首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
PCR扩增鸡L-FABP基因5′侧翼区约2kb的DNA片段,进行克隆并测序,构建了鸡L-FABP基因报告基因系列缺失载体,瞬时转染进入人肝癌细胞系,利用双荧光素酶报告基因系统测定了荧光素酶活性。在线分析软件发现鸡L-FABP基因启动子区存在HNF-1、SREBP-1、AP-1、C/EBP、Oct-1、TATA、CCAAT、GATA-1等调控元件,没有发现CpG岛。报告基因结果表明鸡L-FABP基因启动子-2 076bp/-20bp区域具有最强的启动子活性,-522bp/-20bp区域启动子活性最弱;C/EBPα可以显著的抑制鸡L-FABP基因的表达,这些结果为深入研究鸡L-FABP的表达调控机制奠定了基础。  相似文献   

2.
本文旨在研究鸡脂蛋白酯酶基因(lipoprotein lipase,LPL)启动子的结构和启动子活性。采用PCR方法扩增了鸡LPL基因5′侧翼区2kb的DNA片段,对其进行克隆、测序及序列分析后,构建了其全长及系列截断突变的报告基因表达载体,瞬时转染鸡胚成纤维细胞(DF-1),用双荧光素酶报告系统测定了荧光素酶活性。生物信息学分析发现,鸡LPL基因启动子区存在Oct-1、GCbox、CCAAT、GATA、AP1等调控元件,在启动子-575~+137bp区域内存在一个CpG岛。报告基因分析表明,鸡LPL基因的启动子-359~+163bp区域就具有启动子活性,启动子-601~+163bp区域具有最强的启动子活性。结果显示,鸡LPL基因受多种转录因子和上游序列的调控,本研究为深入研究鸡LPL基因的表达调控机制奠定了基础。  相似文献   

3.
旨在探究山羊DCT基因启动子活性区及相关转录因子对该基因的调控作用,为山羊DCT基因的表达调控提供理论依据。通过对山羊DCT基因5′侧翼区序列及第一外显子区序列进行生物信息学分析,并与人和小鼠DCT基因启动子序列进行比对,同时结合在线启动子预测结果,采用快速克隆的方法构建5个5′系列缺失序列的启动子报告基因载体,以此为基础构建3′缺失序列的6个报告基因载体,并构建SOX10、MITF和OTX2转录因子结合位点点突变的6个报告基因载体,以瞬时转染的方法转染A375细胞,双荧光素酶检测试剂盒检测缺失片段和点突变片段的启动子活性。结果表明,成功构建了山羊DCT基因11个不同长度的启动子报告基因载体,-990~+232bp的P3片段荧光素酶活性极显著高于其他片段(P0.01),基于P3构建的3′系列缺失片段中-881~-154bp的P8片段荧光素酶活性极显著高于其他片段(P0.01)。转录因子SOX10结合位点突变的载体荧光素酶活性极显著降低(P0.01),MITF和OTX2结合位点突变的载体荧光素酶活性极显著增强(P0.01)。山羊DCT基因启动子核心调控区位于-881~-154bp区域,转录因子SOX10对山羊DCT基因发挥正调控作用,而转录因子MITF和OTX2对山羊DCT基因的调控作用尚需深入研究。  相似文献   

4.
旨在初步探索DKK1基因转录调控机制,本研究利用启动子在线预测软件分析了该基因启动子区序列特征,根据Ensembl数据库已公布的猪DKK1基因的5′侧翼区序列,设计特异性PCR引物进行扩增、测序,进而构建启动子区不同缺失片段的pGL3-DKK1双荧光素酶表达载体,分别转染293T细胞和Hela细胞,并进行双荧光素酶报告基因检测。结果显示,DKK1基因启动子中含有1个TATA-box、多种转录因子和1个CpG岛;DKK1基因启动子对239T细胞具有偏好性,其中p-1 679/+292bp启动子片段活性最高,且显著高于其他缺失片段(P0.01)。-953~-1 679bp为核心启动子区域,-586~-953bp区域可能存在负调控元件,在-953~-1 679bp区域可能存在正调控元件。本试验通过对DKK1基因进行生物信息学分析并结合不同长度启动子片段双报告基因活性检测,证实了DKK1基因的5′侧翼区序列具有启动子转录活性,并初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究DKK1基因转录调控机制奠定基础。  相似文献   

5.
为了找到水貂多巴色素异构酶(DCT)基因启动子活性区域及转录因子结合位点,试验采用PCR扩增与克隆,构建双荧光素酶报告基因重组质粒,分别转染到293T细胞和A375细胞,测定其活性,并利用在线软件对序列进行生物信息学分析,预测水貂DCT基因核心启动子区域的转录因子结合位点。结果表明:得到的6个不同长度的启动子片段均具有明显的启动子活性,且-1 292~+113 bp区域活性最高,提示其为水貂DCT基因核心启动子区域;成功筛选出337 bp水貂DCT基因活性较高的启动子片段,发现转录因子特异性蛋白1(Sp1)可能是调控启动子活性的重要转录因子。  相似文献   

6.
旨在研究山羊卵巢维持基因FOXL2启动子活性以及探究该基因的调控机理。从NCBI数据库调取FOXL2基因启动子序列,用生物信息学软件对其核心启动子和转录因子进行预测分析。使用PCR技术克隆FOXL2基因启动子序列,并构建一系列缺失载体,瞬时转染293T和A375细胞,利用双荧光素酶基因检测仪测定相对荧光素酶活性值。结果表明,该基因启动子区域存在两个典型的CpG岛,分别位于(-920/+51(972bp))和(+125/+555(430bp))区域;经KpnⅠ和HindⅢ双酶切鉴定表明,重组载体质粒构建正确;在细胞中插入不同长度的FOXL2基因启动子片段,随着启动子5′端截短,荧光素酶转录活性先升高再逐渐降低。(-934/+324)区域存在转录活性,(-32/+324)区段包含了转录的基本元件;(-934/-456)区域在转录过程中对FOXL2基因起负调控作用,(-456/-192)区域为正调控区域。  相似文献   

7.
旨在通过分析猪StAR基因启动子活性区域,探究猪StAR基因的转录调控机制,从育种学角度为提高猪繁殖力提供新思路。本研究根据Ensembl数据库已公布的猪StAR基因的5′侧翼区序列,利用在线预测软件对该基因启动子区序列信息进行分析,以大白猪基因组DNA为模板,利用特异性引物,进行PCR扩增、测序,进而构建启动子区不同缺失片段的pGL3-StAR双荧光素酶表达载体,转染293T细胞并进行活性检测。结果显示,StAR基因5′侧翼区不含有典型的TATA-box和CpG岛;成功克隆了10个含有不同长度的启动子片段,并构建了各片段与表达载体的重组质粒;转染293T细胞后经双荧光素酶活性检测发现,大白猪StAR基因5′侧翼区存在着核心启动子,其中-196~+127bp这一区域活性值最高,且显著高于其他缺失片段(P0.01),表明在+127~-196bp的区域内存在重要的正调控因素,外显子1对启动子活性起重要的调控作用。-41~-196bp为核心启动子区域,该区域存在着关键的正调控元件,包含GATA2、GATA4、SP1、ZNF263、Hoxa9、KLF16和ZNF740转录因子结合位点。本试验通过对StAR基因进行生物信息学分析,并结合不同长度启动子片段双报告基因活性检测,证实了StAR基因的5′侧翼区序列具有启动子转录活性。初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究StAR基因转录调控机制提供理论依据。  相似文献   

8.
9.
为了分析绵羊清道夫受体MARCO基因的启动子序列特点,初步研究其功能及转录调控机理,以绵羊肺组织DNA为模板,通过PCR扩增绵羊MARCO基因启动子序列,对其序列进行生物信息学分析,并构建双荧光素酶报告基因载体。结果显示,成功克隆绵羊MARCO基因启动子,大小为1 002 bp;预测了其核心活性区域,发现有1个潜在的活性区域位于5′端-790~-741,同时发现了1个TATA-box元件和多个转录因子结合位点,未发现CpG岛。结果表明,位于绵羊MARCO基因启动子区域的TATA-box元件和Sp1、NF-1、NF-κB、C/EBPalp、c-Jun等转录因子,可能影响绵羊MARCO基因启动子的激活,为后续研究MARCO基因的转录调控机理提供了参考依据。  相似文献   

10.
【目的】 鉴定绵羊趋化因子C-C基序配体19(C-C motif chemokine ligand 19,CCL19)基因启动子的核心启动子区域和关键转录因子,探究该基因在转录调控方面的作用机制。【方法】 选取绵羊CCL19基因5'-侧翼序列1 000 bp,PCR扩增启动子的7个不同长度的截短片段,并连接至pGL3-Basic质粒;将重组质粒与pRL-TK质粒共转染到293T细胞中,结合双荧光素酶报告基因检测系统分析不同截短片段的相对荧光活性。利用在线预测软件分析和筛选CCL19基因核心启动子区域内的转录因子结合位点。采用定点突变技术构建转录因子结合位点缺失的荧光素酶报告载体,与pRL-TK质粒共转染到293T细胞,分析转录因子结合位点缺失质粒的相对荧光活性。【结果】 成功构建了7个不同长度(pGL3-P、pGL3-P1、pGL3-P2、pGL3-P3、pGL3-P4、pGL3-P5及pGL3-P6)的CCL19基因启动子片段的荧光素酶报告载体;采用双荧光素酶报告基因检测系统鉴定出转录起始位点上游-256/-186 bp为CCL19基因启动子核心启动子区域,表明该区域对CCL19基因转录调控有重要作用。生物信息学分析预测到该区域存在POU5F1(-201/-189 bp)、ZBTB26(-228/-217 bp)、FOXI1(-239/-228 bp)、GLI2(-255/-243 bp)和SP2(-219/-211 bp) 5个转录因子的结合位点,并成功构建了转录因子结合位点缺失的荧光素酶报告载体。双荧光素酶报告基因检测系统分析显示,POU5F1转录因子的结合位点缺失后绵羊CCL19基因转录活性极显著降低(P<0.01),FOXI1、ZBTB26、SP2转录因子结合位点缺失后绵羊CCL19基因转录活性均极显著升高(P<0.01)。【结论】 试验成功构建CCL19基因启动子荧光素酶报告载体,确定CCL19基因启动子的核心启动子区域为转录起始位点上游-256/-186 bp,并鉴定出转录因子POU5F1结合位点可能是CCL19基因转录的重要调控位点,为下一步研究绵羊CCL19基因在先天性免疫、适应性免疫和淋巴细胞迁移等方面的功能提供理论基础。  相似文献   

11.
山羊脂肪酸合酶基因(FASN)启动子结构与功能的初步分析   总被引:1,自引:0,他引:1  
本研究旨在对山羊脂肪酸合酶基因(Fatty acid synthase,FASN)启动子进行结构与功能的初步分析,进而对其转录调控机制进行探讨。采用PCR技术从西农萨能羊基因组DNA中克隆FASN基因启动子,通过缺失分析,构建7个包含不同缺失片段的荧光素酶报告基因载体,转染山羊乳腺上皮细胞和MCF-7细胞,利用双荧光素酶系统检测不同片段的启动活性。结果表明,克隆得到FASN基因的启动调控序列2 589bp,生物信息学分析发现,该启动子序列含有典型的启动转录元件TATA-box和E-box,分别位于转录起始位点(+1)上游-41和-74bp处。报告基因分析表明,启动子核心区域定位在-293~-79bp,在线软件预测发现,该区域含有Sp1、NF-Y、USF和SREBP等转录因子结合位点。结果显示,FASN基因启动子前端存在负调控元件,Sp1、NF-Y、USF和SREBP等转录因子可能参与FASN基因的转录调控。  相似文献   

12.
本研究旨在了解牦牛FKBP6基因5′调控区和启动子区特征,为探讨牦牛和犏牛睾丸组织中FKBP6基因差异表达机制提供依据。利用克隆测序获得牦牛FKBP6基因5′调控区序列,采用生物信息学方法分析其序列特征;采用双荧光素酶报告基因系统鉴定牦牛FKBP6基因核心启动子区,利用生物信息学软件预测与精子发生有关的转录因子结合位点。通过克隆测序和序列拼接获得了1 354bp的牦牛FKBP6基因5′调控区序列,与普通牛的一致性为99.71%;牦牛FKBP6基因5′调控区序列含有潜在的启动子区、典型的CAAT-Box和CpG岛,但未见TATA-Box;荧光素酶活性分析发现,牦牛FKBP6基因的核心启动子区位于5′调控区的-263~-167nt区域,含有CAAT-Box、E-Box、CTCF和CREB等与精子发生相关的转录因子结合位点。牦牛FKBP6基因核心启动子的鉴定和精子发生相关转录因子结合位点的发现为进一步研究牦牛睾丸组织中FKBP6基因的表达调控奠定了基础。  相似文献   

13.
旨在克隆测定牛肌原调节蛋白2基因(Myozenin2,MYOZ2)启动子的全长序列,进行活性区域分析,为牛MYOZ2基因功能和表达调控机理研究提供理论依据。通过5′RACE方法确定牛MYOZ2基因转录起始位点;采用PCR技术,以牛基因组为模板克隆MYOZ2基因启动子序列。利用在线软件分析启动子区域中可能包含的转录因子结合位点。依据分析结果重新设计引物,构建7个包含不同缺失片段的双荧光素酶报告基因载体,转染C2C12细胞系,利用双荧光素酶系统检测不同片段的启动子活性。结果表明,克隆得到牛MYOZ2基因启动子序列2 065bp,确定MYOZ2基因的转录起始位点;MYOZ2基因片段-84/+125荧光素酶相对活性极显著高于空载体pGL3-Basic(P0.01),MYOZ2基因片段-683/+125荧光素酶相对活性极显著高于基因片段-263/+125(P0.01)。MYOZ2基因启动子核心区域位于-84/+125bp,而且MEF2,SRF,MyoD,YY1等转录因子可能参与MYOZ2基因的转录调控。  相似文献   

14.
本研究旨在确定徐淮山羊c-Myc基因启动子区域,找出该基因启动子的核心调控区,初步探讨c-Myc基因的表达调控机制。根据UCSC基因组数据库已公布的绵羊c-Myc基因的启动子序列,设计特异性PCR引物扩增c-Myc基因的一系列启动子缺失片段,定向克隆至pEGFP-N1和PGL3-c-Myc,分别转染gFF、COS7及P19细胞,并进行TSA和NFAT1诱导,同时对-402~-249bp区域的转录因子SP1结合位点进行定点突变,最后进行双荧光报告基因活性检测。结果表明,徐淮山羊c-Myc基因5′侧翼区-1 334~+1bp区域的启动子活性最强,-402~+1bp区域为c-Myc基因启动子基本活性区域。进一步研究发现,-1 334~-971bp、-587~-147bp区域存在正调控元件,-1 976~-1 334bp、-971~-587bp区域存在负调控元件。TSA和NFAT1均能增强cMyc启动子的活性,SP1结合位点定点突变后,启动子活性降低。本试验通过构建包含c-Myc基因启动子不同片段的重组报告基因载体并比较其转录活性,确定了c-Myc基因启动子的核心区域,发现转录因子SP1是c-Myc基因启动子核心区域的调控元件,为进一步研究c-Myc基因的表达调控机制奠定了基础。  相似文献   

15.
通过分析调控北极狐毛色基因TYRP1启动子核心区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为狐狸毛皮品质分子育种和彩色毛皮新材料的创制提供思路。通过基因组测序技术获得了北极狐TYRP1基因启动子序列,并利用生物信息学方法对北极狐TYRP1基因核心启动子区域和转录因子结合位点进行预测;以北极狐基因组DNA为模板,PCR扩增北极狐TYRP1基因不同长度的启动子缺失片段克隆至pGL3-Basic载体,将重组质粒瞬时转染到A375和293T细胞,利用双荧光素酶基因检测仪进行活性验证。结果表明,成功构建了9个含有不同长度启动子片段的重组质粒,经双荧光素酶活性检测发现北极狐TYRP1基因-699/+35区域为核心启动子区域,-699/-93区域存在着TYRP1基因正调控元件。生物信息学预测分析发现该区域存在4个转录因子结合位点;利用重叠延伸PCR技术成功构建了4个突变载体,经双荧光素酶活性检测发现4个突变载体活性均显著下降(P0.05),表明这4个转录因子是北极狐TYRP1基因转录调控的正调控元件。本研究确定了北极狐TYRP1基因启动子核心区域-699/+35,Sp1(-656/-646)、CREB(-598/-589)、Sp1(-539/-530)和Sp1(-163/-154)为北极狐TYRP1基因转录的正调控元件。  相似文献   

16.
旨在筛选调控山羊毛色基因PMEL的启动子活性区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为彩色山羊的育种和改良提供思路。以山羊基因组DNA为模板,PCR扩增PMEL基因不同长度的启动子缺失片段,定向克隆至pGL3-basic载体,将重组质粒转染到293T和A375细胞,通过双荧光素酶检测系统测定相对荧光素酶活性值;利用生物信息学方法对PMEL基因核心启动子区的转录因子结合位点进行预测,随后利用重叠延伸PCR分别对pGL3-327质粒上预测的转录因子结合位点进行点突变并构建突变载体,利用双荧光素酶检测系统进行活性验证。结果显示,本研究成功构建了7个不同长度的启动子片段,其中6个片段具有明显的启动子活性。经过双荧光素酶活性检测发现山羊PMEL基因-251/+76区域为核心启动子区域。通过不同长度的启动子片段的活性比较发现,-251/-62区域的缺失造成启动子活性从最高到消失,表明该区域对山羊PMEL基因转录调控有重要影响,生物信息学分析发现该区域存在5个转录因子结合位点,利用点突变构建了5个突变载体,经过双荧光素酶检测发现5个突变载体的活性均显著下降。提示这5个转录因子是山羊PMEL基因转录的正调控元件。本研究确定了山羊PMEL基因启动子核心区域为-251/+76,NF-1(-206/-197)、Sp1(-186/-174)、Sp1(-151/-139)、CREB(-91/-82)和Sp1(-82/-71)结合位点为山羊PMEL基因转录的正调控元件。  相似文献   

17.
本试验旨在进行关岭牛肌球蛋白重链1(myosin heavy chain 1,MYH1)5′侧翼启动子的克隆和生物信息学分析。采集关岭牛血液及组织样品(背最长肌、后腿肌、心脏、肝脏、小肠、脂肪组织),利用PCR方法扩增关岭牛MYH1基因5′侧翼区,构建关岭牛pUCm-T-MYH1克隆载体,并对MYH1基因5′侧翼区进行生物信息学分析,最后利用实时荧光定量PCR法测定了MYH1基因在关岭牛不同组织中的表达。结果显示,本试验成功获得1 373bp(-1 360~+12bp)的MYH1基因5′侧翼启动子序列;利用生物信息软件对获得的克隆序列进行分析发现,MYH1基因5′侧翼启动子序列存在5处可能的转录起始点和多个潜在转录因子结合位点;关岭牛与金丝猴、野猪、家鼠、藏羚羊、野驴的MYH1基因5′侧翼区保守性较强的区域为转录起始点上游-400~+100bp,推测转录起始点上游-400~+75bp可能是其核心启动子区域。实时荧光定量PCR分析发现,MYH1基因在关岭牛背最长肌和后腿肌中高表达,在心脏、肝脏、小肠、脂肪组织中表达量很低,说明MYH1基因表达具有组织特异性。  相似文献   

18.
【目的】 分析鹅p21基因的结构和启动子活性,探讨p21基因的转录调控机制。【方法】 以泰州鹅为试验对象,通过同源克隆、RACE和生物信息学分析等方法获得鹅p21基因全长序列和5′-侧翼区序列特征;构建6个不同缺失片段的启动子区双荧光素酶报告载体并分析其荧光素酶活性,进而确定p21基因核心启动子区;对核心启动子区转录因子结合位点生肌决定因子(MyoD)(+25~+36 bp)进行定点突变,并构建突变报告基因载体,在C2C12细胞系内初步鉴定鹅p21基因核心转录调控因子。【结果】 鹅p21基因cDNA全长1 943 bp,CDS区大小为453 bp,编码151个氨基酸,蛋白序列包含高度保守的CDI家族结合位点。系统进化树分析表明,鹅p21基因与鸭亲缘关系最近,与鸡和火鸡有较强的进化关系。鹅p21基因5′-侧翼区包含启动子元件,—35~+37 bp是核心启动子区,发挥正向调控作用,结合定点突变技术初步鉴定MyoD是鹅p21基因核心转录调控元件。【结论】 本研究获得了鹅p21基因完整的cDNA序列和启动子区域,MyoD是p21基因核心转录调控因子,为探究p21基因在鹅胚胎期肌肉发育过程中的调控机制提供理论依据。  相似文献   

19.
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

20.
张冬杰  汪亮  刘洋  刘娣 《中国畜牧兽医》2019,46(9):2535-2542
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P<0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号