首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以纤维素纳米纤丝和多壁碳纳米管为主要原料,采用一步水热法、冰模板法冷冻干燥以及高温煅烧法,成功制得具有多级连通类木材管胞状孔结构的氮掺杂碳点的复合衍生碳气凝胶,并对其微观形貌、化学结构、比表面积和孔隙度进行表征。通过循环伏安测试、恒电流充放电测试、交流阻抗测试和长循环测试等电化学表征手段分析其电化学性能。结果表明:碳气凝胶表面经高温煅烧得到大量氮、氧杂原子掺杂的碳微颗粒和碳微绒毛,提高了碳气凝胶的缺陷态结构含量和比表面积,其比表面积可达377.9 m2/g;在三电极测试体系下,比电容可达121.8 F/g(测试电流密度为0.2 A/g,电压窗口为-0.2~0.8 V);在2 A/g的电流密度下,进行5 000次充放电循环后,电容保持率可达131.7%。衍生碳气凝胶独特的微观形貌和高比表面积,为能量存储提供了更快速和便捷的电子/离子传输通道、优异的导电性和更高的比容量,为超级电容器等储能器件电极材料的设计提供了木基生物质资源利用的新思路。  相似文献   

2.
以竹炭、鳞片石墨为原料,基于机械力效应,通过高能球磨的剥离和粉碎,然后高温炭化,制备出具有优良电化学性能的纳米石墨片/竹炭(GN/BC)复合材料;同时在相同条件下,以不添加鳞片石墨制备的高温多孔竹炭(PBC)为对照样品。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、比表面积与孔隙分布分析仪表征了材料的表面形貌和结构,并利用三电极体系测试了其电化学性能。研究结果表明:较高结晶度鳞片石墨的加入可以提高复合材料的结晶度,高能球磨可以使石墨片破碎成纳米尺寸,并嵌入竹炭内部;制备的GN/BC复合材料的比表面积为863.47 m2/g,总孔容为0.56 cm3/g、微孔孔容为0.26 cm3/g,平均孔径为2.58 nm;在1 A/g的电流密度下,该复合材料具有280.97 F/g的高质量比电容,同时还具有良好的倍率性能。  相似文献   

3.
以木材液化物为前驱体原料,经凝胶、碳化、活化法制备的碳气凝胶(CA)为基材,通过两步水热法在其骨架表面原位负载NiCo2S4得到NiCo2S4/木材液化物碳气凝胶(NiCo2S4-CA)复合电极材料。利用扫描电子显微镜(SEM)、氮气吸附-脱附实验、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段来表征NiCo2S4-CA材料的物相结构和表面形貌,通过循环伏安法、恒电流充放电及电化学交流阻抗等测试方法研究其电化学性能,探究其电荷储存机理。结果表明:NiCo2S4纳米颗粒锚定在具有珊瑚网络结构的CA骨架表面,形成丰富的多级孔隙结构。CA的引入有利于NiCo2S4的良好分散,缓解其团聚问题,且不会改变NiCo2S4的晶体结构。NiCo2  相似文献   

4.
纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。  相似文献   

5.
概述了纤维素气凝胶通过炭化和复合导电物质实现导电功能的技术手段,及其在超级电容器中的应用研究现状。重点介绍了纤维素导电气凝胶孔结构及其复合结构对超级电容器电化学性能的影响,包括:依据电解液离子大小调控电极材料的孔结构和孔径分布,优化双电层电容行为;借助石墨烯等高导电性物质提高复合材料的导电性和比表面积,实现复合电极材料性能的增强及其在柔性能源储存装置中的应用;结合纤维素炭气凝胶优良的导电性与结构稳定性以及金属化合物高的赝电容和大的能量密度特性,实现复合电极材料中双电层电容和赝电容的协同增效作用。最后针对纤维素导电气凝胶及其复合材料在制备和超级电容器应用中面临的机遇与挑战,指出未来发展方向。  相似文献   

6.
木材作为一种可再生的天然高分子材料,其特有的结构和理化性质,使木材及其衍生材料在清洁能源、柔性传感和催化工程等领域的应用研究层出不穷,引起了科研工作者广泛关注。除了资源丰富、绿色环保和可生物降解等特点,木材还具备一些独特的优势,如各向异性的分层多孔结构、良好的机械灵活性和可调谐的多功能性等,近年来在电化学能源存储领域表现出令人憧憬的应用前景。笔者从实体木材、木质纤维和木质纳米纤维这3种不同维度的木基材料出发,分别总结了其在储能领域最新研究进展,探讨了这些材料的结构特性与电化学性能间的关联响应机制。基于不同树种实体木材的结构差异,比较分析了直接炭化、炭化后再活化改性的实体木材储能材料性能特征及对电化学储能的影响规律,进一步讨论了实体木材一体化储能器件的思路与创新。在木质纤维储能材料方面,总结分析了以单根纤维及纤维聚集体为起始单元的不同储能材料的结构性能特点,重点探讨了在柔性电极材料方面的应用前景。基于木质纳米纤维天然可控网状结构优势,主要分析了纳米纤维炭气凝胶在储能材料领域的应用特点。最后,展望了木基储能材料所面临的机遇挑战,以及未来需要重点关注的研究方向。  相似文献   

7.
【目的】基于木材天然的多孔性、亲水性以及优良机械性能,将薄木切片作为柔性的支撑材料和载体材料与2种纳米碳材料有机结合,制备一种新型柔性薄木/纳米碳材料复合电极,并对其微观结构与电导性能进行研究,为木材功能化和高附加值化提供一种新的研究方向。【方法】利用物理切片方式得到完整性和柔韧性良好的薄木切片,再将纳米碳材料氧化还原石墨烯(RGO)、羧基化多壁碳纳米管(CMWCNT)逐层沉积到薄木表面,借助冷场发射扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、四探针电阻率测试仪和电化学工作站等手段研究薄木/纳米碳材料复合电极的微观形貌、化学结构、电导性和电化学性能,重点探索纳米碳材料与薄木切片的附着机制和界面结合机制。【结果】RGO通过非共价π-π堆积在薄木表面形成褶皱状纳米薄膜结构,CMWCNT则呈不规则颗粒状形貌;横切面薄木/纳米碳材料复合电极呈多孔结构,而径、弦切面则为沟壑状结构。薄木沉积纳米碳材料前后表面化学元素无变化,依然为C(284 e V)、O(532 e V)峰,但C/O比例从1.84增加到5.51(RGO)和3.65(CMWCNT)。随着纳米碳材料沉积次数增加,薄木/RGO和薄木/CMWCNT复合电极的附着量和导电率均随之增大,而且在同一沉积次数下,前者的附着量和导电率略大于后者;当沉积次数达到19次时,RGO附着量可达0.68 mg·cm-2,相应的导电率为0.63 S·cm-1;CMWCNT附着量略低于RGO,为0.45 mg·cm-2,相应的导电率为0.50 S·cm-1;导电率与附着量具有良好的线性拟合性。2种柔性薄木/纳米碳材料复合电极在不同弯曲程度下电流基本保持平稳,表明弯曲应力对其电导性能影响很小。【结论】2种纳米碳材料在薄木表面逐层沉积形成纳米层,且与薄木有较强的附着力(氢键作用)。经过纳米碳材料沉积后,薄木表面化学元素C/O比例显著提高,附着量和导电率也随纳米碳材料沉积次数增加而增大。2种薄木/纳米碳材料复合电极柔性良好,且具有良好的弯曲电导稳定性,可作为柔性电极材料在柔性储能器件和柔性可穿戴设备等方面发挥潜在的应用价值。  相似文献   

8.
为开发木基柔性导电材料,采用导电高分子对柔性薄木切片进行原位聚合,制备薄木-聚吡咯(PPy)和薄木-聚苯胺(PANi)两种导电材料,并对其微观形态、结构与导电性能进行研究。结果表明:通过聚合,薄木切片表面成功地附着了一层PPy纳米颗粒或PANi纳米棒,附着量和薄木的导电率均随聚合时间的延长而增加;弯曲角度对导电薄木的导电性能影响很小,电导稳定性优良,作为柔性电极材料,具有潜在的应用价值。  相似文献   

9.
在简要介绍分子印迹聚合物(MIP)制备原理,以及分子印迹电化学传感器(MIECS)工作原理的基础上,综述了碳纳米材料、磁性材料和导电聚合材料3种电极修饰材料在MIECS中的应用。碳纳米材料主要涉及石墨烯及其系列衍生物、碳纳米管(CNT);磁性材料在归纳对比了涂覆、磁吸附、电聚合这3种电极修饰方式之外,主要介绍了基于传统电极和基于磁控电极的磁性分子印记聚合物(MMIP)修饰;导电聚合材料的合成方法有化学合成、电化学聚合和微生物辅助聚合,重点叙述了电化学聚合法的特点。最后,对MIECS的发展前景和面临挑战进行了展望。  相似文献   

10.
以聚乙烯醇/硼酸盐(PB)凝胶体系作为导电水凝胶(ECHs)基本骨架,在纤维素纳米纤丝(cellulose nanofibers,CNFs)上原位聚合吡咯单体(Py)得到CNF-PPy复合物,再将其分散到PB基体当中,制得高可塑性和一定自修复特性的纳米复合导电水凝胶(PB-CNF-PPy)。对胶体化学官能团、微观形貌、晶型结构、流变特性和导电性等性能的测试分析发现:原位聚合过程保持了PPy的共轭结构及其导电性,胶体表面呈蜂窝多孔状,孔隙直径为(4.62±0.05)μm。凝胶平均含水率和密度分别为90.61%和1.13 g/cm3;随着CNF和PPy含量的提高,胶体黏弹性、力学强度和导电性都明显增强。当CNF为2.0%、PPy为0.5%时,存储模量G'可达5.5 k Pa,约为纯PB凝胶的70倍,能承受的最大应力约为CNF 1.0%、PPy 0.5%时的8~9倍,电导率可达3.38×10-2S/m。  相似文献   

11.
以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1 522 m2/g,最大孔容可达0.84 cm3/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。  相似文献   

12.
碳纳米管     
中国科学院成都有机化学研究所于作龙研究员领导的青年研究小组,自行设计制造了移动床催化裂解反应装置,在国际上首次成功实现碳纳米管的连续化批量制备。 碳纳米管(CNTs)是20世纪90年代初发现的一种纳米级无缝管状结构碳材料,具有奇异的物理化学性能,如独特的金属或半导体导电性、极高的机械强度、储氢能力、吸附能力和宽带电磁波吸收特性等。它在储能材料、催化材料、导电材料、纳米电子元器件和复合材料中有重要的潜在应用价值。由碳纳米管制成的电子探针针尖、场发射电极等已经正式应用,由碳纳米管增强的抗静电Nory…  相似文献   

13.
优化MOF-5的合成工艺,确定金属中心与有机配体的最佳配比,并基于最佳配比通过真空浸渍和水热作用在毛白杨木材孔隙内部原位合成MOF-5,制备毛白杨木材/MOF-5复合材料,并对毛白杨木材/MOF-5复合材料的微观形貌、结合机理、孔隙结构和甲苯吸附性能进行表征。结果表明,当金属中心与有机配体物质的量比为1:3时,合成的MOF-5晶体粒径较小,BET比表面积为268.729 m2/g,孔容为0.136 cm3/g,且具备典型的MOF-5晶体X射线特征峰。在毛白杨木材孔隙内部原位合成的MOF-5的平均负载量为22.6%;红外光谱的分析结果显示MOF-5与毛白杨木材通过氢键和静电相互作用相结合。扫描电镜、压汞法和氮气吸/脱附测试的孔隙结构表明,MOF-5填充了毛白杨木材中的部分大孔和介孔,增加了微孔的比表面积和孔容。常温常压下毛白杨木材/MOF-5复合材料对甲苯的最大吸附量为16.07 cm3/g,展现了较好的甲苯吸/脱附性能。毛白杨木材/MOF-5复合材料在气体吸附与分离领域展现了较好的应用潜力,这为速生木材作为吸附材料的功能化应用提供了参考。  相似文献   

14.
利用木材天然多孔的网状结构及富含活性基团羟基和羧基的特性,通过冷热水循环结合冷冻处理的方式,提高了木材的渗透性;利用脉冲式真空浸渍法将氧化石墨烯(GO)与木材充分结合,再使用热压法将木材内部的GO还原,使木材具有三维导电性能。结果表明:当GO质量浓度为3 mg/m L,压缩率为45%,热压温度为220℃,热压时间为45 min时,木材/石墨烯三维导电材料(3D-W/r GO)性能最佳,纵向、径向和弦向体阻率分别为3.0×102,7.0×102和3.9×103Ω·cm。对3D-W/r GO的形貌、结构和性能进行研究,激光共聚焦显微镜和扫描电子显微镜分析结果表明,还原性氧化石墨烯(r GO)在木材管道中均匀分布;X射线光电子能谱和傅里叶红外光谱表明,GO以酯键和氢键的形式与木材紧密结合,且r GO在木材机体中的还原程度较大;X射线衍射光谱分析显示,材料结晶度数值减小;综合热分析表明,材料的热稳定性有所提高。和木材相比,3D-W/r GO的力学性能及尺寸稳定性均有明显提升,是一种极具前景的导电材料。  相似文献   

15.
以醋酸纤维素(CA)为原料,利用静电纺丝技术制备醋酸纤维素纳米纤维(CANFs),脱乙酰化后得到纤维素纳米纤维(CNFs),再通过原位聚合吡咯构建复合导电纳米纤维(CNFs-PPy),结合纸电极组装柔性压力传感器。通过红外光谱、X射线衍射、扫描电镜对材料进行表征,联用万能材料试验机和电化学工作站研究传感器机电性能,结果表明:聚吡咯成功复合在纤维素纳米纤维表面,复合导电纳米纤维氮元素质量分数为24.8%;传感器在1~15 kPa压强载荷下的电流-电压曲线均保持良好的线性关系,相对电流变化率随压强增加而升高;传感器在低压强(0~0.99 kPa)范围内灵敏度高达1.77 kPa-1,在中压强(1.00~8.33 kPa)和高压强(8.53~15 kPa)范围内灵敏度分别为0.43和0.22 kPa-1;传感器具有优异的信号可靠性和稳定性,循环加载3 000次器件的传感信号仍保持稳定;该传感器可以实现对手指触碰等外界压力变化的实时监测,为绿色柔性电子的发展提供了新思路。  相似文献   

16.
以大豆蛋白(SPI)、丙烯酰胺(AAm)和ZnCl2为原料,热引发聚合制备了一种具备抗冻特性的大豆蛋白基凝胶电解质材料,探究了温度对材料离子电导率和力学性能的影响,并分析了其作用机制。研究结果表明:该凝胶电解质具有优异的抗冻性能,其中ZnCl2的引入形成了大量Zn2+的溶剂化结构,破坏了水分子间的氢键,降低了凝胶电解质的凝固点;凝胶基体和盐离子的协同作用赋予了凝胶电解质高压缩回弹性和耐疲劳强度。对凝胶电解质的低温离子电导率分析表明:ZnCl2≥5 mol/kg,凝胶电解质在-30℃的低温下离子电导率仍有3.65×10-3 S/cm。对凝胶电解质的低温力学性能分析发现:凝胶电解质在-30℃下经历应变为80%的100次压缩循环后仍能保持结构完整,应力保持率>85%,塑性变形率为15%。同时,利用凝胶电解质组装的电化学电容器表现出良好的耐低温性能,电流密度5 A/g下,器件在-30℃下仍能够正常工作,其电容保持率达83.2%,在-30℃下经历10 000次循环充放电电容保持率达...  相似文献   

17.
电容去离子技术(CDI)是新型高效低耗的苦咸水淡化技术,本研究探讨了基于活性炭电极的CDI生产纯水的可行性。采用活性炭电极、石墨集流体、有机玻璃隔板等自行设计组装的CDI脱盐系统,以城市自来水为水源,研究了该脱盐系统的脱盐量、能耗、脱盐率、离子截留率、回收率和循环稳定性等。结果表明:活性炭BET比表面积为1 586 m2/g,平均孔径为2.08 nm,孔容积为0.82 cm3/g, XPS分析表明该活性炭含碳、氧、氮的量分别为94.81%、 4.10%和1.09%,表面含有少量的含氧官能团和含氮官能团;电容去离子技术可以制备出离子浓度0.06 mmol/L、溶解性总固体量低于5 mg/L的纯水,产水能耗仅为0.115 5 kWh/m3,脱盐率为98.1%,对各离子截留率为78.6%~99.8%,水回收率达到80%,且脱盐系统经过吸附-脱附循环42次后,电极的脱盐性能保持稳定,循环性能良好。  相似文献   

18.
【目的】将去除木质素、半纤维素组分的木材作为传感器骨架材料,研究其与导电聚合物的含固比对压力传感器感测性能的影响,为开发基于绿色天然材料的低成本、高性能传感器提供新思路。【方法】以轻木为原料,通过NaClO2、NaOH溶液两步法选择性地从细胞壁中去除木质素和半纤维素组分,应用冷冻干燥技术制备木基气凝胶并将其作为传感器骨架材料;采用浸渍法将气凝胶骨架浸入导电聚合物聚(3,4-乙烯二氧基噻吩)-聚(苯乙烯磺酸盐)(PEDOT∶PSS)和偶联剂3-缩水甘油基氧基丙基三甲氧基硅烷(GOPS)混合溶液中,经冷冻干燥后低温加热使三者交联,制备3D层状木基微压传感器;对3D层状木基微压传感器进行结构形态表征和电学、感测性能测试,探讨木基气凝胶骨架与PEDOT∶PSS含固比对压力传感器感测性能的影响。【结果】木基气凝胶骨架结构机械可压缩性好、高度多孔、具有特殊分层结构,有利于PEDOT∶PSS和GOPS混合溶液吸附,CPG-0.25、CPG-0.5、CPG-0.75的电导率分别为0.02、0.15和3.04 mS·cm-1,最大压缩应变分别为72%、62%和...  相似文献   

19.
纤维素是自然界中一种轻质、生物相容性好以及柔韧性强的生物高分子材料,在柔性超级电容器、生物传感器以及电磁屏蔽等领域得到了广泛应用。在柔性超级电容器领域中,纤维素基材料的多羟基结构是电解质离子传导的良好介质,有助于提高电极材料的电容特性以及循环特性,并且易与导电活性材料(如:石墨烯、碳纳米管、导电高分子)通过涂布、共混、层层自组装以及原位聚合等方法构建导电框架以制备柔性电极材料。综述了基于纤维素材料的柔性超级电容器电极开发的相关研究,重点介绍了基于不同纤维素基原料(原生纤维素、纳米纤维素以及纤维素衍生物)制备柔性超级电容器电极的方法以及所得电极的电化学性质,分析归纳了纤维素基材料在柔性电极中的主要作用:作为骨架支撑柔性电极材料、充当柔性基底(可兼有隔膜作用)、形成多孔结构传输电解质离子。最后,对纤维素材料在柔性电极材料领域的发展趋势进行了展望。  相似文献   

20.
在纳米材料特征、制备方法、纳米复合材料等方面研究成果的基础上,国内外的学者对木材无机纳米复合材料进行了初步研究.研究表明,木材内部具有容纳纳米粒子的纳米空间,它存在于木材细胞壁上的微细纤维之间;并存在能与纳米粒子结合的活性基团;可用溶胶-凝胶法(sol-gel)、原位插层合成法、注入填充法等方法,形成木材/无机纳米复合材料;木材原有性能均能有不同程度的提高,甚至有可能产生全新的性能.基于木材的特点,以木材/无机纳米复合材料的工业化研究为目标,分析木材/无机纳米复合材料的制备、检测与分析表征的研究现状,提出研究建议与展望,主要包括无机纳米材料的筛选、表面改性和分散处理、纳米粒子与木材复合的途径和复合机理研究、木材/无机纳米复合材料的结构表征和性能分析及其应用研究等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号