首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以已知拟南芥和水稻生长素响应因子(ARF)蛋白质序列对毛竹基因组数据库进行比对分析显示,毛竹基因组编码39个ARF转录因子;通过生物信息学软件对毛竹ARF基因家族进行分析显示,毛竹ARF基因家族具有进化上的保守性;采用RT-PCR技术研究毛竹竹笋形成过程中ARF基因家族的动态变化,结果显示,在竹笋形成过程中ARF18和11-2基因分别在笋芽萌动和笋体形成过程中发挥调控作用,而ARF6-2基因参与竹笋发育的各个阶段.  相似文献   

2.
Lipoxygenase(LOXs) is a kind of dioxygenase without heme and iron, which plays an important role in the development and adaptation of many plants to the environment. However, the study of strawberry LOX gene family has not been reported. In this study, 14 LOX genes were identified from the diploid woodland strawberry genome. The phylogenetic tree divides the FvLOX gene into two subfamilies: 9-LOX and 13-LOX. Gene duplication event analysis showed that whole-genome duplication(WGD)/segmental dupl...  相似文献   

3.
高粱生长素反应因子(ARF)基因的全基因组分析与进化研究   总被引:3,自引:0,他引:3  
生长素在植物发育中的各个阶段都起着重要作用,而生长素反应因子(auxin response factors,ARF)特异性的调节生长素反应基因的表达,是植物细胞中重要的一类转录因子家族.在拟南芥、玉米、水稻等模式作物中先后克隆了一些ARF基因,但是高粱作为一种重要的经济作物,这方面的研究未见报道.随着高粱全基因组序列的公布,利用基因组序列分析ARF基因的数目、结构、进化具有重要的意义.利用公布的高粱全基因组数据,利用DNATOOLS、BLAST、MEGA4.0以及Genomepixelizer等生物信息学软件对高粱(Sorghum bicolor)生长素反应因子ARF基因的数量、物理位置、系统进化树、氨基酸序列及保守基序(motif)的保守性等进行分析. 结果表明, 在高粱全基因组中共有26个ARF基因,26个ARF基因根据其进化关系分为A、B、C 3类; 通过对全基因组内ARF基因进行物理位置和基因家族分析,发现高粱基因组中ARF基因存在明显的基因复制现象, 基因的复制对高粱基因组中ARF基因数量扩张起到了重要的作用.  相似文献   

4.
脂氧合酶(lipoxygenase,LOX)是一类重要的含非血红素铁的蛋白,在植物生长发育、响应生物和非生物胁迫时起重要作用.为进一步明确茄子中LOX基因及其进化关系,对茄子全基因组进行分析筛选,共鉴定出12个SmeLOX基因.它们分布在茄子1、3、8和9号染色体上.系统发育树分析表明,茄子LOX家族基因可分为9-LO...  相似文献   

5.
为探究萝卜铝激活苹果酸转运蛋白(ALMT)家族成员对生物和非生物胁迫的响应,本研究通过生物信息学方法对萝卜ALMT家族成员进行鉴定,并利用转录组数据对其进行表达分析.结果显示,萝卜基因组中包含17个ALMT基因,分布于8条染色体.该家族成员外显子数量为5~7个,预测N-端含有5~6个跨膜结构,在染色体上的分布不均匀.萝...  相似文献   

6.
Virus-induced gene silencing(VIGS) showed several advantages to identify gene functions such as short experimental cycle, more broad hosts, etc. In this study, the feasibility and efficiency of employing Barley stripe mosaic virus(BSMV)-based VIGS system to evaluate Fusarium head blight(FHB) resistance were explored in wheat. With variable conditions tested, it showed that the maximal silencing efficiency 78% on spike was obtained when the recombinant BSMV was inoculated on flag leaf at flagging stage. However, the plant may reduce its own immunity to FHB when inoculated with BSMV. To induce this impact, different Fusarium graminearum strains were tested and SF06-1 strain was selected for FHB resistance evaluation. Using this system, Ta AOC, Ta AOS, and Ta OPR3 involved in jasmonic acid(JA) signaling pathway were identified to positively regulate FHB resistance, which was underpinned by the results when silencing Ta AOS in wheat by stable transgenic plants.  相似文献   

7.
8.
Candidatus Liberibacter asiaticus (CaLas), an uncultured Gram-negative alphaproteobacterium, is the causal agent of Huanglongbing (HLB) in citrus. CaLas resides in phloem sieve tubes and has been shown to be unequally distributed in different tissues. Although HLB is a disease of citrus plants, it has been demonstrated that periwinkle can serve as an experimental host of CaLas, which can be transmitted from citrus to periwinkle via the parasitic plant dodder (Cuscuta spp.). To investigate the distribution of CaLas in various periwinkle tissues, the bacteria were transmitted from an infected periwinkle plant to healthy periwinkles by top-grafting. The movement of the inoculum and associated titer changes were observed over time in various tissues. CaLas could be detected in the leaves, main stems, and roots of infected periwinkle by conventional PCR, and in all three tissues a clear time-dependent change in CaLas titer was observed, with titer increasing soon after inoculation and then decreasing as disease symptoms became severe. The highest titer was found at 25, 35 and 35 days after inoculation in leaves, main stems and roots, respectively. The titer in leaves was much higher than in the main stems and roots at the same time point, and the spatial distribution of CaLas in the leaves, main stems and roots of infected periwinkle was uneven, similar to what has been shown in citrus. The results provide guidance for selecting the proper periwinkle tissues and sampling times for early detection of CaLas.  相似文献   

9.
10.
Wheat leaf rust,caused by Puccinia triticina(Pt),is an important foliar disease that has an important influence on wheat yield.The most economic,safe and effective way to control the disease is growing resistant cultivars.In the present study,a total of 46 wheat landraces and 34 wheat lines with known Lr(leaf rust resistance)genes were inoculated with 16Pt pathotypes for postulating seedling resistance gene(s)in the greenhouse.These cultivars and five wheat differential lines with adult plant resistance(APR)genes(Lr12,Lr22b,Lr34,Lr35 and Lr37)were also evaluated for identification of slow rusting resistance in the field trials in Baoding,Hebei Province of China in the 2014–2015 and 2015–2016 cropping seasons.Furthermore,10 functional molecular markers closely linked to 10 known Lr genes were used to detect all the wheat genotypes.Results showed that most of the landraces were susceptible to most of the Pt pathotypes at seedling stage.Nonetheless,Lr1 was detected only in Hongtangliangmai.The field experimental test of the two environments showed that 38 landraces showed slow rusting resistance.Seven cultivars possessed Lr34 but none of the landraces contained Lr37 and Lr46.Lr genes namely,Lr9,Lr19,Lr24,Lr28,Lr29,Lr47,Lr51 and Lr53 were effective at the whole plant stage.Lr18,Lr36 and Lr45 had lost resistance to part of pathotypes at the seedling stage but showed high resistance at the adult plant stage.Lr34 as a slowing rusting gene showed good resistance in the field.Four race-specific APR genes Lr12,Lr13,Lr35 and Lr37 conferred good resistance in the field experiments.Seven race-specific genes,Lr2b,Lr2c,Lr11,Lr16,Lr26,Lr33 and LrB had lost resistance.The 38 landraces showed slow rusting resistance to wheat leaf rust can be used as resistance resources for wheat resistance breeding in China.  相似文献   

11.
Laccase(EC 1.10.3.2)is known to oxidize various aromatic and nonaromatic compounds via a radical-catalyzed reaction,which generally includes two types of laccase,Lac1 and Lac2.Lac1 oxidizes toxic compounds in the diet,and Lac2 is known to play an important role in melanizing the insect exoskeleton.In this study,we cloned and sequenced the cDNA of the diamondback moth,Plutella xylostella Lac2(PxLac2),from the third instar larvae using polymerase chain reaction(PCR)and rapid amplification of cDNA ends techniques.The results showed that the full-length PxLac2 cDNA was 1 944 bp long and had an open reading frame of 1 794 bp.PxLac2 encoded a protein with 597 amino acids and had a molecular weight of 66.09 kDa.Moreover,we determined the expression levels of PxLac2 in different stages by quantitative PCR(qPCR).The results indicated that PxLac2 was expressed differently in different stages.We observed the highest expression level in pupae and the lowest expression level in fourth instar larvae.We also investigated the enzymatic properties of laccase,which had optimal activity at pH 3.0 and at 35°C.Under these optimal conditions,laccase had a Michaelis constant(K_m)of 0.97 mmol L~(-1),maximal reaction speed(V_m)of 56.82 U mL~(-1),and activation energy(E_a)of 17.36 kJ mol~(-1) to oxidize2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid ammonium salt).Type II copper enhanced laccase activity below 0.8mmol L~(-1) and reduced enzyme activity above 0.8 mmol L~(-1) with an IC_(50) concentration of 1.26 mmol L~(-1).This study provides insights into the biological function of laccase.  相似文献   

12.
Gibberellins(GAs) promote flowering in the forcing-cultured tree peony(Paeonia suffruticosa), however, the mechanism of regulating flowering is not fully understood. In this study, exogenous GA_3 was applied to five-year-old Luoyang Hong plants to explore responses in terms of endogenous hormones, flowering quality, and the hormone-and flowering-associated gene expression. Exogenous GA_3 application significantly promoted flower bud development and new branch growth, as well as improved flowering quality. Exogenous GA_3 application also stimulated the synthesis of endogenous GA_3 and indole-3-acetic acid(IAA) but reduced abscisic acid(ABA) levels. To further elucidate the regulatory mechanism, eight genes for GA biosynthesis and signaling, including Ps CPS, Ps KS, Ps GA_3 ox, Ps GA2 ox, Ps GID1 b, Ps GID1 c, Ps DELLA, and Ps GID2 were cloned for the first time, and sequence analysis was also performed. The results suggested that all the cloned genes have conserved structure as each homologous gene reported in the other species. Phylogenetic trees constructed by the each cloned gene showed that the phylogenetic evolutionary relationship of P. suffruticosa was closely related to Vitis vinifera. The expression patterns of the above genes, and genes for ABA and IAA biosynthetic and signaling, and the flowering time were also investigated. Most of the above genes showed higher expression in the control buds than those in the GA_3 treated buds at six developmental stages, whereas the expression levels of PsSOC1 and PsSPL9 were up-regulated by GA_3 treatment. The results also showed that the GA-biosynthetic and signaling pathways are conserved in tree peony, and the PsCPS, PsGA_3 ox, PsGA2 ox, PsGID1, PsDELLA, and PsGID2 genes are necessary for feedback regulation of GAs. Furthermore, hormone changes promoted PsSOC1 and PsSPL9 expression, and repressed PsSVP expression, which contributed to the improvement flowering quality in tree peony of forcing culture.  相似文献   

13.
Salt stress is one of the major factors affecting plant growth and yield in soybean under saline soil condition. Despite many studies on salinity tolerance of soybean during the past few decades, the detailed signaling pathways and the signaling molecules for salinity tolerance regulation have not been clarified. In this study, a proteomic technology based on two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) were used to identify proteins responsible for salinity tolerance in soybean plant. Real-time quantitative PCR (qRT-PCR) and Western blotting (WB) were used to verify the results of 2-DE/MS. Based on the results of 2-DE and MS, we selected glucosyltransferase (GsGT4), 4-coumarate, coenzyme A ligase (Gs4CL1), mitogen-activated protein kinase 4 (GsMAPK4), dehydration responsive element binding protein (GsDREB1), and soybean cold-regulated gene (GsSRC1) in the salinity tolerant soybean variety, and GsMAPK4 for subsequent research. We transformed soybean plants with mitogen-activated-protein kinase 4 (GsMAPK4) and screened the resulting transgenics soybean plants using PCR and WB, which confirmed the expression of GsMAPK4 in transgenic soybean. GsMAPK4-overexpressed transgenic plants showed significantly increased tolerance to salt stress, suggesting that GsMAPK4 played a pivotal role in salinity tolerance. Our research will provide new insights for better understanding the salinity tolerance regulation at molecular level.  相似文献   

14.
15.
An agglutination test based on colored silica nanoparticles (colored SiNps) was established to detect serotypes of Pseudomonas aeruginosa. Monodisperse colored SiNps were used as agglutination test carriers. The colored SiNps were prepared through reverse microemulsion with reactive dyes, sensitized with 11 kinds of mono-specific antibodies against P. aeruginosa, and denoted as IgG-colored SiNps. Eleven kinds of IgG-colored SiNps were individually mixed with P. aeruginosa on a glass slide. Different serotypes of P. aeruginosa could be identified by agglutination test with evident agglutination. The P. aeruginosa could be detected in a range from 3.6 × 105 to 3.6 × 1012 cfu mL?1. This new agglutination test was confirmed to be a specific, sensitive, fast, easy-to-perform, and cost-efficient tool for the routine diagnosis of P. aeruginosa.  相似文献   

16.
Rice leaffolder, Cnaphalocrocis medinalis(Guenée), has become a major pest throughout the rice cultivating areas of China and caused severe damage to rice production. Cnaphalocrocis medinalis granulovirus(CnmeGV), a naturally occurring baculovirus, is revealed as a potential microbial agent for the pest control. Field applications of CnmeGV were conducted against rice leaffolder larvae in rice paddies. CnmeGV infected the larvae not only in the current generation but also in the successive generation, resulting in a sustained infection in the larva population for at least 48 days. Under diferent concentrations of CnmeGV(7.5×10~(11) and 1.125×10~(12) occlusion body(OB) ha~(-1)) at 30 days after spraying, larval population reduced up to 76.32% and rice leaf rolled rate kept in 15.42%. Simultaneously, CnmeGV had no impact on arthropod predators of C. medinalis, with abundances ranging from 2.39 to 3.79 per ten hills. These results revealed that CnmeGV is suitable as a bio-pesticide for rice leaffolder management in rice paddies.  相似文献   

17.
Over the past few decades, the usage of oxytetracycline(OTC), a kind of antibiotic, has increased with the development of aquaculture and livestock breeding. However, about 30–90% of the applied antibiotics are excreted as the parent compounds into the environment, especially with the application of animal manure to agricultural fields. This large influx of antibiotics may lead to the destruction of the natural microbial ecological community and pose great threats to human beings through the food chain. Therefore, the fate and toxicity of OTC in the environment are issues of great concern. Degradation of OTC, including the non-biodegradation and biodegradation, and the biological toxicity of its degradation products or metabolites, are reviewed in this paper. The non-biodegradation pathways include hydroxylation, quinonization, demethylation, decarbonylation, dehydration and secondary alcohol oxidation. Light(particularly UV light), pH and oxidizing substances play important roles in non-biodegradation. Biodegradation products include 4-epi-OTC(EOTC), 2-acetyl-2-decarboxy-amido-OTC(ADOTC), α-apo-OTC and β-apo-OTC. EOTC is an epimer and identied except for the configuration of the C4 dimethylamino group of OTC. Temperature and pH are the main factors affecting biodegradation pathways of OTC. In addition, this review discusses concerns over the biological toxicity of OTC degradation products.  相似文献   

18.
Sitobion avenae(F.) and Rhopalosiphum padi(L.) are two important pests of wheat in China. They typically coexist in fields during the late period of wheat growth. Sulfoxaflor is a novel sulfoximine insecticide that demonstrates broad-spectrum efficacy, especially in targeting sap-feeding insects. This study was carried out to investigate the sublethal effects of sulfoxaflor on the development, longevity, and reproduction of two species of wheat aphids. Our results showed that sublethal concentrations of sulfoxaflor did not cause significant effects on the fecundity or the longevity of the parent generation(F_0 generation) of either S. avenae or R. padi. However, it caused transgenerational sublethal effects. For S. avenae, adult longevity of F_1 generation was significantly decreased. No significant differences were observed on the population parameters of S. avenae in the F_1 generation. For R. padi, the adult preoviposition period(APOP) and the total preoviposition period(TPOP) of F_1 generation were significantly reduced. The mean generation time(T) was significantly reduced in the R. padi F_1 generation. What's more, the intrinsic rate of increase(r_m) and the finite rate of increase(λ) were significantly increased in the R. padi F_1 generation. Taken together, these results suggest that exposure to the LC_(25) of sulfoxafl had no effects on the parent generation of S. avenae or R. padi, but it reduced adult longevity of S. avenae as a negative effect and increased the r_m and λ of R. padi in the first progeny generation, which may have an impact on the population dynamics of R. padi.  相似文献   

19.
YABBY基因家族作为植物特有的转录因子家族,在调控植物侧生器官发育中发挥重要作用。本研究利用玉米全基因组数据分析玉米YABBY基因家族,阐明该基因家族成员结构、系统进化发育关系以及基因家族成员在玉米不同组织及不同发育时期的表达谱。结果显示,玉米参考基因组中存在13个YABBY基因,命名为Zm YABBY1~Zm YABBY13,根据系统发育关系和序列相似性将该基因家族分为4亚类S1~S4。RNAseq数据显示玉米YABBY基因在籽粒、茎和茎端分生组织(Shoot apical meristem,SAM)、幼胚及叶片中有较高表达,预示玉米YABBY基因可能在上述器官发育中发挥调控作用。本研究结果为进一步解析该基因家族的功能奠定了研究基础。  相似文献   

20.
Toxic symptoms and tolerance mechanisms of heavy metal in maize are well documented. However, limited information is available regarding the changes in the proteome of maize seedling roots in response to cadmium(Cd) stress. Here, we employed an i TRAQ-based quantitative proteomic approach to characterize the dynamic alterations in the root proteome during early developmental in maize seedling. We conducted our proteomic experiments in three-day seedling subjected to Cd stress, using roots in four time points. We identified a total of 733, 307, 499, and 576 differentially abundant proteins after 12, 24, 48, or 72 h of treatment, respectively. These proteins displayed different functions, such as ribosomal synthesis, reactive oxygen species homeostasis, cell wall organization, cellular metabolism, and carbohydrate and energy metabolism. Of the 166 and 177 proteins with higher and lower abundance identified in at least two time points, 14 were common for three time points. We selected nine proteins to verify their expression using quantitative real-time PCR. Proteins involved in the ribosome pathway were especially responsive to Cd stress. Functional characterization of the proteins and the pathways identified in this study could help our understanding of the complicated molecular mechanism involved in Cd stress responses and create a list of candidate gene responsible for Cd tolerance in maize seeding roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号