首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The photodegradation of the sulfonylurea herbicide azimsulfuron, N-[[(4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide (AZS), was studied in water at different wavelengths and in the presence of photocatalysts. AZS was rapidly degraded by UV light, affording three photoproducts. The main product, accounting for about 70% of photodegraded herbicide, was identified as 6-amino-5-[(4,6-dimethoxypyrimidin-2-yl)methylamino]-1,5,6,8-tetrahydro-7-oxa-8lambda(6)-tia-1,2,5,6-tetraza-azulen-4-one (ADTA) by single-crystal X-ray diffraction. With simulated sunlight irradiation, the reaction was slower and 2-amino-4,6-dimethoxypyrimidine (DPA) and 1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide (MPS), arising from a photohydrolytic cleavage of the sulfonylurea bridge, were the only byproducts observed. The reactions followed first-order kinetics. The addition of dissolved organic matter (DOM) did not modify significantly the AZS photodegradation rate. The presence of Fe2O3 accelerated more than twice the reaction rate affording two major products, DPA and MPS, together with minor amounts of N-[[(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide (AZS-OH). The greatest degradation rate was detected in the presence of TiO2. Only the photohydroxylation product AZS-OH was observed, which was transformed rapidly into oxalic acid.  相似文献   

2.
Adsorption and desorption of triasulfuron by soil   总被引:10,自引:0,他引:10  
The adsorption and desorption of the herbicide triasulfuron [2-(2-chloroethoxy)-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide] by three soils, soil organic matter (H(+) and Ca(2+)-saturated), and an amorphous iron oxide were studied. Adsorption isotherms conformed to the Freundlich equation. It was found that pH is the main factor influencing the adsorption in all of the systems. Indeed, the adsorption on soils was negatively correlated with pH. The highest level of adsorption was measured on soils with low pH and high organic carbon content. Moreover, it was found that humic acid is more effective in the adsorption compared with calcium humate (the pH values of the suspensions being 3.5 and 6, respectively). Experiments on amorphous iron oxide confirmed the pH dependence. Desorption was hysteretic on soils having high organic carbon content.  相似文献   

3.
Sorption-desorption of the azole fungicide triadimefon [1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2, 4-triazol-1-yl)-2-butanone] on eight soils and a series of single, binary, and ternary model soil colloids was determined using the batch equilibration technique. Regression analysis between Freundlich sorption coefficients (K(f)) and soil properties suggested that both clay and organic C (OC) were important in triadimefon sorption by soils, with increasing importance of clay for soils with high clay and relatively low OC contents. Triadimefon sorption coefficients on soil were not significantly affected by the concentration of electrolyte or the presence of soluble soil material in solution, but they were highly dependent on the soil:solution ratio due to the nonlinearity of triadimefon sorption on soil. Freundlich sorption isotherms slopes were very similar for all soils (0.75 +/- 0.02). Desorption did not greatly depend on the concentration at which it was determined and showed higher hysteresis for more sorptive soils. Results of triadimefon sorption on model sorbents supported that both humic acid and montmorillonite-type clay constituents contribute to triadimefon retention by soil colloids.  相似文献   

4.
The sorption of N-[[(4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazole-5-yl)1H-pyrazole-5-sulfonamide (AZS) on an iron oxide, iron(III)-humate, and an Fe3+-saturated clay was studied using a batch equilibrium method. Generally, 20 mg of each colloid was equilibrated with 20 mL of AZS solution (1.5-12.7 microM). The sorption on iron-montmorillonite and iron oxide was rapid, and the equilibrium was attained within 1.5 and 5 h, respectively. In the case of Fe-saturated humic acid the equilibrium time was 20 h. After equilibration, the phases were centrifuged (19000g, 15 min) and the supernatant was sampled and analyzed by HPLC. The values of Freundlich constants indicate that iron oxide (Kads = 199.5) shows the highest sorptive capacity toward AZS, followed by iron(III)-clay (Kads = 146.6) and iron(III)-humate (Kads = 108.2). With elapsing time, AZS degradation was observed in all colloidal suspensions. Iron-humate (t(1/2) = 136 h) is most effective in promoting AZS degradation, followed by iron oxide (t(1/2) = 204 h) and iron-clay (t(1/2) = 385 h). The metabolites 2-amino-4,6-dimethoxypyrimidine and 1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide, arising from a hydrolytic cleavage of the sulfonylurea bridge, were the only byproducts observed. A Fourier transform infrared study suggests that the sorption of AZS on iron-clay involves the protonation of one of the two basic pyrimidine nitrogens induced by the acidic water surrounding the saturating Fe3+ ions. Instead, the formation of a six-membered chelated complex favors the sorption of AZS on iron oxide.  相似文献   

5.
干旱区绿洲灌漠土对铜的吸附解吸特性研究   总被引:1,自引:1,他引:1  
土壤对重金属的吸附解吸是影响土壤系统中重金属的移动性和归宿的主要过程.本文使用序批实验方法、单步提取方法、连续提取方法等研究了干旱区绿洲灌漠土Cu的吸附解吸特性.结果表明,灌漠土对Cu的吸附等温线可很好地用Freundlich等温方程拟合,灌漠土的Cu吸附可能受土壤理化综合因素影响,而不仅是某个土壤理化指标所控制;二次...  相似文献   

6.
Sorption behavior of prochloraz in different soils.   总被引:6,自引:0,他引:6  
The sorption behavior of the imidazole fungicide prochloraz [PCZ; N-propyl-N-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide] was studied in batch experiments with different soils. The soil organic matter content was found to control the amount sorbed by different soils. K(d) values ranged from 56 +/- 0 to 552 +/- 10 (mean = 221 +/- 5) and K(OC) values from 7273 +/- 0 to 16250 +/- 1300 (mean = 11829 +/- 303). As calculated from a linear regression of K(d) versus %OC, K(OC) was 12900 +/- 1300. Additionally, the pH value of the soil had considerable influence on the sorption of the weakly basic PCZ (pK(a) = 3.8), giving rise to stronger sorption at lower pH. K(d) values determined on pH-modified soils confirmed the pH dependency. Sorption isotherms on two soils were recorded, initial concentrations ranging from 0.09 to 5.71 mg L(-)(1). The Freundlich isotherm was fitted to the values measured. The Freundlich exponents calculated were significantly smaller than unity, indicating nonlinear sorption. Sorption experiments with two metabolites of PCZ (PCZ-formylurea and PCZ-urea) revealed K(d) values one-fourth to one-third those for PCZ on two soils.  相似文献   

7.
Influence of organic matter and pH on bentazone sorption in soils   总被引:4,自引:0,他引:4  
Bentazone (3-isopropyl-1H-2,1,3-benzonthiadiazain-(4)3H-one 2,2-dioxide) is a postemergence herbicide which is used extensively worldwide, especially in China. The sorption of bentazone in various types of soils and extracted humic acids was investigated using a batch equilibration technique. Significant linearity was observed in sorption isotherms in five different types of soil, with distribution coefficients (K(d)) that varied between 0.140 and 0.321 mL g(-1). The distribution coefficient was determined to be a function of organic matter and pH in the soil. A model based on distribution coefficients was developed to predict bentazone sorption in soils. The organic matter-normalized partition coefficients for the neutral and anionic forms of bentazone were 370.3 and 2.40 mL g(-1), respectively. Hence, more attention should be given to the potential leaching problem when bentazone is applied in soils containing low organic matter and high pH.  相似文献   

8.
The transformation of prosulfuron [1-(4-methoxy-6-methyltriazine-2-yl)-3-[2-(3,3,3-trifluropropyl)phenylsulfonyl]urea] in three soils at different pH values (sterilized and unsterilized) was studied, and it was shown that the rate of transformation was high in acidic soil. From the results obtained in sterile soils, it is shown that the mechanism of dissipation was mainly chemical in acidic soils. A new metabolite, 2-(3,3,3-trifluoropropyl)phenylsulfonic acid, was identified.  相似文献   

9.
Syntheses of various isomeric dihydropiperazines can be approached successfully by taking advantage of the regioselective monothionation of their respective diones. Preparation of the precursor unsymmetrical N-substituted piperazinediones from readily available diamines is key to this selectivity. The dihydropiperazine ring system, as exemplified in 1-[(6-chloropyridin-3-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (4) and 1-[(2-chloro-1,3-thiazol-5-yl)methyl]-4-methyl-3-oxopiperazin-2-ylidenecyanamide (25), has been shown to be a suitable bioisosteric replacement for the imidazolidine ring system contained in neonicotinoid compounds. However, placement of the cyanoimino electron-withdrawing group further removed from the pyridine ring, as in 4-[(6-chloropyridin-3-yl)methyl]-3-oxopiperazin-2-ylidenecyanamide (3a), or relocation of the carbonyl group, as in 1-[(6-chloropyridin-3-yl)methyl]-4-methyl-5-oxopiperazin-2-ylidenecyanamide (5), results in significantly decreased bioisosterism. The dihydropiperazine ring system of 4 and 25 also lends a degree of rigidity to the molecule that is not offered by the inactive acyclic counterpart 2-[(6-chloropyridin-3-yl)-methyl-(methyl)amino]-2-(cyanoimino)-N,N-dimethylacetamide (6). A pharmacophore model is proposed that qualitatively explains the results on the basis of good overlap of the key pharmacophore elements of 4 and imidacloprid (1); the less active regioisomers of 4 (3a, 5, and 6) feature a smaller degree of overlap.  相似文献   

10.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

11.
Dicyandiamide sorption-desorption behavoir on soils and peat humus   总被引:3,自引:0,他引:3  
The sorption-desorption behavior of dicyandiamide (DCD) is an important chemical process that affects DCD fate and mobility in soils. Therefore, this study quantified DCD sorption-desorption on a phaeozem (Mollisol), a burozem (Alfisol), a soil with organic matter-removed and peat humus using the batch-equilibration procedure, and identified soil properties that influenced DCD sorption. The sorption on peat humus was higher than that on the phaeozem and the burozem, with much lower sorption observed on the soil with organic matter-removed, indicating that soil organic matter was the main carrier of DCD sorption. Due to its amphipathic property the DCD molecule sorption on the phaeozem and the burozem decreased as pH increased from about 2 to 5, but a further increase in pH led to a rise in DCD sorption.The DCD desorption hysteretic effect for peat humus was greater than that for the phaeozem and the burozem using 0.01 mol L^-1 CaCl2 as the background electrolyte, suggesting that the hydrophobic domains of organic matter may play an important role in DCD sorption.  相似文献   

12.
The transformation of isoxaflutole (ISOX) to its herbicidally active diketonitrile degradate (DKN) was significantly enhanced in the presence of soil and occurred more rapidly in systems containing soil with a greater soil pH. Sorption-desorption of ISOX and DKN in five soils collected within a field revealed both ISOX and DKN were more readily sorbed to soils with greater organic matter, clay content, and lower soil pH. Sorption of ISOX residues occurred within 2 h, and extracts contained similar concentrations of ISOX and DKN at 24 h, suggesting the 24-h sorption coefficients for ISOX-treated systems were actually for mixed ISOX residues. Freundlich sorption coefficients were 3 and 4 times greater for ISOX than for DKN. On the basis of the Freundlich organic carbon sorption constants, ISOX and DKN can be categorized in the very high and high mobility classes, suggesting their potential to leach in the soils needs to be evaluated.  相似文献   

13.
研究了2种咪唑类离子液体(ILs)——氯化1-丁基-3-甲基咪唑([Bmim][Cl])和1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐([Bmim][(CF_3SO_2)_2])在16种土壤上的吸附/脱附规律,探讨了土壤理化性质对于吸附/脱附行为的影响。研究发现,[Bmim][Cl]和[Bmim][(CF_3SO_2)_2N]的土壤吸附系数与土壤阳离子交换量(CEC)呈正相关性,相关系数(R~2)分别为0.842 9和0.835 3(P0.05),表明土壤主要通过静电作用来吸附ILs,而与土壤总有机碳含量(TOC%)的R~2值仅分别为0.003 5和0.073 0(P0.01),说明ILs与土壤有机质的疏水结合作用为相对次要。ILs阴离子基团对吸附行为有一定的影响,但并不明显。ILs吸附/脱附的迟滞系数(HI)均小于1,可能与(ILs)在土壤粘土/有机质上的不可逆结合有关。其中,CEC和[Bmim][Cl]和[Bmim][(CF_3SO_2)_2]的HI之间存在较大的相关性(R~2分别为0.772 9,0.781 5,P0.01),说明CEC对迟滞行为有着不可忽视的影响。  相似文献   

14.
Iodine-129 is an important radionuclide released from nuclear facilities because of its long radioactive half-life and its environmental mobility. Its retention in surface soils has been linked to pH, organic matter, and Fe and Al oxides. Its inorganic solution chemistry indicates I will most likely exist as an anion. Three investigations were carried out to provide information on the role of the inorganic and organic chemistry during sorption of I by soil. Anion competition using Cl? showed that anion exchange plays a role in I sorption in both mineral and organic soils. The presence of Cl decreased the loss of I? from solution by 30 and 50% for an organic and a carbonated sandy soil respectively. The I remaining in solution was associated primarily with dissolved organic carbon (DOC). The loss rate from solution appears to depend on two reactions of I with the soil solids (both mineral and organic) creating both a release to and a loss from solution, and the reaction of I with the DOC (from very low to high molecular weight). Composition analyses of the pore water and the geochemical modelling indicate that I sorption affects the double-charged anion species in solution the most, particularly SO4 ?. Iodide introduced to natural bog groundwater at three concentrations (10?3, 10?1 and 10 meq L?1) remained as I? and was not lost from solution quickly, indicating that the association of I with DOC is slow and does not depend on the DOC or I concentration. If sorption of I to soil solids or DOC is not sensitive to concentration, then stable I studies, which by necessity must be carried out at high environmental concentrations, can be linearly extrapolated to radioactive I at much lower molar concentrations.  相似文献   

15.
A comparison has been made of the sorption of inorganic orthophosphate and inositol hexaphosphate by six acidic surface soils from arable land in north-east Scotland. The sorption of inorganic P increased with increasing quantities added and tended towards a maximum, but was never complete. In contrast, the organic P was completely sorbed up to an added quantity which varied with the soil, and above this level the absolute sorption decreased, probably due to the formation of soluble complexes involving iron and aluminium. The sorption sites were apparently the same for the two P forms and, particularly at high levels of addition, the organic P depressed the sorption of inorganic P. Inorganic P did not depress the sorption-of organic P, which was preferentially adsorbed. The results help to explain the extreme stability of inositol hexaphosphate in these soils.  相似文献   

16.
This study compared the degradation of [carboxyl-14C] 2,4-dichlorophenoxyacetic acid (2,4-D) (C2,4-D) and [ring-U-14C] 2,4-D (R2,4-D) in 114 agricultural soils (0–15 cm) as affected by 2,4-D sorption and soil properties (organic carbon content, pH, clay content, carbonate content, cation exchange capacity, total microbial activity). The sample area was confined to Alberta, Canada, located 49–60° north longitude and 110–120° west latitude and soils were grouped by soil organic carbon content (SOC) (0–0.99%, 1–1.99%, 2–2.99%, 3–3.99% and >4% SOC). Degradation rates of C2,4-D and R2,4-D followed first-order kinetics in all soils. Although total microbial activity increased with increasing SOC, degradation rates and total degradation of C2,4-D and R2,4-D decreased with increasing SOC because of increased sorption of 2,4-D by soil and reduced bioavailability of 2,4-D and its metabolites. Rates of R2,4-D degradation were more limited by sorption than rates of C2,4-D degradation, possibly because of greater sorption and formation of bound residues of 2,4-D metabolites relative to the 2,4-D parent molecule. Based on the sorption and degradation parameters quantified, there were two distinct groups of soils, those with less than 1% SOC and those with greater than 1% SOC. Specifically, soils with less than 1% SOC had, on average, 2.4 times smaller soil organic carbon sorption coefficients and 1.4 times smaller 2,4-D half-lives than soils with more than 1% SOC. In regional scale model simulations of pesticide leaching to groundwater, covering many soils, input parameters for each pesticide include a single soil organic carbon sorption coefficient and single half-life value. Our results imply, however, that the approach to these regional scale assessments could be improved by adjusting the values of these two input parameters according to SOC. Specifically, this study indicates that for 2,4-D and Alberta soils containing less than 1% SOC, the 2,4-D pesticide parameters obtained from generic databases should be divided by 2.5 (soil organic carbon sorption coefficient) and 1.5 (half-life value).  相似文献   

17.
Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.  相似文献   

18.
oil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils,which are high in organic matter content for vegetable production in comparison with a soil used for grain crop productionin Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soilprofile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in thetopsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticulturaluse.Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the graincrop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg^-1)and the maximum phosphate buffering capacity (162.1 L kg^-1) for 80-100 cm were greater in the grain crop soil than thehorticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used forvegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

19.
Sorption of primisulfuron on soil, and inorganic and organic soil colloids   总被引:2,自引:0,他引:2  
Inorganic and organic soil colloids are responsible for the sorption of many pesticides. We studied the sorption of the herbicide primisulfuron [methyl 2 N‐[[[[[4,6‐bis(difluoromethoxy)‐2‐pyrimidinyl]amino]carbonyl]amino]sulfonyl]benzoate] on Fe3+‐, Al3+‐, Ca2+‐ and Na+‐exchanged montmorillonite, soil organic matter (H+‐ and Ca2+‐saturated), amorphous iron oxide, and three soils in aqueous media. The sorption on soils was negatively correlated with pH. Ca2+‐ and Na+‐exchanged montmorillonites are ineffective in the sorption of primisulfuron. The sorption on Fe3+‐ and Al3+‐exchanged montmorillonite is rapid and follows the Freundlich equation. Fourier transform infrared (FT‐IR) and X‐ray powder diffraction studies of the Fe3+‐ and Al3+‐montmorillonite samples after the interaction with primisulfuron in chloroform solution suggest that primisulfuron is adsorbed and degraded in the interlayer. Humic acid is more effective in the sorption than is Ca humate, suggesting that the pH of the suspension (3.5 for humic acid and 6.0 for Ca humate) has a strong influence on the sorption of primisulfuron. Experiments on amorphous iron oxide indicate similar pH dependence. Infrared spectra indicate that the protonation of the pyrimidine nitrogen moiety of herbicide and subsequent hydrogen bonding with the surface hydroxyls of Fe oxide is the mechanism acting in the primisulfuron sorption.  相似文献   

20.
除草剂咪草烟在土壤上吸附-脱附过程及作用机理   总被引:2,自引:0,他引:2  
本文研究了咪唑啉酮类除草剂咪草烟在不同土壤固-液相间的分配及与土壤组分作用的定量相关性。结论指出:咪草烟在土壤固-液相的分配主要受土壤粘粒,有机质及土壤pH的影响。它们在土壤上的吸附-脱除均可用Freundlich方程描述;通过运用红外及X-衍射技术,从分子水平研究了咪草烟与蒙脱石的作用机理,发现咪草烟与蒙脱的作用不仅发生在表面,而且咪草烟还能进入蒙脱石内层与其层间阳离子形成配合物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号