首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 63 毫秒
1.
基于高光谱图像的龙眼叶片叶绿素含量分布模型   总被引:2,自引:0,他引:2  
针对传统高光谱单点法检测叶绿素含量效率低、精度不足等问题,提出一种基于高光谱图像和卷积神经网络(CNN)多特征融合的深度学习龙眼叶片叶绿素含量分布预测模型。首先进行Savitzky-Golay光谱去噪,然后通过奇异值分解(SVD)和独立成分分析(ICA)提取特征光谱,再对特征光谱图像提取灰度共生矩阵(GLCM)和CNN纹理特征,最后建立粒子群优化(PSO)支持向量回归(SVR)、深度神经网络(DNNs)分布模型。结果表明,基于特征光谱建模的PSO-SVR预测效果最佳,全期的校正集和验证集模型决定系数R2为0.822 0和0.815 2。对比多种主流模型,基于特征光谱、GLCM纹理、CNN纹理特征的ICA-DNNs模型预测精度最高,校正集和验证集R2分别为0.835 8和0.821 0。试验结果表明,高光谱图像可快速无损地对龙眼叶片叶绿素含量分布进行检测,可为龙眼树实时营养监测和病害早期防治提供理论依据。  相似文献   

2.
基于反射光谱的苹果叶片叶绿素和含水率预测模型   总被引:4,自引:0,他引:4  
为探索苹果叶片叶绿素含量(质量比)、叶片含水率与反射光谱之间的关系,以华北地区苹果树为研究对象,分别测定了各个关键生长期苹果叶片的光谱反射率、叶绿素含量和叶片含水率。分析光谱反射率与叶绿素含量以及叶片含水率之间相关性发现,在不同生长时期,苹果叶片叶绿素a含量与反射光谱在515~590 nm和688~715 nm两组波段内具有较高的相关性,且果实成熟期数据显示相关度最高(R2=0.6)。在420~500 nm、640~680 nm、740~860 nm 3个波段叶片含水率与反射光谱有较高的相关性,且果实膨大期的叶片含水率在可见光波段的相关系数最大。根据所选敏感波段,分别利用多元线性回归、主成分分析和人工神经元网络建立基于反射光谱的苹果叶片不同生长时期叶绿素和含水率的预测模型。通过对所建立的预测模型进行校验,结果显示,利用主成分分析方法所建立的苹果叶片叶绿素含量预测模型的决定系数最高(R2=0.885 2),校验系数为0.828 9。该模型可以较为准确地预测苹果叶片叶绿素含量。而采用神经元网络所建立苹果叶片含水率预测模型的决定系数R2=0.862,校验系数为0.8375,预测效果最好。  相似文献   

3.
王亚洲  肖志云 《农业机械学报》2024,55(1):196-202,378
针对智慧农业中叶绿素的精准预测问题,本文提出了基于双分支网络的玉米叶片叶绿素含量高光谱与多光谱协同反演的方法。使用欠完备自编码器进行数据降维,捕捉数据中最为显著的特征,使降维后的数据可以代替原始数据进行训练,从而加快训练效率,使用双分支卷积网络将多光谱数据用于填充高光谱数据信息,充分利用高光谱数据的空间细节信息,再结合1DCNN建立玉米叶片叶绿素含量预测模型。结果表明,与传统降维算法相比较,欠完备自编码器处理后预测结果最佳,决定系数R2为0.988,均方根误差(RMSE)为0.273,表明使用欠完备自编码器进行降维可以有效提高数据反演精度;与单一的高光谱数据反演模型和多光谱数据反演模型相比,双分支卷积网络预测模型均取得较优的预测结果,R2在0.932以上,RMSE均在1.765以下,表明基于双分支卷积网络的高光谱与多光谱图像协同反演模型可以有效地利用数据的特征;对于其他数据结合本文提及的双分支卷积网络模型进行反演,其R2均在0.905以上,RMSE均在2.149以下,表明该预测模型具有一定的普适性。  相似文献   

4.
基于高光谱和深度迁移学习的柑橘叶片钾含量反演   总被引:2,自引:0,他引:2  
针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱,同步采用火焰光度法测定叶片的钾含量;先用正交试验确定小波去噪的最佳去噪参数组合,再进行不同光谱形式变换,对不同物候期光谱进行基于堆栈稀疏编码机-深度学习网络(Stacked sparse autoencoder-deep learning networks,SSAE-DLNs)的特征提取迁移和融合多种特征,对比支持向量机回归、偏最小二乘法回归、广义神经网络、逐步多元线性回归等多种诊断模型,结果表明,模型SSAE-DLNs基于一阶微分光谱特征建立全生长期钾含量预测模型的性能最优,其校正集和验证集决定系数分别为0. 898 8、0. 877 1,均方根误差分别为0. 544 3、0. 552 8。试验表明,深度迁移学习网络可对柑橘叶片钾含量进行精确预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献   

5.
杨树叶片叶绿素含量高光谱估算模型研究   总被引:3,自引:0,他引:3  
以盆栽107号杨树为研究对象,在验证杨树叶片的SPAD值可作为衡量其叶绿素含量指标的基础上,基于最佳指数-相关系数法(OIFC),提取了杨树叶绿素特征波段(中心波长350、715、1 150 nm),建立了以该组合波段原始光谱数据为自变量的杨树叶片叶绿素含量估算模型;利用相关系数法,提取了杨树叶绿素归一化植被指数的计算波段(中心波长705、953 nm)与一阶光谱导数的叶绿素特征波段(中心波长647、691、721 nm),且分别建立了基于归一化植被指数、叶面叶绿素指数、一阶光谱导数为自变量的杨树叶片叶绿素含量估算模型;比较分析所建立的模型精度,筛选出杨树叶片的叶绿素含量最优估算模型。结果表明:化学法测得杨树叶片叶绿素含量与其对应的SPAD值之间具有显著的幂函数关系,R2可达0.902 3。利用OIFC法提取的叶绿素最佳三波段组合的高光谱数据为自变量,与叶片叶绿素含量构建的模型预测值与实测值具有显著的线性关系,决定系数为0.944 5;相比其他模型,该模型的精度最高且均方根误差最小。可见,基于OIFC法构建的杨树叶绿素高光谱模型具有较高的精度,是估算杨树叶片叶绿素含量的最优模型。  相似文献   

6.
以蓬安100号锦橙为试材,运用数字图像分析技术建立快速测定叶片叶绿素含量的方法.利用数码相机采集锦橙叶片图像,并运用Photoshop软件获取图像的颜色特征参数,对其进行数学变换和归一化处理后的颜色特征参数与锦橙叶片SPAD值做相关分析,建立回归模型.结果表明:颜色特征参数R/B,R/(G+B),B-R,(B-R)/(B+R),色度坐标r,r-b与SPAD值呈极显著非线性相关,并且颜色特征参数R/(G+B)和归一化坐标值r所建立的蓬安100号锦橙叶片SPAD值预测模型分别为别为DAD=-1077.936[R/(G+B)]<'2>+823.594[R/(G+B)]-74.432(R<'2>=0.840)和SPAD=7 883.574 r<'2>+4 715.912r-628.263(R<'2>=0.841),其预测误差相对最小(2.12%),因此可以利用颜色特征参数R/(G+B)和色度坐标r作为基于计算机视觉的锦橙叶片SPAD值的最佳预测指标.  相似文献   

7.
水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有695、507和465nm 3个高光谱特征波段的红边优化指数(ORVI)。与Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括ND528,587、SR440,690、CARI、MCARI的反演结果进行了对比分析,结果表明:IDB数据库中的已有4种植被指数叶绿素含量反演模型的决定系数R2分别为0.672、0.630、0.595和0.574;ORVI植被所建立的叶绿素含量反演模型的决定系数R2为0.726,均方根误差RMSE为2.68,精度高于其他植被指数,说明了ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。  相似文献   

8.
基于高光谱的甜菜SPAD值估算研究   总被引:1,自引:0,他引:1  
叶绿素作为植物体内参与光合作用的重要色素,其含量对作物生长状况、产量和品质有很大影响。为此,利用野外便携式ASD光谱仪,实测了田间甜菜冠层光谱数据,且用SPAD-502叶绿素仪测定叶片SPAD值。基于原始光谱和一阶导数光谱与SPAD值相关性,选取植被指数和波段深度信息建立SPAD值预测模型,并用对照田试验数据对模型进行验证。通过对比植被指数建立的回归模型及波段深度分析,结合多元逐步回归建立的估算模型可知,波段深度比(BDR)结合SMLR建立的估算模型验证结果最好(RMSE=2.54,RE=4.5%)。研究结果表明:导数处理能提高光谱数据与SPAD值相关系数,波段深度信息结合多元逐步回归相比植被指数能提高SPAD值估算精度。  相似文献   

9.
基于随机森林回归算法的小麦叶片SPAD值遥感估算   总被引:12,自引:0,他引:12  
使用机器学习中的随机森林(RF)回归算法构建小麦叶片SPAD值遥感反演模型。以2010—2013年江苏地区试验点稻茬小麦3个生育期(拔节、孕穗、开花)的叶片为材料,结合我国自主研发的环境减灾卫星HJ-1对研究区域进行同步监测,分析了各生育期叶片SPAD值与8种植被指数间的相关性;以0.01水平下显著相关的植被指数作为输入参数,使用RF回归算法构建了每个生育期的小麦SPAD反演算法模型,即RF-SPAD模型,以支持向量回归(SVR)和反向传播(BP)神经网络算法构建的SVR-SPAD模型和BP-SPAD模型作为比较模型,以R2和均方根误差(RMSE)为指标,分析了每个生育期3个模型的学习能力和回归预测能力,结果表明:RF-SPAD模型在3个生育期都表现出最强的学习能力,R2和RMSE在拔节期分别为0.89和1.54,孕穗期分别为0.85和1.49,开花期分别为0.80和1.71;RF-SPAD模型在3个生育期的回归预测能力都高于BP-SPAD模型,高于或接近于SVR-SPAD模型,R2和RMSE在拔节期分别为0.55和2.11,孕穗期分别为0.72和2.20,开花期分别为0.60和3.16。  相似文献   

10.
定量测定小麦叶片叶绿素含量在小麦估产、农情监测等方面具有重要意义.本研究验证高光谱成像技术结合偏最小二乘-最小二乘支持向量机(PLS-LS-SVM)建模方法预测大田冬小麦叶绿素含量的可行性.首先利用所搭建高光谱成像系统以线扫描方式获取大田冬小麦叶片反射光谱,进而得到其立方体图像数据,并在小麦叶片光谱图像上选择感兴趣区域计算出光谱平均反射率值.为保证PLS-LS-SVM模型的鲁棒性和预测稳定性,首先通过PLS方法解决多重共线性问题并将输入变量维数减至4维,然后利用LS-SVM进行训练建模.所建叶绿素含量预测模型的决定系数达R2=0.8459,预测均方根误差RMSEV=0.4370.研究结果表明,基于高光谱成像系统,采用PLS-LS-SVM建立模型用来预测大田冬小麦叶绿素含量是完全可行的.  相似文献   

11.
基于高光谱成像的马铃薯叶片叶绿素分布可视化研究   总被引:3,自引:0,他引:3  
郑涛  刘宁  孙红  龙耀威  杨玮  ZHANG Qin 《农业机械学报》2017,48(S1):153-159, 340
针对马铃薯作物叶片进行了叶绿素含量无损检测技术及分布图绘制方法研究,用以指示作物长势并指导精细化管理。首先利用高光谱成像技术采集了65个马铃薯叶片的400个样本点高光谱图像和相应的SPAD值,提取并计算叶绿素测量区域的叶片平均光谱后,分别采用蒙特卡罗无信息变量消除算法(MC-UVE)和自适应重加权算法(CARS)筛选出了12个和23个叶绿素含量敏感波长,建立了马铃薯叶片叶绿素含量偏最小二乘(PLS)回归模型。建模结果如下:基于MC-UVE算法筛选的12个敏感波长的PLSR诊断模型,建模精度R2C为0.79,验证精度R2V为0.73;基于CARS算法筛选的23个敏感波长建立的PLSR诊断模型,建模精度R2C为0.82,验证精度R2V为0.80。择优选取CARS-PLSR模型计算马铃薯叶片每个像素点的叶绿素含量,从而利用伪彩色绘图绘制了马铃薯叶片叶绿素含量可视化分布图,最终实现马铃薯叶片含量无损检测以及叶绿素分布可视化表达,以期为后续马铃薯作物大田冠层叶绿素分布诊断提供支持。  相似文献   

12.
为实现未知光源的灰度图像高效重构形状,提出一种基于支持向量回归机和粒子群优化算法相结合的灰度图像重构三维表面形状的方法。通过研究和分析灰度重构形状(SFS)问题,基于支持向量回归机理论,构建了物体表面形状与其灰度图像间的非线性映射模型。对未知光照方向的实际图像进行光源方向估计,生成对应光照方向的训练样本以提高任意光照方向下的图像的形状恢复精度。为克服支持向量回归机中各参数选取无依据的不足,引入粒子群优化算法主动对各参数进行飞行寻优,使得回归模型为最优,以提高形状重构精度。最后,通过实例分析验证了所提方法的可行性及有效性。  相似文献   

13.
为研究极端干旱区微喷灌水技术对葡萄生理和产量的影响,通过对葡萄不同生育期叶片SPAD值、叶绿素含量和产量的测定,分析不同微喷周期条件下各处理的叶片SPAD值、叶绿素含量的变化特征和相互关系及对产量的影响。结果显示:在不同喷水周期条件下,各处理的SPAD值呈先减小后增大的变化趋势,日变化值为38.31~43.8。其中,每天喷水1h处理的SPAD值日平均值最高,为42.0,之后是对照处理和每隔1d喷水2h处理,分别为41.2和40.3,每隔2d喷水3h处理的SPAD值最低,为39.3。葡萄SPAD值与叶绿素a、叶绿素b以及总叶绿素含量间相关关系显著,回归方程分别为Ca=0.1028VSPAD-2.2266、Cb=0.0796VSPAD-2.3749、Ct=0.1824VSPAD-4.4602。在葡萄品质指标和产量上,采用微喷可以提高VC含量、多酚含量和单宁含量等多项品质指标,并使葡萄平均增产5.4%,表明合理的微喷周期处理有利于提高葡萄叶片叶绿素含量,并使产量增加,而叶绿素仅是葡萄生理生长的指标之一,如光合、叶绿素荧光等指标对葡萄生理的影响仍需作更深入的研究,以期能更进一步揭示微喷条件下的葡萄增产作用机理。  相似文献   

14.
基于纹理特征和SVM的QuickBird影像苹果园提取   总被引:3,自引:0,他引:3  
为提高高空间分辨率遥感影像(高分影像)中苹果园提取精度,基于Quick Bird遥感数据,研究综合光谱特征和纹理特征的苹果园自动提取方法。该方法首先采用最佳指数因子(OIF)获取多光谱波段最佳组合,然后采用不同大小滑动窗口(从3像素×3像素到13像素×13像素)提取全色波段的灰度共生矩阵(GLCM)、分形和空间自相关3种纹理特征并分别与光谱特征组合,最后通过支持向量机(SVM)分类进行苹果园分类识别。研究表明:在分类特征上,与单一光谱或纹理特征相比,光谱特征结合纹理特征能有效提高苹果园提取精度(Fa)和总体分类精度(OA),其中光谱+GLCM纹理(9像素×9像素)分类精度最高,Fa和OA分别为96.99%和96.16%,比光谱+分形纹理分别提高0.63个百分点和1.56个百分点,比光谱+空间自相关纹理显著提高11.92个百分点和9.20个百分点。在分类方法上,通过对比分析SVM、最大似然和神经网络3种方法的分类结果,探明SVM分类识别苹果园精度最高。最后对苹果园提取结果进行面积统计,结果表明GLCM纹理结合SVM分类的苹果园面积估算与目视解译结果的一致性超过98%。  相似文献   

15.
基于介电特性与回归算法的玉米叶片含水率无损检测   总被引:4,自引:0,他引:4  
利用0.06~200 k Hz范围内拥有36个频率点的LCR测量仪及自制夹持平行电极板,测量280片不同含水率玉米叶片的相对介电常数ε'及介电损耗因子ε″;利用干燥法测量玉米叶片的湿基含水率。利用逐步回归法(SWR)与多元线性回归(MLR)结合的线性建模方法和连续投影算法(SPA)与支持向量回归(SVR)结合的非线性建模方法,分别建立玉米叶片介电参数(ε'、ε″及两者融合信息3种参数)与湿基含水率的关系模型,并应用留一交叉验证法选取2种建模方法的最佳关系模型。分析表明,非线性模型较线性模型具有更高的预测能力,且基于ε'与ε″的融合信息运用连续投影算法(SPA)与支持向量回归(SVR)相结合的非线性建模方法使模型原72个变量精简到10个,剔除了模型中冗余度较高的变量,有效降低了模型的复杂度,得到最高的测试集决定系数R2P(0.804)和最小的测试集均方根误差RMSEP(0.017 6)。结果表明基于介电特性的玉米叶片含水率无损检测方法是可行的,为快速检测其他农作物的生理信息提供了一种可靠的方法。  相似文献   

16.
基于高光谱成像的苹果品种快速鉴别   总被引:2,自引:0,他引:2  
以乔纳金苹果,红富士苹果和秦冠苹果共90个试验样本为试材分别采集865~1 711 nm的近红外波段高光谱图像,选取苹果图像感兴趣区域(ROI),以分辨率2.8 nm提取其平均反射光谱数据,分别利用K近邻法(KNN)和径向基核函数支持向量机(RBF-SVM)进行品种判别,5折交叉检验。结果表明,3种苹果的近红外高光谱图像均在波长941~1 602 nm之间变得清晰,该区域200个波段下的平均反射光谱数据经KNN法中的10种距离算法评判,当K取值3和5时,切比雪夫距离、欧几里得距离和明可夫斯基距离3种距离算法的识别正确率均达到100%;SVM-RBF核函数模型中,γ取值为2-8~1的范围内识别正确率均在92%以上,当γ取值2-5,C取值为16和32时,识别正确率最高,为96.67%。故利用近红外高光谱图像技术结合KNN计算对苹果品种进行快速鉴别是优异和可靠的方案。  相似文献   

17.
植株叶片中叶绿素浓度的高低与植株进行的光合作用效率、植株的整体生长状况息息相关,在农业生产过程中,常常根据叶片中叶绿素含量(SPAD)的多少来精确的判断植物的生长状态,也是控制植株长势的依据。传统的叶绿素含量检测方式分光光度法,存在耗时长、步骤多、操作要求高等问题,而采用计算机视觉技术处理图像的过程更加准确、高效,不会像人眼分析时受到主观因素的影响导致偏差。为此,基于计算机视觉技术来检测玉米叶片中叶绿素含量,利用扫描仪采集玉米叶片的图像,将图像输送至计算机,然后通过软件处理图像,分割出图像中有效像素的颜色特征值,将特征值转换就可以得到玉米叶片中叶绿素。试验结果显示:利用计算机视觉技术可以准确地测定玉米叶片中叶绿素含量,进而进行合理施肥,避免浪费,对增加玉米的产量具有极大的价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号