首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first experiment the buffering effect of Italian and perennial ryegrass to fonnic acid was determined with three varieties (Leda, S24 and Presto) cut at weekly intervals throughout the growth cycle. The buffer curves showed no significant differences between the three varieties at any one stage of growth and the results were combined to produce regression equations predicting pH values for the three ryegrasses cut at first ear emergence (e.e.), 50% e.e. and 100% e.e. after addition of formic acid. In the second experiment Italian ryegrass was harvested at three stages of growth, wilted to four different DM contents and ensiled in laboratory silos with five levels of formic acid. The interaction of stage of growth, formic acid level and DM content on the water-soluble carbohydrates, ethanol and volatile N contents of tbe resultant silages is discussed.  相似文献   

2.
Although many aspects of grass silage have received intensive study, the changes that take place within the grass blades during ensilage have received little attention.
In two factorial experiments Italian ryegrass (cv. Lemtal) and cocksfoot (indigenous) were ensiled in laboratory silos (capacity 0·2 kg) with the grass under pressure (700 Pa) and subjected to two treatments (with or without 3·31 t-1 85% formic acid) and two silos from each treatment opened on eight sampling dates(1,2,3,4,7,10,14 and 21 d).
For each sampling date transverse sections of grass laminae were examined and changes in the cross sections of the protoplasts and of cells, as defined by the cell walls, were recorded. These data were used to calculate the ratios of protoplast to cell volumes at each sampling date.
Each silage was analysed for dry matter, pH, lactic acid, VFA, ammonia and glucose. The distance settled by the silage (a measure of decrease in silage volume) and the silage conductivity were also recorded.
Both of the untreated grasses yielded silages with typical lactic acid levels and pH values. In all of the silages there was a marked shrinkage of the plast within the space defined by the cell wall. The ratio of protoplast to cell volume eventually stabilized at 0·4. The formic acid-treated grasses reached this level by day 1 but a longer period was required by untreated grasses.
It is suggested that the decrease in silage volume is related to the lactic acid content of the liquid phase due to their close relationship in silages produced from untreated grasses ( r = 0·97***).  相似文献   

3.
A mixture of perennial and hybrid ryegrasses(234 g DM kg-1) was forage harvested and ensiled after a 24-h wilt in good ensiling conditions in 2-t capacity silos with no additive application (control) or with the application of either Lactobacillus plantarum , 4 × 106 (g fresh weight of grass)-1, or of 31 formic acid t-1. Sufficient 2-kg capacity laboratory silos were also filled with grass to monitor the changes in chemical composition of the ensiled grass with time. In laboratory silos, inoculation with L. plantarum resulted in a more rapid fall in silage pH ( p < 0.001) and a more rapid production of lactic acid ( P < 0.001) than in the control silage. At the end of the storage period (laboratory silos, 80 d; 2-t silos, 200-300 d), the inoculated silos had lower pH ( p ammonia-N (g kg N1) and acetic acid contents ( p < 0.01) and higher water soluble carbohydrate (WSC), lactic acid (P<00.1) and ethanol ( p < 0.05) contents than the control silage. The formic acid-treated silage had significantly lower contents of ammonia-N (g kg N-1, p < 0.05), acetic and tactic acids (p<0.01) and higher contents of WSC and ethanol ( p < 0.01) than the control silage. When fed to wether sheep, the digestibilities of DM, organic matter and gross energy were not altered by additive treatment. The digestibility of modified acid-detergent fibre was lower for both the inoculated ( P < 0.01) and formic acid-treated silages ( p < 0.05). However, N retention was improved ( p < 0.05) by both additive treatments. Silage intake was improved ( p < 0.01) by additive treatment from 53.4 (control) to 58.0 (inoculated) and 60.4 (formic acid) g DM (kg live weight0.75)-1d-1.  相似文献   

4.
Pure perennial ryegrass or perennial ryegrass/white clover mixtures (70:30 and 40:60 on a fresh-matter basis) were ensiled in laboratory silos either untreated or alter treatment with freshly cultured Lactobacillus (Lb.) plantarun or freshly cultured Lb. plantarum plus Lactococcus (Lc.) lactis. freeze-dried Lb. plantarum or freeze-dried Lb. Plantarum plus sodium formate, sodium formate or formic acid. The effect of these additives on silage fermentation characteristics and quality of the resultant silages was examined. There were significant interactions between treatments and herbages for all silage quality parameters measured, except for acetic acid concentration. The influence of additives on the final pH of all silages was small but statistically significant. Lactic acid concentration was not directly related to herbage mixture, overall mean values ranging from 118 to 120 ± 1.5 g kg?1 dry matter (DM), but wider variation was seen between treatments for individual herbage mixtures. Acetic acid concentrations were significantly (P<0·001) affected by herbage mixture ensiled, increasing linearly as clover content increased from zero to 60%. Untreated control and formic acid-treated silages contained significantly (p<0·001) higher acetic acid concentrations than those treated with other additives. Silage ammonia N concentrations were significantly (p<0 001) influenced by herbage mixture. Lowest ammonia N concentrations (< 50 g kg?1 DM) were observed in silages that had been treated with formic acid, freshly cultured Lb. plantarum or Lb. plantarum plus Lc. lactis. The fraction 1 leaf protein (FILP) contents of silages were significantly (P <0·001) affected by both treatment and herbage mixture, with consistently and significantly higher values found in freshly cultured inoculant-treated silages. A poor correlation (r2= 0·12) existed between ammonia N and FILP in all silages. The inclusion of up to 60% white clover in the ensiled herbage did not adversely affect final silage quality. However, additive treatment markedly influenced the residual FILP content of silages, those treated with freshly cultured inoculants having the highest values.  相似文献   

5.
Silage making practices in respect of 130 samples of autumn made grass silages ensiled in bunkers on commercial farms in South Wales during 1983-1985 were analysed to discern the effect of wilting and/or silage additives on fermentation. Silages were primarily made during late September and early October in fine weather from perennial ryegrass pasture which had not been grazed for 6 weeks. On average 13.9 ha of pasture was cut for silage. Analysis of 120 samples of grass showed it contained 176 g kg?1 dry matter (DM) with (g kg?1 DM) 215 protein, 240 modified acid detergent fibre (MADF), 78 water-soluble carbohydrate (WSC) and 95 ash. Most farmers attempted to pre-wilt grass for 1 day prior to ensilage and one quarter of them made unwilted silage. Silage making was usually completed within 6 days of starting to cut and was generally made with a precision-chop machine. Silage additives applied were (kg t?1) formic acid (4·7), formic acid 4-formalin (5·5), sulphuric acid-+ formalin (5·0) sugars (14) and inoculants (0·65). Formic acid significantly reduced pH, and formic acid with or without formalin significantly reduced ammonia nitrogen (N) content of silages compared with other treatments. Protein contents of acid/formalin treated silages were significantly higher and MADF of acid with or without formalin treated silages were significantly lower than other treatments. Pre-wilting grass prior to ensilage did not significantly increase subsequent silage DM content and significantly increased the pH of non-additive treated silages. Unwilted silages treated with formic acid with or without formalin had a significantly lower ammonia-N content and higher residual WSC than other treatments. It is suggested that only formic acid application either alone or in conjunction with formalin to unwilted silage was successful in producing well preserved silages and that a grass WSC content of 17 g kg?1 would be necessary to achieve this.  相似文献   

6.
Lucerne (DM 236 g kg-1, WSC 49 g (kg DM)-1) was ensiled in test-tube silos with or without either glucose or fructose and with or without one of two commercial inoculants. The WSC content of the forage as ensiled was too low to obtain a well preserved untreated silage. By day 4 the pH values of the silages with added sugar or inoculant were significantly lower (P< 0·001) than the control silage. A satisfactory fermentation was attained only in the silages to which sugar and an inoculant had been added. These silages had a lower pH, more protein-N (P< 0·001), less ammonia-N (P<0·001), a faster increase in counts of lactic acid bacteria, and decrease in counts of coliforms than the other silages. Homo-fermentative lactic acid bacteria dominated the fermentation in the inoculated silages while leuconostocs dominated the early stages of fermentation in the control silages. The results indicate that if there is insufficient sugar in the original crop, then the bacteria in an inoculant will not be able to produce enough lactic acid to lower the pH to an acceptable level. This has important implications for the ensilage of lucerne and other highly buffered low sugar crops.  相似文献   

7.
This study aimed to determine whether using inoculants and re-ensiling in sorghum silages affect the intake and feeding behaviour, apparent digestibility, digestible energy, and nitrogen balance of sheep in maintenance. Half the sorghum was inoculated on the day of harvest, and the other half received the same inoculation volume but with water. Sorghum was ensiled in 100 experimental metal drum silos of 200 L covered with plastic: 50 silos with inoculants and 50 without them. After 56 days, 25 drums with inoculants and 25 without were exposed to air for 48 h. The other silos remained closed. The treatments were arranged in a 2 × 2 factorial scheme with inoculation and re-ensiling. The sheep received the silages after 211 days of ensiling and 155 days of re-ensiling to determine the intake, apparent digestibility, and feeding behaviour of animals. The experimental design was a simultaneous double 4 × 4 Latin square. The re-ensiling process increased silage pH, N-NH3.TN−1, butyric acid, and propionic acid. The inoculant increased propionic acid in ensiled and re-ensiled silages. Lactic acid concentration presented a statistical interaction with the inoculated and ensiled silage, 58% higher than the other treatment averages. The ADFap digestibility showed a complex interaction, in which the control ensiled and the inoculated and re-ensiled silages were about 35% lower than the inoculated ensiled silage. The Nbal:Nint ratio (g.g−1) in the inoculated and re-ensiled silage had lower nitrogen retention than intake compared with the other treatments. These results indicate that exposing inoculated silages to air does not compromise their use in sheep feeding.  相似文献   

8.
Whole‐crop field bean (FB), field pea (FP) and common vetch (CV) [155, 213 and 238 g dry matter (DM) kg?1] were ensiled in 1·5 L laboratory silos with whole‐crop wheat as mixtures of 0, 0·25, 0·50, 0·75 and 1·00 of fresh weight (FW). Silages were ensiled (i) without additive, and (ii) with formic acid (FA) (4 L t?1) or (iii) an inoculant (Lactobacillus plantarum, 106 colony‐forming units g?1 FW) as additives. The concentrations of water‐soluble carbohydrates in herbage of whole‐crop FB, FP, CV and wheat were 93, 157, 67 and 114 g kg?1 DM and the buffering capacities were 588, 710, 755 and 429 mEq kg?1 DM respectively. Field bean and FP silages were mainly well preserved with low pH values and moderate fermentation losses, except for FB‐only silage without additive which had a high butyric acid concentration. Common vetch silages had higher pH values and were less well fermented compared to the silages of the other legumes. For all legumes, FA reduced ammonia‐N concentrations more effectively compared to other additive treatments. In conclusion, in FB and FP silages the use of FA or an inoculant, as additives, ensured good preservation up to a proportion of legume in the herbage of 0·75. With all legume silages, and with those containing CV, only FA, as an additive, adequately restricted protein breakdown.  相似文献   

9.
Five experiments were carried out in the years 1980-1983 and 1986 to study the effect of treating grass at ensiling with sulphuric acid (850 g kg?1) and formic acid (850 g kg?1) additives alone, and in mixtures with or without formalin on the preservation of grass, in vivo digestibility in sheep, in-silo loss, intake and performance of finishing cattle. Primary growth grass was ensiled in experiments 1 (3–4 June 1980), 2 (12-15 June 1981) and 3 (31 May-2 June 1982), primary regrowth grass in experiment 4 (1-2 August 1983) and secondary regrowth grass in experiment 5 (7-10 October 1986). During the ensiling period within each experiment, approximately 60 t of unwilted, double-chopped, additive-treated or untreated grass was packed into covered concrete-walled 60-t capacity silos. The dry matter (DM) contents of the ensiled grass in experiments 1, 2 and 5 ranged from 155-180 g kg?1 and were lower than those recorded in experiments 3 and 4 (214 g kg?1). With the exception of grass ensiled in experiment 2, where water-soluble carbohydrate (WSC) contents were low, at 104 g kg?1 DM, grass in all other experiments contained relatively high WSC contents ranging from 140-154 g kg?1 DM. In experiments 1, 3 and 4 all silages were well-preserved. However, in experiment 2 the 450 g kg?1 sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, buffering capacity (Bc) and ammonia nitrogen contents than the untreated silage. In experiment 5, the sulphuric acid-treated and formic acid-treated silages displayed significantly lower pH, Bc, ammonia nitrogen, butyrate and volatile fatty acid (VFA) contents than the untreated silage. Each of the silages was offered daily with various levels of a supplementary concentrate for approximately 70-d periods to twelve animals of mixed breed in experiments 1, 3, 4 and 5 and to fifteen animals in experiment 2. All animals weighed between 380-470 kg at the start of the experiments. In experiments 1, 2 and 3 there were no significant differences between silages for any of the intake or animal performance parameters. In experiment 4, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes and daily liveweight gains than those fed the sulphuric acid-treated and untreated silages; in experiment 5, cattle fed the formic acid-treated silage displayed significantly higher silage DM intakes than those fed the untreated silage. It was concluded that formic acid was a more effective silage additive than sulphuric acid. Increasing the level of supplementation significantly decreased silage DM intakes in cattle in experiments 3 and 4, and significantly increased daily liveweight gains and daily carcass in cattle in experiments 1, 3 and 4.  相似文献   

10.
A second cut of lucerne was wilted to 500 g DM kg−1 and either left untreated (control) or treated with formic acid (4.5 1 fresh forage t−1) or with a commercial inoculum of lactic acid bacteria (105 colony forming units (cfu) g forage−1). The forages were ensiled in 2-t capacity silos for 8 months, and later fed to six lambs (mean initial weight 27.7 ±1.60 kg) in a 3x3 duplicated Latin square with 27-d periods. Portions of the untreated and additive-treated forages were also ensiled in laboratory silos at 25 ° C for intervals up to 42 d. Results from the laboratory silos showed that the major increase in ammonia-N in silage occurred between 40 h and 7 d of fermentation; during this period, both formic acid and the inoculant produced a smaller increase in ammonia-N, than did the control. The pH of inoculated silage declined from 5.74 to 4.57 in 7 d, but it took 14 d for the pH of the control silage to fall below 5.0. Formic acid treatment immediately reduced the silage pH from 5.74 to 5.10 ( P < 0·01); the pH then remained unchanged until 21 d, after which it decreased slightly. When compared with control, lambs fed formic acid-treated silage consumed more ( P < 0·05) digestible organic matter; the response was associated with a trend towards decreased concentration of ammonia in plasma. Inoculation of lucerne silage did not ( P < 0·05) affect voluntary intake but increased ( P <0.05) apparent digestibility of fibre and tended to increase N retention.  相似文献   

11.
The aim was to compare the effects of additives on direct cut silages of pure timothy and timothy mixed with tetraploid red clover. First and second growth cuts were ensiled during three consecutive years, 1994, 1995 and 1996, either without any additive or with the addition of formic acid, or lactic acid bacteria in combination with molasses. Effects of the additives on the degradation characteristics of the herbage and the silages were analysed using an automatic in vitro gas production (GP) technique. At the end of the in vitro procedures, organic matter and neutral‐detergent fibre (NDF) degradabilities were determined. The tetraploid red clover persisted in the leys during the 3 years and was the dominant species at the second growth in the mixed leys. The herbage from the mixed crops had lower dry‐matter contents, higher crude protein concentrations and higher buffering capacity compared with the pure timothy at both cuts. In general, the additives reduced pH, and the concentrations of ammonium‐N and acetic acid in the silages. The treated silages had a more rapid faster GP in both crops. The silages from the mixed crop benefited more from the additives compared with the grass silages. The additives affected the soluble fractions as well as the NDF degradability of the silages of the mixed crop more than those fractions of the grass silages. The addition of molasses in combination with a commercial inocula resulted in increased production of lactic acid and ethanol in silages from both crops. The silages without additives could not meet the requirements for good silages according to the standards of the Swedish dairy industry.  相似文献   

12.
Silages were made from the first cut of a predominantly perennial ryegrass sward. The silages were either untreated (W) or treated with formic acid (31 t−1, F) or with 106 lactic acid bacteria (LAB) g−1 grass of each of three strains alone (A. Lactobacillus plantarum MTD1; B, Pediococcus species 6A2; C, L. plantarum 6A6) or in combination (AB. AC) to give seven treatments. The silage fermentation in 10-kg silos was followed chemically and microbiologically and the nutritive value of selected treatments evaluated using 2-t silos.
The control silage (W) fermented well. Addition of formic acid restricted fermentation and produced a silage with a high ethanol concentration. After day 4, all inoculated silages had lower pH values and higher lactic acid concentrations and a higher ratio of lactic acid to acetic acid than the control silage. Chemically there was little difference between the inoculated silages in terms of final composition. Microbiologically the LAB applied in treatments B and C dominated the LAB populations in those silages when applied alone; however, they were suppressed when applied in combination with inoculant A.
When fed to sheep, the intake of the formic acid-treated silage was significantly ( P < 0·01) lower than that of the other silages and the intake of silage treated with inoculant A significantly ( P < 0·001) higher than that of silages treated with inoculants B and C. The apparent organic matter ( P < 0·001) and nitrogen ( P < 0·01) digestibilities of the formic acid-treated silage were also significantly lower than those of the other silages.  相似文献   

13.
Two silages were made from perennial ryegrass ensiled without wilting in 2-t capacity silos with the application of either formic acid or an enzyme mixture of cellulases and hemicellulases. Effluent losses were monitored over the ensiling period. Subsequent silage analysis showed that the enzyme-treated silage had higher concentrations of residual water soluble carbohydrate, lactic acid and acetic acid, and lower concentrations of cellulose, ADF and NDF. Effluent production was higher with the enzyme silage (formic acid, 211 1 t?1; enzyme, 2671 t?1). The silages were either offered as the sole diet or supplemented with rapeseed meal at two levels (60 or 120 g fresh weight kg?1 silage DM offered) to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole tract digestibilities for DM, OM, N, ADF and NDF were similar for all diets although nitrogen retention (g d?1) was increased with supplementation of both silages (formic acid, 21·1; formic acid + 60 g, 23·5; formic acid+ 120 g, 28·5; enzyme, 22·6; enzyme + 60 g, 25·8; enzyme+ 120 g, 31·6). Rumen pH, ammonia and total volatile fatty acids patterns were similar. Supplementation increased the amount of organic matter apparently digested in the rumen (ADOMR) with formic acid-treated silage but not with enzyme-treated silage. Liveweight gains were similar for both unsupplemented silages (0·49 kg d?1). These increased to 0·55 and 0·65 kg d?1 for formic + 60 and formic + 120 respectively. Liveweight gains for the corresponding enzyme-treated supplemented diets were 0·81 and 0·91 kg d?1 respectively. Liveweight gains on supplemented enzyme-treated diets were significantly (P < 0·05) greater than those on formic acid-treated diets.  相似文献   

14.
Four grass silages were made from perennial ryegrass ensiled after a 1h wilt in 2-t silos without additive application, with application of formic acid or with one of two enzyme mixtures of hemicellulases and cellulases (enzyme 1 and enzyme 2). Effluent losses were monitored over the ensiling period (130 d).
Analyses of the silage showed that formic acid-treated silage had lower concentrations of lactic acid than the other silages. Both enzyme-treated silages had lower levels of cellulose, acid detergent fibre (ADF) and neutral-detergent fibre (NDF) than the untreated and formic acid treated silages. Effluent production was highest with enzyme-treated silages.
The silages were subsequently fed to growing steers equipped with rumen cannulae and T-piece duodenal cannulae. Apparent whole-tract digestibilities of organic matter constituents were significantly lower ( P < 0·05) with both enzyme-treated silages (untreated; 0·736, formic acid; 0·722, enzyme 1; 0·694, enzyme 2; 0·703). Both untreated and enzyme 2-treated silages sustained higher nitrogen digestibilities (g g−1 intake) (untreated; 0·675, formic acid; 0·636, enzyme 1; 0·630, enzyme 2; 0·662) and N retentions (g d−1) untreated; 16·0, formic acid; 14·0, enzyme 1; 11·6, enzyme 2; 16·6), but none of these differences was significant. When formic acid-treated silage was offered, there was a greater amount of organic matter apparently digested in the rumen (ADOMR). Non-ammonia nitrogen and microbial nitrogen flows at the duodenum were similar on all diets. The efficiency of microbial protein synthesis was highest with enzyme 2-treated silage and lowest with formic acid-treated silage (untreated, 35·4; formic acid, 25·2; enzyme 1, 30·4; enzyme 2, 39·4), but none of these differences were significant.  相似文献   

15.
Field-wilted lucerne was chopped with a forage harvester at 33 ± 1·5, 43 ± 2·0 and 54 ± 1·8% dry matter, treated and ensiled in laboratory silos during four cuttings in each of two years. Treatments were control (C), sugar addition at 2% of fresh weight (S), inoculum applied at 3 × 105 bacteria g−1 herbage (I), and sugar and inoculum combined (IS). Duplicate silos were opened and analysed after 1, 2, 3, (4 or 5), 7, 14 and 60 d of fermentation. The initial rate of proteolysis of lucerne protein decreased with increasing dry matter (DM) content of the lucerne, and was not influenced by the year, cutting or silage treatment. Inoculation increased ( P <0·05) the rate of pH decline for all silage dry matters, and shortened the lag time prior to pH decline with 33 and 43% dry matter silages. Sugar addition had no effect on rate of pH decline or lag time. Inoculation and sugar addition both lowered final pH, acetic acid, ammonia (NH3), free amino acids (FAA) and soluble non-protein N (NPN) in silages ( P <0·01) and increased lactic acid content with 33 and 43% dry matter silages. Only inoculation was beneficial at 54% DM with no difference between I and IS. The influence of forage characteristics (epiphytic lactic acid bacteria, buffer capacity and sugar:buffer capacity ratio) on treatment effectiveness varied with dry matter content.  相似文献   

16.
Two experiments were carried out to examine the nitrogenous changes occurring in herbage during harvesting and ensiling. In the first, ryegrass-clover was wilted rapidly in the laboratory (6 h) and in the field under good (48 h) and poor (48 h and 144 h) weather conditions. Protein breakdown and ammonia formation were negligible in herbage wilted rapidly and it was only when the crop was exposed to a prolonged wilt in humid conditions that appreciable proteolysis occurred. In the second experiment ryegrass-clover was ensiled in laboratory silos after treatment with varying levels of formic and sulphuric acids. An additional treatment included herbage inoculated with a mixture of lactic acid bacteria and glucose. The silos were opened after 4 and 50 d and samples were analysed for protein-N, ammonia-N, water-soluble carbohydrates and organic acids. There was a high negative correlation between level of addition of either acid and the degree of proteolysis and deamination. Even at the highest levels of formic acid (7·7 g per kg) and sulphuric acid (4·0 g per kg) additions, however, about 45% of the original herbage protein was degraded after 50 d in the silo. The inoculum treatment was also effective in reducing proteolysis, the effect after 50 d being comparable with formic acid applied at a rate of 4·1 g per kg.  相似文献   

17.
An experiment was carried out during 1984 to study the effect of treating grass at ensiling with three commercially available inoculant-type additives (H/M Inoculant, Grass Sile and Siron), formic acid (850 g kg−1; Add-F) or no additive on grass preservation, in-silo loss, intake and animal performance. Primary growth grass ensiled from 28–29 May into concrete-walled covered silos was of high dry matter (DM, 234 g kg−1), water-soluble carbohydrate content (WSC. 212 g kg DM−1) and digestibility (MADF, 250 g kg DM−1).
The untreated silage displayed good preservation and with the exception of the Sirontreated silage which showed significantly lower buffering capacity (Be) and volatile fatty acid (VFA) contents than the untreated silage, the application of inoculant-type additives did not improve silage preservation or decrease in-silo DM losses. The formic acid-treated silage displayed significantly lower Be, water-soluble carbohydrate, ash, ammonia nitrogen (g kg total N−1) and lactate contents than the untreated silage.
After a 133 d storage period, silages were offered to finishing beef cattle for an 84-d period. Cattle offered the silages displayed similar and non-significant daily DM intakes, daily liveweight gains, dressing proportions and daily carcass gains. From this experiment it appears unlikely that any of the additives evaluated will improve animal performance relative to a well-preserved untreated silage.  相似文献   

18.
An Italian ryegrass and hybrid ryegrass sward was harvested on 11 May 1994. The mean dry‐matter (DM) content of the herbage was 197 g kg–1 fresh matter (FM), and mean nitrogen and water‐soluble carbohydrate contents were 20 and 272 g kg–1 DM respectively. Approximately 72% of total nitrogen (TN) was in the form of protein‐nitrogen. The herbage was treated with either no additive, formic acid (3·3 l t–1) (Add‐F, BP) or inoculant (2·3 l t–1) (Live‐system, Genus) and ensiled in 100 t silos. Changes in effluent composition with time showed that silage fermentation and protein breakdown were delayed by treatment with formic acid. Formic acid and inoculant treatments also inhibited amino acid catabolism during ensilage. All silages were well fermented at opening with pH values < 4·0 and ammonia‐N concentrations of ≤ 50 g kg–1 TN after 120 d ensilage. Treatment had an effect on protein breakdown as measured by free amino acid concentration, with values of 21·5, 18·2 and 13·2 mol kg–1 N at opening (191 d) for untreated, formic acid‐treated and inoculated silages respectively. Amino acid catabolism occurred to the greatest extent in untreated silages with significant decreases in glutamic acid, lysine and arginine, and increases in gamma amino butyric acid and ornithine. The silages were offered ad libitum without concentrate supplementation to thirty‐six Charolais beef steers for a period of 69 d (mean live weight 401 kg). Silage dry‐matter intakes and liveweight gains were significantly (P < 0·05) higher on the treated silages. Silage dry‐matter intakes were 7·42, 8·41 and 8·23 kg d–1 (s.e.d. 0·27) with liveweight gains of 0·66, 0·94 and 0·89 kg d–1 (s.e.d. 0·058) for untreated, formic acid‐treated and inoculated silage‐fed cattle respectively. In conclusion, additives increased the intake of silage and liveweight gain by the beef steers, and it is suggested that this may be caused in part by the amino acid balance in these silages.  相似文献   

19.
Use of freshly cultured lactic acid bacteria as silage inoculants   总被引:10,自引:0,他引:10  
The use of freshly cultured lactic acid bacteria in comparison with conventional freeze-dried preparations as inoculants for grass silage was examined. Perennial ryegrass was ensiled in laboratory silos, either untreated or treated with formic acid, or a commercial freeze-dried strain of Lactobacillus plantarum , or a fresh culture of the same strain of L. plantarum , or fresh cultures of Pediococcus pentosaceous , or Lactococcus lactis alone or in combination with L. plantarum. All inoculants were applied at a rate of 106 colony-forming units g−1 fresh matter, with the mixtures containing a 1:l ratio of each species. Herbage treated with freshly cultured inoculants exhibited shorter lag times, in relation to the initiation of pH decline, than those associated with untreated or freeze-dried inoculant-treated herbages. Treatment of herbage with inoculants containing L. plantarum increased the initial speed of pH decline. In comparison with silages made with freeze-dried L. plantarum , in measurements made during the initial 14 d of ensilage, those inoculated with fresh cultures bad significantly (P<0·05) higher lactic acid concentrations and significantly (P·0.05) lower pH values. Both P. pentosaceous and L. lactis initiated a rapid fermentation, but compared to L. plantarum alone, or mixtures of L. plantarum with P. pentosaceous or L. lactis , these cultures demonstrated intermediate rates of lactic acid production and pH decline. All mature (105 d) silages were of good quality with pH values of four or less, low ammonia-N concentrations (<100gkg−1 total N) and no detectable levels of clostridia or butyric acid. Results suggested that the main advantage of freshly cultured inoculants over their freeze-dried counterparts may lie in their metabolic state when added to herbage.  相似文献   

20.
In experiment 1, a mixture of perennial ryegrass and white clover (176 g DM kg?1) was ensiled with no addition, or with the application of Lactobacillus plantarum, 3 × 106(g fresh weight of herbage)?1 or enterobacteria, 3 × 106 (g fresh weight of herbage)?1 or both of these inoculants. Silos were incubated at either 18°C or 26°C for 7 d and sealing of half of the silos was delayed for 48 h. In experiment 2, cocksfoot (247 g DM kg?1) was ensiled with no additive, with the application of L. plantarum, 4 × 106 (g fresh weight of herbage)?1 enterobacteria, 4 × 106 (g fresh weight of herbage)?1 or ammonium nitrate, 5 g (kg herbage)?1. Silos were incubated at 18°C and sealing was delayed for 48 h. In neither experiment were the untreated silages of satisfactory quality after 35 d ensilage, having pH's of 4·3 and 6·4. and ammonia-N concentrations of 139 and 209 g N (kg total N)?1 in experiments 1 and 2 respectively. The poorer fermentation in experiment 2 reflected the lower water-soluble carbohydrate (WSC) content of the ensiled herbage (136 and 53 g WSC (kg DM)?1 in experiments 1 and 2 respectively). Inoculation with L. plantarum significantly reduced silage pH and the concentrations of ammonia-N (experiment 1 only) and ethanol and increased lactic acid concentrations. Inoculation with enterobacteria had only minor effects in each experiment. In experiment 1, incubation at 26°C increased the rate of fermentation in the silos as pH was significantly lower after 7d incubation at 26°C than at 18°C, but this effect had largely disappeared after 35 d incubation. When sealing of the silos was delayed for 48 h, the resulting silages had significantly higher pH and ammonia-N contents than silages from silos that had been sealed immediately after filling. In experiment 2, addition of ammonium nitrate significantly reduced the concentrations of ethanol and acetic acid in silages opened after 7 d. After 35 d the concentrations of ethanol were significantly reduced and those of ammonia-N increased by the addition of ammonium nitrate. There were marked increases in silage pH between 7 and 35 d ensilage and in the concentrations of ammonia-N and acetic acid in the silages that had been inoculated with ammonium nitrate at ensilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号