxicity against brine shrimps, and antifeedant activities against armyworm larvae (Mythimna separata Walker). Among them, sixteen compounds showed potent antifungal activities against phytopathogenic fungi (Botrytis cinerea, Alternaria solani, Alternaria alternata, Colletotrichum gloeosporioides, Fusarium solani, Fusarium oxysporum f. sp. niveum, Fusarium oxysporum f. sp. vasinfectum, and Gibberella saubinettii), and four of them, 12β-hydroxy-13α-methoxyverruculogen TR-2 (6), fumitremorgin B (7), verruculogen (8), and helvolic acid (39), exhibited antifungal activities with MIC values of 6.25-50 μg/mL, which were comparable to the two positive controls carbendazim and hymexazol. In addition, of eighteen that exerted moderate lethality toward brine shrimps, compounds 7 and 8 both showed significant toxicities with median lethal concentration (LC(50)) values of 13.6 and 15.8 μg/mL, respectively. Furthermore, among nine metabolites that were found to possess antifeedant activity against armyworm larvae, compounds 7 and 8 gave the best activity with antifeedant indexes (AFI) of 50.0% and 55.0%, respectively. Structure-activity relationships of the metabolites were also discussed.  相似文献   

15.
Two novel phytotoxins, 8-zinniol methyl ether (5) and 8-zinniol acetate (6), in addition to 6-(3',3'-dimethylallyloxy)-4-methoxy-5-methylphthalide (2), 5-(3',3'-dimethylallyloxy)-7-methoxy-6-methylphthalide (3), and the novel metabolites 8-zinniol 2-(phenyl)ethyl ether (4) and 7-zinniol acetate (7) have been identified as natural zinniol derivatives from the organic crude extract of Alternaria tagetica culture filtrates. Using zinniol as the starting material, phytotoxin 5 was synthesized, together with a number of synthetic intermediates (8-13). Both natural and synthetic zinniol derivatives were evaluated in the leaf-spot bioassay against marigold leaves (Tagetes erecta).  相似文献   

16.
To deduce the structure of the large array of compounds arising from the transformation pathway of 6-methoxybenzoxazolin-2-one (MBOA), the combination of isotopic substitution and liquid chromatography analysis with mass spectrometry detection was used as a powerful tool. MBOA is formed in soil when the cereal allelochemical 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) is exuded from plant material to soil. Degradation experiments were performed in concentrations of 400 microg of benzoxazolinone/g of soil for MBOA and its isotopomer 6-trideuteriomethoxybenzoxazolin-2-one ([D3]-MBOA). Previously identified metabolites 2-amino-7-methoxyphenoxazin-3-one (AMPO) and 2-acetylamino-7-methoxyphenoxazin-3-one (AAMPO) were detected. Furthermore, several novel compounds were detected and provisionally characterized. The environmental impact of these compounds and their long-range effects are yet to be discovered. This is imperative due to the enhanced interest in exploiting the allelopathic properties of cereals as a means of reducing the use of synthetic pesticides.  相似文献   

17.
The use of nitrofurans as veterinary drugs has been banned from intensive animal production in the European Union (EU) since 1993. The objective of the present study was to evaluate the accumulation and depletion of furaltadone and nifursol and their side-chain metabolites 5-methylmorpholino-3-amino-2-oxazolidinone (AMOZ) and 3,5-dinitrosalicylic acid hydrazide (DNSAH) in eggs after administration of therapeutic and subtherapeutic doses of the drugs to laying hens during three consecutive weeks. LC-MS/MS, with positive and negative electrospray ionization methods, was used for the determination of parent compounds and metabolites in yolk and egg white and was validated according to criteria established by Commission Decision 2002/657/EC. The decision limit (CCα) and the detection capability (CCβ) of the analytical methodology for metabolites were 0.1 and 0.5 μg/kg for AMOZ and 0.3 and 0.9 μg/kg for DNSAH, respectively. For the parent compounds, CCα and CCβ were 0.9 and 2.0 μg/kg for furaltadone and 1.3 and 3.1 μg/kg for nifursol, respectively. The data obtained show that the parent compounds are much less persistent than their side-chain metabolites in either yolk or egg white. Between the studied metabolites, AMOZ is the most persistent and could be detected in either yolk or egg white three weeks following withdrawal from treatment.  相似文献   

18.
The volatiles in the headspace above a solution of [(13)C(6)]fructose and alanine in glycerol/water, heated in a closed vial at 130 degrees C for 2 h, were analyzed by solid-phase microextraction in tandem with GC-MS. Carbonyl compounds and pyrazines were among the detected components. The examination of their mass spectra showed that most of the 1-hydroxy-2-propanone and 2,3-pentanedione were (13)C(3)-labeled, the majority of the 2-methylpyrazine and 2-ethyl-3-methylpyrazine were (13)C(5)-labeled, and 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine were mainly (13)C(6)-labeled. This is in agreement with the literature, and corresponds to the incorporation of fructose carbons, and in the case of 2,3-pentanedione, 2-ethyl-3-methylpyrazine, and 3-ethyl-2,5-dimethylpyrazine alanine carbons, into the molecules. However, minority fractions of 1-hydroxy-2-propanone (10%) and 2,3-pentanedione (14%) were found unlabeled, 2-methylpyrazine (10%) and 2-ethyl-3-methylpyrazine (11%) only doubly labeled, and 2,5-dimethylpyrazine (20%) and 3-ethyl-2,5-dimethylpyrazine (27%) only triply labeled, suggesting they contain carbons originating from the solvent glycerol. This could be confirmed by reaction of fructose and alanine in [(13)C(3)]glycerol/water, which produced the same volatiles, with 11-27% existent in their (13)C(3)-labeled form. Hence, glycerol participated not only as a solvent but also as a precursor in the reaction.  相似文献   

19.
The ability to study bioavailability of nutrients from foods is an important step in determining the health impact of those nutrients. This work describes a method for studying the bioavailability of nutrients from kale (Brassica oleracea var. Acephala) by labeling the nutrients with carbon-13, feeding the kale to an adult volunteer, and analyzing plasma samples for labeled nutrients. Results showed that conditions for producing atmospheric intrinsically labeled kale had no detrimental effect on plant growth. Lutein, beta-carotene, retinol, and phylloquinone were analyzed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Analysis of plasma samples showed that labeled lutein peaked in plasma at 11 h (0.23 microM), beta-carotene peaked at 8 (0.058 microM) and 24 h (0.062 microM), retinol peaked at 24 h (0.10 microM), and phylloquinone peaked at 7 h (3.0 nM). This method of labeling kale with (13)C was successful for producing clearly defined kinetic curves for (13)C-lutein,(13)C-beta-carotene, (13)C-retinol, and (13)C-phylloquinone.  相似文献   

20.
High-resolution gas chromatography in combination with mass spectrometry and high-resolution mass spectrometry was used to determine the positions and extent of labeling in the metabolites of carvone, namely in alpha,4-dimethyl-5-oxo-3-cyclohexene-1-acetic acid (dihydrocarvonic acid), alpha-methylene-4-methyl-5-oxo-3-cyclohexene-1-acetic acid (carvonic acid), and 5-(1,2-dihydroxy-1-methylethyl)-2-methyl-2-cyclohexen-1-one (uroterpenolone), after human ingestion of 9,9-dideutero- and 9-(13)C-carvone. Carvonic acid was formed by oxidation at the methyl carbon of the isopropenyl group of carvone, whereas dihydrocarvonic acid was formed by oxidation at the methylene position, most probably via carvone epoxide. A "nonaromatic" NIH shift must occur during the subsequent reactions yielding dihydrocarvonic acid. Additionally, dehydrogenation of dihydrocarvonic acid and hydrogenation of carvonic acid were observed, resulting in minor amounts of both acids owning a carboxy group of opposite origin. Uroterpenolone was found to be exclusively formed by oxidation at the methylene carbon of the isopropenyl group of carvone, and thus, most probably by hydrolysis of carvone epoxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号