首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Anaplasma centrale genomic library was constructed in pUC13. Two clones pAC5 and pAC137 hybridising to A. centrale and A. marginale DNA were isolated from this library. One of these, pAC5, also hybridised to DNA from A. ovis. The total insert of pAC5 was subcloned into pBR322. This subclone, pAC5-12, could detect 1 ng A. centrale, 0.5 ng A. marginale and 3.9 ng A. ovis DNA. The hybridisation pattern obtained with pAC5-12 on digests of A. centrale, A. marginale and A. ovis DNA suggests that this probe detects EcoR1 and Hind111-polymorphisms. Probe pAC5-12 could detect A. ovis DNA in 36% of blood samples tested compared to the 33% detectability obtained with microscopy.  相似文献   

2.
为同时检测和鉴定牛边缘乏质体、中央乏质体及绵羊乏质体,根据这3种病原体的msp4基因核苷酸序列,自行设计、合成了针对3种乏质体的2对通用引物,及分别针对三者的特异引物,通过PCR条件优化,建立了检测乏质体及分别鉴定3种乏质体的套式PCR方法,并与OIE推荐的msp5半套式PCR比较.结果显示:该方法对牛巴贝斯虫、双芽巴贝斯虫、羊莫氏巴贝斯虫、山羊泰勒虫、温氏附红细胞体、东方巴贝斯虫、刚地弓形虫、伊氏锥虫均未扩增出特异性片段.套式PCR检测乏质体DNA量为0.2 pg(相当于6个感染红细胞).检测l 119份来自6个不同地区的奶牛、肉牛、水牛及羊的临床样品,阳性106份,经鉴定边缘乏质体46份,中央乏质体15份,绵羊乏质体35份,混合感染中央乏质体和绵羊乏质体4份,混合感染边缘乏质体和绵羊乏质体3份,混合感染边缘乏质体和中央乏质体3份.首次在分子生物学水平证明中央乏质体存在于中国.同时,证明牛可以混合感染边缘乏质体和中央乏质体或绵羊乏质体,以及混合感染中央乏质体和绵羊乏质体.上述848份样品用OIE推荐的msp5半套式PCR同时检测,两者符合率为98.5%(835/848).检测结果表明,msp4套式PCR特异、敏感,可用于边缘乏质体、中央乏质体、绵羊乏质体的检测和鉴定.  相似文献   

3.
Anaplasmosis can be diagnosed either by immunological techniques or by direct microscopic examination of blood smears. Both methods are time-consuming and labour intensive. The use of DNA probes in an hybridization assay may simplify the diagnosis of anaplasmosis in cattle and sheep. A genomic DNA library of Anaplasma centrale was constructed in an expression vector and screened to detect clones containing A. centrale DNA. Four probes which hybridized to A. centrale and Anaplasma marginale DNA were isolated. One of these (AC-1) hybridized only to A. centrale DNA, whereas AC-2, AC-3 and AC-4 could detect DNA from both A. centrale and A. marginale. Probes AC-1 and AC-2 could detect 127 ng and 8 ng DNA respectively, while AC-3 and AC-4 detected 64 ng A. centrale DNA.  相似文献   

4.
The tick-borne pathogen, Anaplasma marginale, has a complex life cycle involving ruminants and ixodid ticks. It causes bovine anaplasmosis, a disease with significant economic impact on cattle farming worldwide. The obligate intracellular growth requirement of the bacteria poses a challenging obstacle to their genetic manipulation, a problem shared with other prokaryotes in the genera Anaplasma, Ehrlichia, and Rickettsia. Following our successful transformation of the human anaplasmosis agent, A. phagocytophilum, we produced plasmid constructs (a transposon bearing plasmid, pHimarAm-trTurboGFP-SS, and a transposase expression plasmid, pET28Am-trA7) designed to mediate random insertion of the TurboGFP and spectinomycin/streptomycin resistance genes by the Himar1 allele A7 into the A. marginale chromosome. In these trans constructs, expression of the fluorescent and the selectable markers on the transposon, and expression of the transposase are under control of the A. marginale tr promoter. Constructs were co-electroporated into A. marginale St. Maries purified from tick cell culture, and bacteria incubated for 2 months under selection with a combination of spectinomycin and streptomycin. At that time, ≤1% of tick cells contained colonies of brightly fluorescent Anaplasma, which eventually increased to infect about 80–90% of the cells. Cloning of the insertion site in E. coli and DNA sequence analyses demonstrated insertion of the entire plasmid pHimarAm-trTurboGFP-SS encoding the transposon in frame into the native tr region of A. marginale in an apparent single homologous crossover event not mediated by the transposase. Transformants are fastidious and require longer subculture intervals than wild type A. marginale. This result suggests that A. marginale, as well as possibly other species of Anaplasma and Ehrlichia, can be transformed using a strategy of homologous recombination.  相似文献   

5.
High titered antibody from rabbits immunized with Anaplasma centrale or from cattle recovered from A. centrale infection bound predominantly to several 33-36 kDa polypeptides present in both A. centrale and the Israel-NT isolate of Anaplasma marginale. High titered bovine antibody against the Israel-NT isolate of A. marginale also reacted predominantly with A. centrale polypeptides in this size range. The immunodominance of the 33-36 kDa polypeptides and their cross-reactivity indicate that these shared epitopes may be primarily responsible for the cross-protective immunity between A. centrale and A. marginale.  相似文献   

6.
OBJECTIVE: To determine whether sequelae of infection differed among single versus double infection with Anaplasma phagocytophilum or Anaplasma marginale, with and without tick salivary extract, in cattle. ANIMALS: Eighteen 13-month old steers. PROCEDURES: Treatment groups of 3 cattle each included A marginale inoculated ID followed on day 35 by A phagocytophilum without tick saliva, A phagocytophilum followed on day 10 by A marginale without tick saliva, A marginale followed on day 35 by A phagocytophilum with tick saliva, A phagocytophilum followed on day 10 by A marginale with tick saliva, tissue culture control injection, and tick saliva control injection. Infection was monitored via clinical observations, CBC, serologic testing, and PCR analysis of blood and tissues. RESULTS: Infected cattle had significantly reduced weight gain. Anemia occurred 25 to 32 days after A marginale infection, which was attenuated by tick saliva. Parasitism was greater if cattle had not previously been inoculated with A phagocytophilum. Nine of the 12 treated cattle had positive results of PCR analysis for A phagocytophilum from at least 1 blood sample. Five tissue samples had positive results of PCR analysis for A phagocytophilum; PCR results for A marginale were positive in spleen, lung, lymph node, heart, and ear skin of infected cattle. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated an important biological interaction between A marginale and A phagocytophilum infection as well as with tick saliva in disease kinetics and severity in cattle, which may be important for interpretation of diagnostic tests and management of disease in areas where both pathogens occur.  相似文献   

7.
8.
9.
Tick transmission of Anaplasma centrale   总被引:1,自引:0,他引:1  
Anaplasma centrale was isolated from a field collection of Rhipicephalus simus. Transstadial transmission of A. centrale with adult ticks was demonstrated, but the infection was not carried transovarially. Ticks from this collection were subsequently reared as a non-infected, laboratory strain. It was proved that the Onderstepoort live blood vaccine strain of A. centrale, isolated by Theiler in 1911, is still tick transmissible after more than 75 years of needle passage through cattle in the laboratory. Attempts to demonstrate transstadial transmission of the vaccine strain with Boophilus decoloratus and Boophilus microplus failed.  相似文献   

10.
11.
Protein composition was compared and epitopes were analyzed among the isolates of Anaplasma centrale and A. marginale by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, immunoblotting using bovine antisera and monoclonal antibodies, and enzyme-linked immunosorbent assay. Common and unique proteins were found among the isolates. All isolates tested had a major surface protein with an apparent molecular weight of 38 to 40 kilodalton which had slight molecular size variations between species. This protein was also a dominant immunogen to the host. At least two species-common epitopes, one of which might contain carbohydrate(s), were present on the major surface protein. One species-specific epitope was identified on the major surface protein of A. marginale isolates.  相似文献   

12.
The immunity induced by frozen and fresh Anaplasma centrale vaccines against anaplasmosis caused by A. marginale was tested in 12-month old Friesian steers. A. centrale parasitaemia occurred in all cattle inoculated with both types of vaccine. The average maximal decrease in PCV for the frozen and fresh vaccines was 41.0 and 40.3% respectively. All cattle recovered spontaneously. Vaccinated and control steers of the same age were challenged six months later with doses of 10(6), 10(7) or 10(8) A. marginale organisms. Vaccinated cattle showed average maximal A. marginale parasitemia of 1.2-4.0 versus 10.3-12.0% in control cattle. The average maximal decrease in packed cell volume (PCV) was 33.1 and 30.0% for steers vaccinated with frozen or fresh vaccine, respectively, and 57.4% for the non-vaccinated steers. All vaccinated cattle recovered spontaneously from the A. marginale infection while 7 out of 8 control steers required specific treatment. It thus appears that both frozen and fresh A. centrale vaccines are equally capable of inducing partial protection against infection with A. marginale and of preventing severe red blood cell destruction.  相似文献   

13.
14.
15.
16.
The intracellular pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), described by Sir Arnold Theiler in 1910, is endemic worldwide in tropical and subtropical areas. Infection of cattle with A. marginale causes bovine anaplasmosis, a mild to severe hemolytic disease that results in considerable economic loss to both dairy and beef industries. Transmission of A. marginale to cattle occurs biologically by ticks and mechanically by biting flies and by blood-contaminated fomites. Both male ticks and cattle hosts become persistently infected with A. marginale and serve as reservoirs of infection. While erythrocytes are the major site of infection in cattle, A. marginale undergoes a complex developmental cycle in ticks that begins by infection of gut cells, and transmission to susceptible hosts occurs from salivary glands during feeding. Major surface proteins (MSPs) play a crucial role in the interaction of A. marginale with host cells, and include adhesion proteins and MSPs from multigene families that undergo antigenic change and selection in cattle, thus contributing to maintenance of persistent infections. Many geographic strains of A. marginale have been identified worldwide, which vary in genotype, antigenic composition, morphology and infectivity for ticks. Isolates of A. marginale may be maintained by independent transmission events and a mechanism of infection/exclusion in cattle and ticks. The increasing numbers of A. marginale genotypes identified in some geographic regions most likely resulted from intensive cattle movement. However, concurrent A. marginale strain infections in cattle was reported, but these strains were more distantly related. Phylogenetic studies of selected geographic isolates of A. marginale, using msp4 and msp1α, provided information about the biogeography and evolution of A. marginale, and msp1α genotypes appear to have evolved under positive selection pressure. Live and killed vaccines have been used for control of anaplasmosis and both types of vaccines have advantages and disadvantages. Vaccines have effectively prevented clinical anaplasmosis in cattle but have failed to block A. marginale infection. Vaccines are needed that can prevent clinical disease and, simultaneously, prevent infection in cattle and ticks, thus eliminating these hosts as reservoirs of infection. Advances in genomics, proteomics, immunology and biochemical and molecular technologies during the last decade have been applied to research on A. marginale and related organisms, and the recent development of a cell culture system for A. marginale has provided a format for studying the pathogen/tick interface. Recent advancements and new research methodologies should provide additional opportunities for development of new strategies for control and prevention of bovine anaplasmosis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号