首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以竹炭为前驱体、三聚氰胺为氮源、碳酸钾为预活化剂,采用两次活化工艺成功制备了氮掺杂竹活性炭超级电容器电极材料。利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、比表面积及孔隙分析(BET)和X射线光电子能谱(XPS)等测试方法对制备的电极材料的形貌、结构、化学成分进行表征。通过控制活化过程中的炭碱比(质量比)优化样品的电化学性能,结果表明:炭碱比为1∶1时制备的NC-1样品比表面积高达1 984.4 m2/g,平均孔径为1.26 nm,样品具有清晰的介孔以及内部蠕虫状的微孔。炭材料中氮元素和氧元素含量(质量分数)分别为2.20%和4.65%,有利于增加活性炭表面的亲水性和赝电容,从而提高其比电容量。经电化学性能测试,NC-1样品循环伏安曲线(CV曲线)具有良好的对称性,呈近似矩形;其中在低电势窗口出现明显的宽峰,表明充放电过程中材料表面的含氮官能团与电解液之间发生氧化还原反应,贡献赝电容。恒流充放电显示在1 A/g电流密度下质量比电容高达224 F/g,与未采用该活化工艺的样品比较提高了86.7%。在50 A/g电流密度下其质量比电容高达144 F/g,且在10 A/g下经5 000次循环充放电后仍可达到93%的初始电容保持率,显示了氮掺杂竹活性炭超级电容器电极材料较优异的电化学性能和稳定的循环性能。  相似文献   

2.
以杉木屑为原料,三聚氰胺固体废弃物(OAT)为氮源,基于碱/尿素体系溶解纤维素,通过一步热解制备氮掺杂活性炭,并考察活化温度和OAT加入量对活性炭的吸附性能和电化学性能的影响。通过X射线光电子能谱(XPS)和比表面积分析仪分析材料的表面结构和孔结构;采用循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)等测试手段表征其电化学性能。研究结果表明:随着OAT质量分数的增加,活性炭样品得率和吸附性能先增加后减小;OAT的添加有利于提高氮掺杂活性炭的得率、氮含量、吸附性能和电化学性能;炭材料的比表面积及其孔隙结构促进活性炭样品电化学性能的提升。当活化温度900℃,OAT质量分数为15%下,制备的氮掺杂活性炭的得率为34.2%,碘吸附值为1 116 mg/g,亚甲基蓝吸附值为165 mg/g,比表面积为1 324 m2/g,含氮量3.5%。在6 mol/L KOH电解液中,当电流密度1 A/g时,比电容可达193 F/g。  相似文献   

3.
以工业废弃物木质素磺酸钠为碳源,高含氮量的三聚氰胺为氮源,通过共混物直接热解制得高氮氧含量的木质素基炭材料(NSL-x),当三聚氰胺与木质素磺酸钠的质量比值为2、4和6时,分别标记为NSL-2、NSL-4和NSL-6;采用SEM、XRD和XPS等方法对其形貌和结构进行了表征。结果表明:NSL-x整体是由尺寸为几百纳米到几微米的无规则炭块堆积而成;氮氧掺杂并没有改变其形貌和结晶结构,炭化产物以无定形碳为主。炭材料NSL-4含氮量可达2.41%,含氧量达到20.12%,同时NSL-4中所含的羰基最高(10.27%)。样品的电化学性能测试结果表明:以6 mol/L KOH为电解液,在0.1 A/g的电流密度下,NSL-4的比电容达到229 F/g,在20 A/g的高电流密度下,比电容仍维持在137 F/g。在10 A/g的电流密度下,经过10 000次的充放电循环测试,NSL-4的库伦效率仍然保持在100%左右,比电容仅下降了1%,表现出良好的倍率性能和极佳的电化学稳定性。  相似文献   

4.
以工业滤纸为炭基材料,聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段聚醚(普朗尼克F127)为软模板,1,3,5-三甲苯为扩孔剂,在添加3-氨基苯酚(氮源)和六次甲基四胺的条件下进行水热合成反应制得纸基复合材料,并经炭化制得氮掺杂介孔炭化复合材料(NMC-700),进一步KOH活化后制得活化氮掺杂介孔炭化复合材料(ANMC-700),同时以工业滤纸直接炭化制得的炭化滤纸(C-700)样品为对照,采用SEM、TEM、XRD、XPS等方法对3种炭材料进行了表征。研究结果表明:ANMC-700表面形成了粒径0.6~7μm的炭微球,孔结构由随机分布、蠕虫状的孔组成,比表面积高达1 559 m~2/g,孔容为0.80 cm~3/g,且氮原子已经成功掺杂到炭骨架中,含氮量为3.60%,含氧量为13.65%。电化学性能测试结果表明:以6 mol/L KOH为电解质溶液,在1 A/g的电流密度下,ANMC-700的比电容可达284 F/g,在20 A/g的电流密度下其比电容仍能保持在173 F/g,并在此电流密度下经过10 000次循环充放电,其电容保持率在98.6%,表现出良好的电化学稳定性。  相似文献   

5.
我国竹材资源丰富,以竹废料为原料,制备可用于超级电容器电极材料的竹活性炭,有助于推动竹产业发展,助力国家“双碳”目标实现。在本研究中,分别采用KOH共热和水热处理对竹粉进行活化,并对制备的竹活性炭进行电化学性能、比表面积、表面微观形貌等测试。实验结果表明,KOH共热活化法的最佳条件为炭化温度350℃,活化温度900℃,升温速率2℃/min,碱炭质量比4∶1;制备的活性炭比表面积为3 299 m2/g, 0.5 A/g电流密度下的比电容为287.8 F/g, 5 000次充放电测试后,电容保持率为95%~105%。水热活化法的最佳条件为KOH质量分数20%,反应温度150℃,反应时间12 h,制备的活性炭比表面积为192.91 m2/g, 0.5 A/g电流密度下的比电容为170.4 F/g,电容保持率为88.89%。2种方法制备的活性炭孔径结构都是以微孔为主,中孔混合分布,含有少量大孔;2种活性炭均含有双层或多层石墨烯结构,但水热活化法制备的活性炭石墨化程度更高,制备条件更温和。研究结果既可为超级电容器用活性炭的研究提供了理论思路,也有效地扩...  相似文献   

6.
以椰壳为原料,水蒸气活化法制备了椰壳活性炭(AC),并以乙醇和水作为溶剂,采用水热法将AC与石墨烯(GR)按质量比90∶0、90∶5、90∶54、90∶90和54∶90复合,将制得的复合材料(GAC1~GAC5)作为电极应用于超级电容器。通过氮气吸脱附、X射线衍射(XRD)、扫描电镜(SEM)方法表征了活性炭的孔结构和表面形貌;采用循环伏安(CV)、恒电流充放电(GCD)方法分析比较不同复合比例下超级电容器电极材料的性能。实验结果表明:在炭化温度800℃,活化温度900℃及活化时间1.5 h的条件下制备的椰壳活性炭比表面积为2482 m^2/g,其孔径主要分布在2~4 nm,孔容可达1.33 cm^3/g,在6 mol/L KOH电解液中比电容为85 F/g,石墨烯改性的复合材料GAC-5作为电极材料具有优异的电化学性能,在电流密度1 A/g时比电容可达186 F/g。  相似文献   

7.
炭化温度对竹基活性炭孔结构及电化学性能的影响   总被引:1,自引:0,他引:1  
以毛竹为炭前驱体,KOH作活化剂,通过调节炭化温度在相同活化条件下制备了具有不同孔隙结构的竹基活性炭材料,通过SEM、XRD、BET、直流充放电、交流阻抗和循环伏安等结构与电化学性能分析方法,考察了炭化温度对竹基活性炭材料结构和性能的影响。研究结果表明:随着炭化温度升高,活性炭材料的比表面积与总孔容、中孔孔容均不断减小,微孔比表面积和微孔孔容先增大后减小。其中炭化温度为500℃的样品BAC500比表面积为3447m~2/g,总孔容为1.96cm~3/g,在有机电解液中以1mA/cm~2的电流密度充放电时,比电容高达178.8 F/g,电流密度增大50倍容量保持率为74.6%,显示出良好的功率特性。活性炭材料中存在一定比例的中孔不仅可以改善电极材料的功率特性,而且可以提高微孔的利用率。  相似文献   

8.
以落叶松木粉为原料,木粉液化后与甲醛制得落叶松基树脂,并以树脂作为碳前驱体,利用超声波喷雾热解法制备落叶松基炭球(LCSs)。通过改变炭化温度和落叶松基树脂质量分数制备得到不同的LCSs样品,采用SEM、TEM、N_2吸附-脱附等温线、XRD、Raman对LCSs的表面形貌、孔结构、晶型结构和石墨化程度进行表征,并对样品的电化学性能进行测试。研究结果表明:所制备的LCSs为无定形的规则球形结构,在炭化温度900℃、落叶松基树脂质量分数1%下制备得到的样品LCSs3的比表面积高达626.6 m^2/g,总孔容达到0.345 cm^3/g;在6 mol/L KOH电解液中,电流密度为0.2 A/g时比电容为309 F/g,当电流密度增加到5 A/g时,比电容为173.7 F/g,其比电容保持率为56%,显示了优异的倍率性能。  相似文献   

9.
随着经济的发展和社会的进步,人们对具有长的循环寿命、高的功率密度和绿色廉价的能源设备的需求逐渐增加,基于生物质活性炭的超级电容器近年来备受关注。然而,生物质基活性炭的电化学性能仍然缺少竞争力,此外,对其微观结构的控制也是较大难题。笔者以糠醛渣为原料,KOH为活化剂,在氩气氛围下通过两步炭化的方法制备三维多孔炭材料,并将制备的多孔炭用做超级电容的电极材料。通过SEM、TEM、Raman、XPS、XRD等手段系统分析表征了所获多孔炭材料的形貌、结构、组成,并探讨活化剂的比例对糠醛渣多孔炭结构性能的影响。研究结果表明:当KOH和糠醛渣的质量比为3∶1时,所制备的多孔炭材料比表面积为2 164.3 m~2/g,具有良好的电容性能(当电流密度1 A/g时,比电容为235.6 F/g)、倍率性能和循环稳定性(当循环充放电10 000次后,比电容仍能保留96%以上)。本研究从生物精炼废弃物中制备了性能优异的超级电容器用活性炭,为降低高性能超级电容器成本,实现生物质的高值化应用提供新思路。  相似文献   

10.
以林业废弃物杉木树皮作原料,通过低温炭化和KOH高温活化两步法制备了具有高表面积和孔隙率的杉木树皮基活性炭并应用于超级电容器电极材料。以碱炭比和活化温度为试验因素,以电流密度0.5 A/g下的质量比电容为响应值,进行中心复合设计(CCD)和响应面分析。研究结果表明:杉木树皮基活性炭的比表面积最高可达1 522 m2/g,最大孔容可达0.84 cm3/g,此时平均孔径为1.12 nm,且同时存在大量的中孔和微孔。碱炭比和活化温度的交互作用对比电容的影响显著,响应面法优化得到杉木树皮基活性炭最佳制备工艺为:碱炭比值为3,活化温度605℃,此条件下炭材料的比电容为185.7 F/g。对优化条件下制备的活性炭进行电化学性能测试发现:在0.5 A/g条件下的最大比电容为188 F/g,且具有良好的倍率性能(85.1%)。  相似文献   

11.
以木材液化物为前驱体原料,经凝胶、碳化、活化法制备的碳气凝胶(CA)为基材,通过两步水热法在其骨架表面原位负载NiCo2S4得到NiCo2S4/木材液化物碳气凝胶(NiCo2S4-CA)复合电极材料。利用扫描电子显微镜(SEM)、氮气吸附-脱附实验、傅里叶红外光谱(FT-IR)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段来表征NiCo2S4-CA材料的物相结构和表面形貌,通过循环伏安法、恒电流充放电及电化学交流阻抗等测试方法研究其电化学性能,探究其电荷储存机理。结果表明:NiCo2S4纳米颗粒锚定在具有珊瑚网络结构的CA骨架表面,形成丰富的多级孔隙结构。CA的引入有利于NiCo2S4的良好分散,缓解其团聚问题,且不会改变NiCo2S4的晶体结构。NiCo2  相似文献   

12.
生物质酶解木质素直接碳化后得到的硬炭通常具有低比表面积和孔隙不发达等特点,作为阳极应用于锂离子电池时容量低。为了提高储锂性能,将原料酶解木质素和活化剂氯化锌一步热处理制备多孔炭,通过调节氯化锌用量和活化温度制备出一系列具有大比表面积的多孔炭材料。利用X射线衍射、拉曼光谱、氮气吸脱附等温线及孔径分析、扫描电子显微镜等表征手段对热解碳化后最终产物多孔炭的晶相、石墨化程度、比表面积和孔径分布、形貌进行研究,同时对多孔炭材料的电化学性能进行评估。结果表明:在热解碳化温度700℃、酶解木质素与氯化锌的质量比为1∶3时,制备出的多孔炭材料电化学综合性能最优,表现出优越的倍率性能和循环稳定性。在电流密度50 mA/g时的放电比容量高达722 mAh/g,在电流密度1 000 mA/g时的放电比容量为350 mAh/g;在电流密度100 mA/g时,经过100圈循环后电极容量保持率为74.7%。这种由低成本废弃物酶解木质素制备的多孔炭材料有望大规模应用于锂离子电池上,为废弃物酶解木质素增值化利用提供一个可行的途径。  相似文献   

13.
为改善工业物理法产普通活性炭的孔隙结构,提高其作为离子液体超级电容器电极材料的性能,采用水蒸气活化法,分别对煤质活性炭(CAC)、椰壳活性炭(CSAC)和竹基活性炭(BAC)进行二次活化,探讨了工艺条件对活性炭孔隙结构的影响,并利用恒电流充放电、循环伏安曲线和交流阻抗等方法对3种活性炭制作的双电层电容器的电化学性能进行了研究。结果表明:二次水蒸气活化能够显著提高活性炭中孔孔容,从而大大提高吸附性能,3种活性炭的碘吸附值、亚蓝吸附值均相比原料有较大提升;二次水蒸气活化对CSAC的孔隙结构和比电容量影响最显著,二次活化椰壳活性炭的BET比表面积可达1 972 m2/g,电流密度0.5 A/g时,超级电容器的比电容量可达106 F/g,是原料(43F/g)的2.5倍。  相似文献   

14.
以竹炭、鳞片石墨为原料,基于机械力效应,通过高能球磨的剥离和粉碎,然后高温炭化,制备出具有优良电化学性能的纳米石墨片/竹炭(GN/BC)复合材料;同时在相同条件下,以不添加鳞片石墨制备的高温多孔竹炭(PBC)为对照样品。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、比表面积与孔隙分布分析仪表征了材料的表面形貌和结构,并利用三电极体系测试了其电化学性能。研究结果表明:较高结晶度鳞片石墨的加入可以提高复合材料的结晶度,高能球磨可以使石墨片破碎成纳米尺寸,并嵌入竹炭内部;制备的GN/BC复合材料的比表面积为863.47 m2/g,总孔容为0.56 cm3/g、微孔孔容为0.26 cm3/g,平均孔径为2.58 nm;在1 A/g的电流密度下,该复合材料具有280.97 F/g的高质量比电容,同时还具有良好的倍率性能。  相似文献   

15.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

16.
超级电容器作为清洁可持续的储能设备,其电化学性能主要由电极材料决定,因此电极材料逐渐成为当前储能领域的研究热点。木材因其天然的多尺度微/纳米孔隙结构以及可再生、可生物降解等特点,逐渐被用于电极材料的研究。以巴沙木为基材,首先采用脱木素联合TEMPO氧化法将木材细胞壁分离具有纳米网络结构的木材气凝胶(TDW),然后将纳米纤维素分散的碳纳米管(CNT)悬浮液通过满细胞法浸渍到木材气凝胶中,冷冻干燥后在导管孔和细胞间隙中形成了连续的碳纳米管导电网络结构,最后进行聚吡咯(PPy)原位聚合,在细胞壁和导管孔中构建成具有纳米导电网络结构的TDW/CNT/PPy复合电极。电化学性能测试显示,由于在TDW的宏观孔隙中导电网络的构建,TDW/CNT/PPy的电化学性能明显优于TDW/PPy电极,而且随着碳纳米管比例的增加而增强,其中,TDW/CNT-2/PPy在1.0 mA/cm2扫描速率下的比电容达到389 F/g、面电容为10.5 F/cm2,而且在10 mA/cm2扫描速率下经过10 000次循环后的电容保持率为95.1%。本研究通...  相似文献   

17.
概述了纤维素气凝胶通过炭化和复合导电物质实现导电功能的技术手段,及其在超级电容器中的应用研究现状。重点介绍了纤维素导电气凝胶孔结构及其复合结构对超级电容器电化学性能的影响,包括:依据电解液离子大小调控电极材料的孔结构和孔径分布,优化双电层电容行为;借助石墨烯等高导电性物质提高复合材料的导电性和比表面积,实现复合电极材料性能的增强及其在柔性能源储存装置中的应用;结合纤维素炭气凝胶优良的导电性与结构稳定性以及金属化合物高的赝电容和大的能量密度特性,实现复合电极材料中双电层电容和赝电容的协同增效作用。最后针对纤维素导电气凝胶及其复合材料在制备和超级电容器应用中面临的机遇与挑战,指出未来发展方向。  相似文献   

18.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

19.
为了获得性能优良、成本低廉的二维炭材料,选择木质素磺酸钠为碳源、硼酸作为模板剂,经溶液混合、高温炭化和沸水回流等过程制得木质素基炭纳米片,当m(硼酸)∶m(木质素磺酸钠)为1∶1、5∶1和10∶1时,分别标记为SLB-1、SLB-5和SLB-10。通过扫描电镜(SEM)和透射电镜(TEM)等手段分析了炭纳米片的微观形貌,采用X射线衍射(XRD)、X射线光电子能谱(XPS)和激光拉曼光谱等手段检测了炭纳米片的晶体结构、元素组成和表面性质,通过循环伏安(CV)、恒电流充放电(GCD)和交流阻抗(EIS)等方法检测了炭纳米片的电化学性能,结果表明:SLB-5具有完好的二维片层结构,通过调整硼酸与木质素磺酸钠的质量比,可以有效调控炭纳米片的厚度。SLB-5具有一定的石墨化程度,模板剂被完全去除,含氧元素高达16.63%,同时,SLB-5炭纳米片厚度达到纳米级,电流密度为1 A/g时比电容为350.79 F/g,电流密度增加到10 A/g时比电容仍可以保持79.95%,循环5 000次后比电容可以保持90%以上。  相似文献   

20.
以毛竹炭化料为原料,经KOH活化、盐酸溶液洗涤,制得活性炭样品AC1。采用H2O2氧化-超声波法对活性炭AC1进行深度除钾,考察了不同条件对活性炭中K+含量的影响,并通过N2吸附-脱附等温线、循环伏安、恒流充放电和交流阻抗等方法对活性炭的孔结构及电化学性能进行了表征。结果表明:在H2O2质量分数为0.6%,超声波处理温度为60℃,超声波处理时间为8 h条件下,处理后的活性炭AC2的K+仅为52 mg/kg,比表面积达3 156 m2/g,总孔容积1.625 cm3/g,中孔率79.8%,平均孔径2.208 nm。活性炭AC2用作电极材料时比电容达297 F/g,相比AC1提高28%,经3 000次循环后,电容保持率为95%,比AC1提高6个百分点,具有优异的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号