首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We determined the effect of processing method (dry-rolled [DR] vs steam-flaked [SF]) and degree of processing (flake density; FD) of SF sorghum grain on splanchnic (gut and liver) metabolism of energy-yielding nutrients by growing steers. Diets contained 77% sorghum grain, either DR or SF, with SF at densities of 437, 360, or 283 g/L (SF34, SF28, or SF22). Eight multicatheterized steers (340 kg initial BW) were used in a randomized complete block design. Net output or uptake of glucose, L-lactate, VFA, and beta-hydroxybutyrate (BHBA) were measured across portal-drained viscera (PDV), liver, and splanchnic (PDV plus liver) tissues. Net absorption of glucose across PDV was negative and similar for all treatments (average of -104 g/d). Decreasing FD of SF sorghum grain linearly increased (P < or = .04) net absorption and splanchnic output of L-lactate by 20 and 130%, respectively, and hepatic synthesis (P = .06) and splanchnic output (P = .01) of glucose by 50%. Reducing FD did not alter output or uptake of acetate or n-butyrate by gut and liver tissues, but linearly decreased (P = .06) splanchnic output of BHBA by 40%. Net absorption (P = .18) and splanchnic output (P = .15) of propionate tended to be increased linearly by 50% with decreasing FD. Neither processing method (SF vs DR) nor degree of processing (varying FD) altered hepatic nutrient extraction ratios or estimated net absorption and splanchnic output of energy. Maximal contribution of propionate, L-lactate, and amino acids (alpha-amino N) to gluconeogenesis averaged 49, 11, and 20%, respectively. Feeding steers SF compared to DR diets did not alter net output or uptake of energy-yielding nutrients across splanchnic tissues, except net absorption of acetate tended to be greater (P = .13) for steers fed DR. Increasing degree of grain processing in the present study, by incrementally decreasing FD, tended to linearly increase the net absorption of glucose precursors (propionate and lactate), resulting in linear increases in synthesis and output of glucose by the liver to extrasplanchnic tissues (e.g., muscle).  相似文献   

2.
The objective of this study was to determine effects of processing method, dry-rolled (DR) vs steam-flaked (SF), and degree of processing (flake density, FD) of SF sorghum grain on splanchnic (gut and liver) N metabolism by growing steers. Diets contained 77% sorghum grain either DR or SF at densities of 437, 360, and 283 g/L (SF34, SF28, and SF22, respectively). Eight crossbred steers (340 kg initial BW), implanted with indwelling catheters into portal, hepatic, and mesenteric veins and the mesenteric artery, were used in a randomized complete block design. Blood flows and net output or uptake of ammonia N, urea N (UN), and alpha-amino N (AAN) were measured across portal-drained viscera, hepatic, and splanchnic tissues. Plasma arterial, portal, and hepatic concentrations of individual amino acids were also measured. Decreasing FD linearly increased (P = .04) net absorption of AAN (51, 73, and 78 g/d for SF34, SF28, and SF22, respectively) and transfer (cycling) of blood UN to the gut (49, 48 and 64 g/d; P = .02). Net UN cycling averaged 38% of N intake across all diets. Hepatic uptake of AAN or UN synthesis, and splanchnic output of AAN and UN, were not altered by FD. Lowering FD linearly increased (P < or = .02) portal-arterial concentration differences for blood AAN and UN and plasma arterial concentrations for alanine. Steers fed SF compared to DR tended to have greater (P = .11) blood UN cycling (percentage of hepatic synthesis; 64 vs 50%) and decreased (P = .03) net splanchnic UN output (30 vs 50 g/d), but other net fluxes of N were not altered across splanchnic tissues. Steam-flaking compared to dry-rolling tended to decrease (P = .12) portal, but not hepatic, blood flow and increased (P < .01) hepatic-arterial concentration differences for blood UN. Except for a decrease (P = .01) in hepatic-arterial concentration differences of glutamine, plasma amino acid concentrations were not altered by feeding SF vs DR sorghum. Processing method (steam-flaking vs dry-rolling) or increasing the degree of processing (by decreasing FD) of SF sorghum grain resulted in greater transfer of blood UN to the gut. Reducing FD also linearly increased the absorption of AAN by growing steers, which explains (in part) published responses of superior performance by steers fed SF grains.  相似文献   

3.
Changes in net portal and hepatic nutrient flux and oxygen consumption in response to 3-d abomasal casein infusions were studied in seven multicatheterized beef steers. Steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals. Blood flow (para-aminohippurate dilution) and net flux (venoarterial concentration difference x blood flow) across portal-drained viscera (PDV) and hepatic tissues were measured on d 3 of the abomasal infusions. In two experiments, the response to 300 (300C) and 150 (150C) g casein/d were compared, respectively, to a control water infusion. The 300C increased (P less than .05) arterial blood concentrations of alpha-amino N (AAN), urea N and ammonia; 150C increased (P less than .05) arterial urea N. Urinary urea N excretion was increased (P less than .01) by 300C and 150C. Although 300C increased net PDV release of AAN (P less than .07) and alanine (P less than .10), there was no net change in total splanchnic (TSP) flux due to an increased net hepatic uptake of AAN (P less than .01) and alanine (P less than .05). Net PDV glucose flux was decreased (P less than .05) by 300C, but net hepatic glucose flux was not affected by either level of casein. The 150C increased TSP oxygen consumption (P less than .05) and hepatic oxygen extraction (P less than .10). Approximately 26 and 30% of the casein N infused abomasally appeared in the portal blood as AAN for 150C and 300C, respectively. The sum of net PDV ammonia and AAN fluxes accounted for 47 and 88% of the N infused for 150C and 300C, respectively. These data emphasize the importance of intestinal and liver tissues in regulating the flux of nitrogenous compounds absorbed from the diet.  相似文献   

4.
Effects of growth hormone-releasing factor (GRF) and intake on net nutrient metabolism by portal-drained viscera (PDV) and liver were measured in six growing Hereford x Angus steers fed a 75% concentrate diet at two intakes in a split-plot design with 4-wk saline or GRF injection periods within 8-wk intake periods. Daily rations were fed as 12 equal meals delivered every 2 h. Steers were injected s.c. for 21 d with either saline or 10 micrograms/kg of (1-29)NH2 human GRF at 12-h intervals. Six hourly measurements of net nutrient flux (venous-arterial concentration different [VA] x blood flow) across PDV and liver were obtained 8 to 10 d after injections began. Energy and N balances were measured using respiration calorimetry during the last week of injections. Greater intake increased blood flow (P less than .01) and net visceral release or removal of most nutrients (P less than .10). Exceptions included a decrease (P less than .10) in net PDV glucose release with greater intake in saline-treated steers and a decrease (P less than .01) in net liver removal of lactate with greater intake. Treatment of steers with GRF decreased net liver removal of alpha-amino N (AAN; P less than .05) and ammonia N (NH3N; P less than .10) and release of urea N (UN; P less than .05), increased liver release of glutamate (P less than .05), and decreased net PDV release of NH3 N (P less than .10). Decreased liver extraction ratio for AAN in GRF-treated steers (P less than .01) implies a direct effect of GRF treatment on liver metabolism separate from changes in liver AAN supply. Proportions of body N retention not accounted for by net total splanchnic AAN release increased with GRF treatment. This suggests a change in peripheral utilization of dietary AAN supply or an increase in total splanchnic N retention.  相似文献   

5.
Effects of increased ammonia and/or arginine absorption on net splanchnic (portal-drained viscera [PDV] plus liver) metabolism of nonnitrogenous nutrients and hormones in cattle were examined. Six Hereford x Angus steers (501 +/- 1 kg BW) prepared with vascular catheters for measurements of net flux across the splanchnic bed were fed a 75% alfalfa:25% (as-fed basis) corn and soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of DM) and with 20 g of urea/kg of DM (35.7 g of N/kg of DM) in a split-plot design. Net flux measurements were made immediately before and after a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). There were no treatment effects on PDV or hepatic O2 consumption. Dietary urea had no effect on splanchnic metabolism of glucose or L-lactate, but arginine infusion decreased net hepatic removal of L-lactate when urea was fed (P < 0.01). Net PDV appearance of n-butyrate was increased by arginine infusion (P < 0.07), and both dietary urea (P < 0.09) and arginine infusion (P < 0.05) increased net hepatic removal of n-butyrate. Dietary urea also increased total splanchnic acetate output (P < 0.06), tended to increase arterial glucagon concentration (P < 0.11), and decreased arterial ST concentration (P < 0.03). Arginine infusion increased arterial concentration (P < 0.07) and net PDV release (P < 0.10) and tended to increase hepatic removal (P < 0.11) of insulin, as well as arterial concentration (P < 0.01) and total splanchnic output (P < 0.01) of glucagon. Despite changes in splanchnic N metabolism, increased ammonia and arginine absorption had little measurable effect on splanchnic metabolism of glucose and other nonnitrogenous components of splanchnic energy metabolism.  相似文献   

6.
Our objective was to determine the impact of supplemental energy, N, and protein on feed intake and N metabolism in sheep fed low-quality forage. Six Texel x Dorset wethers (16 mo, 63+/-3.1 kg) fitted with mesenteric, portal, and hepatic venous catheters were used in a Latin square design with five sampling periods. Lambs were fed chopped bromegrass hay (4.3% CP) to appetite, and a mineral mixture was given. Treatments were 1) control (no supplement), 2) energy (cornstarch, molasses, and soybean oil), 3) energy plus urea, 4) energy plus soybean meal (SBM), and 5) energy plus ruminally undegraded protein (RUP; 50:50 mixture of blood and feather meals). Supplements were fed once daily (.3% BW). Forage DMI did not differ (P = .13), but intake of total DM, N, and energy differed (P<.01) among treatments. Apparent digestibilities of DM, OM, and energy were less (P<.01) for control than for other treatments. Apparent N digestibility was least for control and energy and greatest for urea treatments (P<.05). As a result, digested DM, OM, and energy ranked from least to greatest were control, energy, urea, SBM, and RUP, respectively. Apparently digested N was 2.44, 2.24, 11.39, 9.80, and 11.25 g/d for control, energy, urea, SBM, and RUP (P<.01; SE = .10). Hour of sampling x treatment was a significant source of variation for blood concentrations of ammonia N and urea N, net ammonia N release from portal-drained viscera (PDV) and liver, and urea N release from splanchnic tissues. These results were primarily because patterns through time for the urea treatment differed from the other treatments. Net PDV release of alpha-amino N did not differ (P>.05) between control and energy treatments. Values for those treatments were about one-half of values for urea, SBM, and RUP treatments, which did not differ (P>.05). Hepatic net uptake (negative release) of alpha-amino N for control was 53% of values for the other treatments, which did not differ (P>.05). Net release of alpha-amino N from splanchnic tissues did not differ among treatments (P = .34) and did not differ from zero. The data indicate that arterial alpha-amino N concentration, hepatic alpha-amino N uptake, PDV release and hepatic uptake of ammonia N, and hepatic release of urea N were greater in energy than in control treatments. We also found that hepatic uptake of alpha-amino N was 187% of PDV release in energy-supplemented lambs. These results suggest that energy supplementation of a protein-limiting diet stimulated mobilization of body protein.  相似文献   

7.
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six catheterized Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW(0.75).d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.  相似文献   

8.
Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on portal-drained visceral (PDV) nutrient flux, nutrient digestibility, and total N balance in beef steers. Multi-catheterized steers were used to determine effects of intraruminal dosing (Exp. 1; n = 4; 319 +/- 5 kg of BW) or feeding (Exp. 2; n = 10; 4 Holstein steers 236 +/- 43 kg of BW and 6 Angus steers 367 +/- 46 kg of BW) SRU or urea on PDV nutrient flux and blood variables for 10 h after dosing. Intraruminal dosing of SRU (Exp. 1) prevented the rapid increase in ruminal ammonia concentrations that occurred with urea dosing (treatment x time P = 0.001). Although apparent total tract digestibilities of DM, OM, NDF, and ADF were not affected by treatment (P > 0.53, Exp. 2), SRU increased fecal N excretion (49.6 vs. 45.6 g/d; P = 0.04) and reduced apparent total tract N digestibility (61.7 vs. 66.0%; P = 0.003). Transfer of urea from the blood to the gastrointestinal tract occurred for both treatments in Exp. 1 and 2 at all time points with the exception for 0.5 h after dosing of urea in Exp. 1, when urea was actually transferred from the gastrointestinal tract to the blood. In both Exp. 1 and 2, both urea and SRU treatments increased arterial urea concentrations from 0.5 to 6 h after feeding, but arterial urea concentrations were consistently less with SRU (treatment x time P < 0.001, Exp. 1; P = 0.007, Exp. 2). Net portal ammonia release remained relatively consistent across the entire sampling period with SRU treatment, whereas urea treatment increased portal ammonia release in Exp. 1 and tended to have a similar effect in Exp. 2 (treatment x time P = 0.003 and P = 0.11, respectively). Urea treatment also increased hepatic ammonia uptake within 0.5 h (treatment x time P = 0.02, Exp. 1); however, increased total splanchnic release of ammonia for the 2 h after urea treatment dosing suggests that PDV ammonia flux may have exceeded hepatic capacity for removal. Slow-release urea reduces the rapidity of ammonia-N release and may reduce shifts in N metabolism associated with disposal of ammonia. However, SRU increased fecal N excretion and increased urea transfer to the gastrointestinal tract, possibly by reduced SRU hydrolysis or effects on digestion patterns. Despite this, the ability of SRU to protect against the negative effects of urea feeding may be efficacious in some feeding applications.  相似文献   

9.
An experiment was performed using lambs fitted with chronic indwelling catheters in appropriate blood vessels for portal-drained visceral (PDV) flux measurements. The objective of the experiment was to evaluate PDV nutrient flux in alfalfa-fed and intragastrically infused lambs and to evaluate the effects of amount of energy and N infused on PDV nutrient metabolism. Lambs were fed alfalfa or infused with 1.64 and 10.9; 1.82 and 12.3; or 2.37 and 15.0 Mcal GE and g N/d, respectively. Arterial concentrations and PDV fluxes of glucose, L-lactate, acetate and portal blood flow were not different (P greater than .10) between alfalfa-fed and infused lambs. Net flux of alpha-amino N, ammonia N and branched-chain VFA were lower (P less than .05) and net flux of propionate, butyrate and total VFA were higher for intragastric infusion vs alfalfa. No consistent differences in PDV fluxes were noted among the three levels of energy and N infused, although the energy and N levels tested were near maintenance requirements. Nitrogen retention increased as level of energy and N infusion increased. Approximately 47, 70 and 22% of ruminally infused acetate, propionate and butyrate, respectively, were found on a net basis in portal blood as VFA. Measurements of net nutrient utilization by the PDV that eliminate the influence of ruminal fermentation are possible. How the changes in PDV tissues due to intragastric infusion influence these estimates is unknown.  相似文献   

10.
Seven Holstein steers (340 kg) fitted with ruminal, duodenal and ileal cannulae were used to measure the influence of supplemental N source on digestion of dietary crude protein (CP) and on ruminal rates of protein degradation. Diets used were corn-based (isonitrogenous, 12% CP on a dry matter basis, and isocaloric, 80% total digestible nutrients) with urea, soybean meal (SBM), linseed meal (LSM) or corn gluten meal (CGM) as supplemental N. Ruminal ammonia N concentrations were higher (P less than .05) in steers fed LSM than in those fed CGM, but did not differ from those in steers fed urea or SBM (11.7, 6.7, 9.1 and 9.2 mg/100 ml, respectively). Due to the high degradability of urea, ruminal digestion of dietary CP was greater (P less than .05) in steers fed urea than in those fed CGM, but intermediate in steers fed SBM and LSM (58.4, 48.8, 53.1 and 53.9%, respectively). Flow of bacterial nonammonia N to the duodenum was highest (P less than .05) in steers fed SBM or LSM, intermediate (P less than .05) for urea and lowest (P less than .05) for CGM (86.8, 86.1, 76.3 and 65.9 g/d, respectively). Efficiency of bacterial protein synthesis was lowest in steers fed CGM and differed (P less than .05) from SBM (15.6 vs 21.8 g N/kg organic matter truly digested, respectively). Rate of ruminal digestion for SBM-CP differed (P less than .05) from that of CGM-CP but not from that of LSM-CP (17.70, 5.20 and 10.13%/h, respectively). The slow rate of ruminal degradability of CGM resulted in increased amounts of dietary protein reaching the intestinal tract but lower amounts of bacterial protein, thus intestinal protein supply was not appreciably altered.  相似文献   

11.
Non-enzymatic browning was tested as a means of increasing ruminal escape of soybean meal N. Soybean meal was treated with xylose (3 mol/mol SBM-lysine), sodium hydroxide (pH 8.5) and enough water to achieve an 83% dry matter mixture and then heated at 150 C for 30 min (XTS-30). Trial 1 evaluated ruminal escape of N from XTS-30 compared with commercial soybean meal (CS) or urea (U) in a replicated 3 X 3 Latin square design using six duodenally cannulated Angus X Hereford steers (24.7 kg). Duodenal flow of dietary N was higher (P less than for steers fed XTS-30 (47.9 g/d) than for steers fed CS (39.5 g/d). The ruminal escape estimate for XTS-30 (33.7%) was higher (P less than .10) than CS (13.1%), whereas total tract apparent N digestibility was not different among treatments. In trial 2, net portal absorption of alpha-amino N was measured in Finnsheep X Suffolk ram lambs (24.7 kg) fed U, CS or XTS-30 in a 3 X 3 Latin square design. Portal blood flow was measured by primed, continuous infusion of para-aminohippuric acid. Portal blood flow was lower (P less than .05) for U.fed lambs than for lambs fed CS or XTS-30, and tended to be lower for lambs fed CS than those fed XTS-30. Net portal absorption of alpha-amino N tended to be lowest for lambs fed U (281 mmol/d) and highest for lambs fed XTS-30 (578 mmol/d). The results are interpreted to show that non-enzymatic browning increased flow of soybean meal N to the intestine.  相似文献   

12.
The objective of this experiment was to compare net nutrient absorption and oxygen consumption by portal-drained viscera (PDV) of catheterized Holstein steers (333 kg) when fed alfalfa or orchardgrass silage at two equalized intakes. The design was a 4 X 4 Latin square with a 2 X 2 factorial arrangement of alfalfa or orchardgrass fed at 65 or 90 g dry matter/kg.75 live weight daily. Blood flow through PDV (dilution of p-aminohippurate), net nutrient absorption and oxygen consumption (venoarterial concentration differences times blood flow) were measured hourly for 12 h, followed by measurement of N and energy balance over 7 d. Compared with orchardgrass, steers when fed alfalfa absorbed more NH3-N (P less than .05), branched-chain volatile fatty acids (P less than .10) and n-valerate (P less than .05). Silage type did not affect (P greater than .10) blood flow to or O2 consumption by PDV or net absorption of glucose, L-lactate, acetate, propionate, urea-N, alpha-amino N or most amino acids. Oxygen consumption by PDV as a percentage of whole-animal O2 consumption was not different (P greater than .10) for steers when fed orchardgrass (27.2) or when fed alfalfa (23.6). Interrelationships between N and energy metabolism were responsible for the increased (P less than .05) metabolizable energy/kilogram silage dry matter and increased (P = .10) N retention by steers when fed alfalfa compared with orchardgrass. The PDV accounted for a substantial portion of whole-animal O2 consumption.  相似文献   

13.
Crossbred steers (n = 7; 400 kg BW), fitted with T-type cannulas in the duodenum and ileum, were used to examine the effects of processing method, dry-rolled (DR) vs. steam-flaked (SF) sorghum grain, and degree of processing (flake density; FD) of SF corn (SFC) and SF sorghum (SFS) grain on site and extent of DM, starch, and N digestibilities and to measure extent of microbial N flow to the duodenum. In Exp. 1, diets contained 77% DRS or 77% SFS with FD of 437, 360, and 283 g/L (SF34, SF28, and SF22). In Exp. 2, diets contained 77% SFC with FD of SF34 or SF22. For sorghum and corn diets, respective average daily intakes were as follows: DM, 6.7 and 8.1 kg; starch, 3.8 and 4.7 kg; N, 136 and 149 g. Steers fed SFS vs. DRS increased (P = .01) starch digestibilities (percentage of intake) in the rumen (82 vs. 67%) and total tract (98.9 vs. 96.5%) and decreased digestibilities in the small intestine (16 vs. 28%; P = .01) and large intestine (.5 vs 1.2%; P = .05). As a percentage of starch entering the segment, digestibility was increased (P = .01) within the small intestine (91 vs. 85%) but was not altered within the large intestine by steers fed SFS vs. DRS. Decreasing FD of SFS and of SFC, respectively, linearly increased starch digestibilities (percentage of intake) in the rumen (P = .03, .02) and total tract (P = .03, .09) and linearly diminished starch digestibilities in the small intestine (P = .04, .09). Starch digestibilities (percentage of entry) within the small or large intestine were not changed by FD. The percentage of dietary corn or sorghum starch digested in the large intestine was very small, less than 2% of intake. Microbial N flow to the duodenum was not altered by SFS compared to DRS, or by decreasing FD of SFS and SFC. Reducing FD of SFS, but not of SFC, tended to decrease (P = .07) microbial efficiency linearly and tended to increase (P = .06) total tract N digestibilities linearly. Steam flaking compared to dry rolling of sorghum grain and decreasing FD of SFC and SFS grain consistently increased starch digestibility in the rumen and total tract of growing steers. The greatest total digestibility of dietary starch occurred when the proportion digested in the rumen was maximized and the fraction digested in the small intestine was minimized. These changes in sites of digestion account, in part, for the improved N conservation and greater hepatic output of glucose by steers fed lower FD of SFS reported in our companion papers.  相似文献   

14.
We hypothesized that providing dried distillers grains with solubles (DDGS) would improve the N retention and use of nutrients by wethers fed a moderate-quality bromegrass hay. Additionally, we hypothesized that treatment effects on nutrient fluxes would be similar after 3, 6, or 9 wk on treatment. Chronic indwelling catheters were surgically implanted in a mesenteric artery, mesenteric vein, hepatic vein, and portal vein of 9 Suffolk x Dorset wethers (initial BW +/- SD = 57.4 +/- 6.1 kg). Wethers had ad libitum access to moderate-quality bromegrass hay (8.44% CP, DM basis) and received 100 g/d of either a corn-based (Corn, n = 4) or a DDGS-based (n = 5) supplement. There was no difference in DMI (P = 0.85) or DM digestibility (P = 0.46) between the 2 groups. There was a numerically greater N intake (21.5 vs. 18.4 g/d; P = 0.14) and N retention (4.4 vs. 2.5 g/d; P = 0.15) when wethers were supplemented with DDGS instead of Corn. Wethers fed DDGS had a greater (P = 0.008) release of alpha-amino N from the portal-drained viscera (PDV, 37.9 mmol/h) than those fed Corn (14.1 mmol/h). Similarly, there was a shift (P = 0.004) from a net splanchnic uptake to a net release of alpha-amino N in wethers fed DDGS (9.1 mmol/h) compared with those fed Corn (-9.6 mmol/h). However, there was no difference in ammonia release from the PDV (P = 0.49) or hepatic release of urea-N (P = 0.19) between the 2 treatments. There were very limited interactions between nutrient fluxes and the length of time after the initiation of treatments. However, there was a tendency (interaction, P = 0.07) for the PDV release of alpha-amino N to be greater at 6 and 9 wk after the initiation of the treatments than after 3 wk on treatment for wethers fed DDGS, although there was no difference over time for wethers fed the Corn supplement. Additionally, there were changes in numerous nutrient fluxes between 3 and 6 wk after the initiation of treatments regardless of treatment. These data indicate that DDGS is a viable supplement to enhance the nutriture of ruminants consuming moderate-quality forages. Additionally, these data indicate that the effects are discernible after 3 wk on treatment, with modest alterations in nutrient flux after additional time on treatment.  相似文献   

15.
Our objectives were to determine the influences of supplemental nonprotein N or protein on feed intake, digestibility, and postabsorptive N metabolism in sheep fed a high-concentrate diet for ad libitum consumption. Nine Romanov-sired, crossbred wethers (13 mo old; 52 kg) were fitted with catheters in a mesenteric artery, mesenteric vein, portal vein, and hepatic vein. Wethers consumed a 95% concentrate diet ad libitum. Treatments consisted of control (no supplemental N; 6.6% CP) or supplemental urea (11.4% CP), soybean meal (SBM; 11.2% CP) or ruminally undegradable protein (BFM; 11.2% CP; 50:50 blood meal and feather meal). Intake or apparently digested intake of DM, OM, and energy did not differ between control and N-supplemented (P > 0.40), or between urea- and protein-supplemented (P > 0.40), but were greater (P < 0.05) in SBM- than in BFM-supplemented wethers. Intake and apparently digested intake of N were less (P < 0.01) in wethers fed the control diet than in those receiving N supplementation but were less (P = 0.03) in BFM- than in SBM-supplemented wethers. Neither portal nor hepatic venous blood flows differed (P > 0.15) among treatments. Net portal release and hepatic uptake of alpha-amino N and ammonia N and hepatic release of urea N were greater (P < 0.05) in wethers supplemented with N than in controls, but portal-drained viscera (PDV) uptake of urea N did not differ (P > 0.40) among diets. Splanchnic release of a-amino N and ammonia N did not differ from 0 or among diets (P > 0.10), but net release of urea N was less (P = 0.05) for control than for sheep receiving N supplementation. No differences (P > 0.10) in blood concentration within vessel or net flux across PDV, hepatic, or splanchnic tissues of alpha-amino N, ammonia N, or urea N were observed among wethers receiving supplemental N. Net uptake of oxygen by the PDV did not differ among diets, but hepatic uptake was less (P < 0.05) in control and urea-supplemented sheep than in sheep receiving SBM or BFM. These observations suggest that the source of supplemental N had no large effects on the overall N economy of the animals used in this study.  相似文献   

16.
The effect of feed intake level (.6, 1.0, and 1.6 x maintenance energy and protein requirements, M) on splanchnic (portal-drained viscera [PDV] plus liver) metabolism was evaluated in six multicatheterized beef steers (398 +/- 27 kg), using a double 3 x 3 Latin square design. On the last day of each 21-d experimental period, six hourly blood samples were collected from arterial, portal, and hepatic vessels. Due to catheter patency, PDV fluxes were measured on five steers, and liver and splanchnic fluxes on four steers. Increasing intake elevated (P < .01) splanchnic release of total (T) amino acids (AA), through increases (P < .01) in PDV release of both essential (E) and nonessential (NE) AA, in spite of a tendency (P < .20) for increased liver removal of NEAA. The PDV release of AA N represented 27 and 51% of digested N for 1.0 and 1.6 x M, respectively. At 1.0 and 1.6 x M, the liver removed 34% of total AA released by the PDV. For individual AA, portal flux of most EAA increased (P < .05) with feed intake, and the increase (P < .10) in splanchnic flux was accompanied by increased arterial concentration for all EAA except histidine, lysine, and methionine. This suggests that these might be limiting AA for this diet. On a net basis, most individual NEAA were released by the PDV except glutamate and glutamine, which were removed by the digestive tract. There was a net removal of NEAA by the liver, except for aspartate and especially glutamate, which were released. Ammonia release by the PDV tended (P < .20) to increase with intake and represented 69, 53, and 45% of digested N at .6, 1.0, and 1.6 x M, respectively. Urea removed by the PDV, unaffected by intake, represented 32, 33, and 21% of the digested N. Arterial glucose concentration increased linearly (P < .01) with greater intake, whereas net liver and splanchnic glucose release increased in a quadratic (P < .05) manner. Net PDV glucose release represented 26% of net glucose hepatic release at 1.6 x M. Intake elevated (P < .10) both insulin and glucagon arterial concentrations, resulting from a larger increment of portal release (P < .01) than hepatic removal (P < .05). Intake-based variations in IGF-I and NEFA arterial concentrations (P < .05) were not related to changes in splanchnic metabolism. These results clearly show the crucial role of the splanchnic tissues in regulating the profile and quantity of AA and concentrations of glucose and pancreatic hormones reaching peripheral tissues.  相似文献   

17.
Effects of supplemental glucose and degradable intake protein on nutrient digestion and urea kinetics in steers (Bos taurus) given ad libitum access to prairie hay (4.7% CP) were quantified. Six ruminally and duodenally cannulated steers (initial BW 391 kg) were used in a 4 × 4 Latin square with 2 extra steers. Treatments were arranged as a 2 × 2 factorial and included 0 or 1.2 kg of glucose and 240 or 480 g of casein dosed ruminally once daily. Each period included 9 d for adaptation, 4 d for total fecal and urine collections, and 1 d for ruminal and duodenal sampling. Jugular infusion of (15)N(15)N-urea with measurement of enrichment in urine was used to measure urea kinetics. Glucose reduced forage intake by 18% (P < 0.01), but casein did not affect forage intake (P = 0.69). Glucose depressed (P < 0.01) total tract NDF digestion. Glucose supplementation decreased ruminal pH 2 h after dosing, but the effect was negligible by 6 h (treatment × time; P = 0.01). Providing additional casein increased the ruminal concentration of NH(3), but the increase was less when glucose was supplemented (casein × glucose; P < 0.01). Plasma urea-N was increased (P < 0.01) by additional casein but was reduced (P < 0.01) by glucose. Microbial N flow to the duodenum and retained N increased (P ≤ 0.01) as casein increased, but neither was affected by glucose supplementation. Urea-N entry rate increased (P = 0.03) 50% with increasing casein. Urinary urea-N excretion increased (P < 0.01) as casein increased. The proportion of urea production that was recycled to the gut decreased (P < 0.01) as casein increased. Glucose supplementation decreased (P < 0.01) urinary urea excretion but did not change (P ≥ 0.70) urea production or recycling. The amount of urea-N transferred to the gut and captured by ruminal microbes was less for steers receiving 480 g/d casein with no glucose than for the other 3 treatments (casein × glucose interaction, P = 0.05), which can be attributed to an excess of ruminally available N provided directly to the microbes from the supplement. Overall, the provision of supplemental glucose decreased forage intake and digestibility. Increasing supplemental casein from 240 to 480 g/d increased urea production but decreased the proportion of urea-N recycled to the gut.  相似文献   

18.
Four ruminally and duodenally cannulated beef steers (492 +/- 30 kg) were used in a 4 x 4 Latin square design to evaluate the effect of undegradable intake protein (UIP) supplementation on intake, digestion, microbial efficiency, in situ disappearance, and plasma hormones and metabolites in steers fed low-quality grass hay. The steers were offered chopped (10.2 cm in length) grass hay (6.0% CP) ad libitum and 1 of 4 supplements. Supplemental treatments (1,040 g of DM daily), offered daily at 0800, were control (no supplement) or low, medium, or high levels of UIP (the supplements provided 8.3, 203.8, and 422.2 g of UIP/ d, respectively). The supplements were formulated to provide similar amounts of degradable intake protein (22%) and energy (1.77 Mcal of NE(m)/kg). Blood samples were taken at -2, -0.5, 1, 2, 4, 8, 12, and 24 h after supplementation on d 1 (intensive sampling) and at -0.5 h before supplementation on d 2, 3, 4, and 5 (daily sampling) of each collection period. Contrasts comparing control vs. low, medium, and high; low vs. medium and high; and medium vs. high levels of UIP were conducted. Apparent and true ruminal OM and N digestion increased (P < 0.03) in steers fed supplemental protein compared with controls, but there were no differences (P > 0.26) among supplemental protein treatments. There were no differences (P > 0.11) among treatments for NDF or ADF digestion, or total ruminal VFA or microbial protein synthesis. Ruminal pH was not different (P = 0.32) between control and protein-supplemented treatments; however, ruminal pH was greater (P = 0.02) for supplementation with medium and high compared with low UIP. Daily plasma insulin concentrations were increased (P = 0.004) in protein-supplemented steers compared with controls and were reduced (P = 0.003) in steers fed low UIP compared with steers fed greater levels of UIP. Intensive and daily plasma urea N concentrations were increased (P < 0.01) in protein-supplemented steers compared with controls and increased (P < 0.02) for intensive and daily sampling, respectively, in steers supplemented with medium and high UIP compared with low UIP. Supplemental protein increased apparent and true ruminal OM and N digestion, and medium and high levels of UIP increased ruminal pH compared with the low level. An increasing level of UIP increases urea N and baseline plasma insulin concentrations in steers fed low-quality hay.  相似文献   

19.
Six ruminally cannulated Holstein steers (initial BW = 189 +/- 11 kg) housed in metabolism crates were used in a 6 x 6 Latin square to study effects of ruminal ammonia load on Leu utilization. All steers received a diet based on soybean hulls (2.7 kg of DM/d), ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as an abomasal infusion of 300 g of glucose/d to provide energy without increasing microbial protein supply and an abomasal infusion of a mixture (238 g/d) of all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial and included Leu (0, 4, or 8 g/d) infused abomasally and urea (0 or 80 g/d) infused ruminally. Abomasal Leu infusion linearly decreased (P < 0.05) both urinary and fecal N excretions and linearly increased (P < 0.05) retained N, but the decreases in urinary N excretion in response to Leu tended (P = 0.07) to be greater, and the increases in retained N in response to Leu were numerically greater in the presence of the urea infusion. Although urea infusions increased (P < 0.05) plasma urea concentrations, urinary N excretions, and urinary urea excretions, retained N also was increased (P < 0.05). The efficiency of deposition of supplemental Leu ranged from 24 to 43% when steers received 0 or 80 g of urea/d, respectively. Under our experimental conditions, increasing ammonia load improved whole-body protein deposition in growing steers when Leu supply was limiting.  相似文献   

20.
The net release of insulin, glucagon and somatostatin by the portal-drained viscera (PDV) and their net uptake by the liver in response to 3-d abomasal infusions of casein were measured in seven multicatheterized beef steers. The steers were fed 4.3 kg DM/d of a high-concentrate diet in 12 equal meals (13.1 Mcal ME/d and 95 g N/d). In two separate experiments, the abomasal infusion of 300 g casein/d (300C) or 150 g casein/d (150C) was compared to a water infusion. Plasma flow was measured by indicator dilution and net flux by venoarterial concentration difference x plasma flow. Arterial plasma concentrations of insulin were increased (P less than .02) by either 300C or 150C. The 300C increased (P less than .03) PDV insulin release but did not affect hepatic uptake, resulting in an increased (P less than .03) total splanchnic (TSP) insulin flux. The 300C increased (P less than .05) plasma concentrations of glucagon as the result of decreased (P less than .06) hepatic extraction ratio and not as the result of increased portal release. The portal and hepatic flux of somatostatin measured as somatostatin-like immunoreactivity (SLI) were highly variable and not affected by casein infusions. Arterial plasma concentrations of somatomedin-C were not responsive to abomasal casein infusions. The abomasal infusion of 300C resulted in increased plasma concentrations of insulin via increased PDV release and increased plasma glucagon via decreased hepatic extraction ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号