首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study quantified Fibroblast growth factor 2 (FGF-2) mRNA and localized FGF-2 protein in different categories of follicles isolated from goat ovaries. In addition, we verified the effects of this factor on the in vitro culture of preantral follicles isolated from goats. For mRNA quantification, we performed real-time PCR using primordial, primary and secondary follicles, as well as cumulus-oocyte complexes (COCs) and mural granulosa and theca cells of small and large antral follicles. For FGF-2 protein localization, the ovaries were subjected to conventional immunohistochemical procedures. Preantral follicles were isolated and cultured in vitro for 12 days in either control (basic) or supplemented with FGF-2 medium. The expression of FGF-2 mRNA was detected in all categories of follicles and there was no difference in preantral follicles and COCs or granulosa/theca cells from small and large antral follicles. However, in large antral follicles, COCs showed expression levels significantly lower than in granulosa/theca cells (p < 0.05). We observed moderate expression of FGF-2 protein in preantral follicles but not in granulosa cells of primordial follicles and theca cells of secondary follicles. In both small and large antral follicles, strong, moderate and weak staining was observed in oocytes, granulosa and theca cells, respectively. The addition of FGF-2 caused a significant increase in the daily follicular growth rate compared to the control group. We conclude that FGF-2 mRNA is expressed throughout follicular development and that its protein can be found in different patterns in preantral and antral follicles. Furthermore, FGF-2 increases the follicular growth rate in vitro.  相似文献   

2.
This study aims to investigate the effects of follicle stimulating hormone (FSH) and fibroblast growth factor-2 (FGF-2) on the survival and growth of caprine preantral follicles. Ovarian tissues were cultured for 1, 7, 14, 21 or 28 days in medium supplemented with FSH (FSH-2d or FSH-7d, i.e., with replacement of the culture medium every 2 or 7 days, respectively) or FSH + FGF-2 (replacement of the medium every 2 days). Non-cultured (control) and cultured ovarian fragments were processed for histological and ultrastructural analysis. After 28 days of culture, the media supplemented with FSH-2d was the most effective in maintaining the percentage of normal follicles and in promoting follicular growth. Furthermore, both treatments with FSH increased the percentage of the primary follicles. However, ultrastructural studies did not confirm follicular integrity from 14 days of culture onward. In conclusion, culturing tissue for up to 7 days in medium containing FSH alone or combined with FGF-2 maintains caprine preantral follicle integrity and promotes their growth in vitro.  相似文献   

3.
The objective was to compare populations of antral and pre‐antral ovarian follicles in Bos indicus and Bos indicustaurus cows with high and low antral follicle counts. Nelore (Bos indicus, n = 20) and Nelore X Angus (1/2 Bos indicus‐taurus, n = 20) cows were subjected to follicular aspiration without regard to the stage of their oestrous cycle (day of aspiration = D0) to remove all follicles ≥3 mm and induce growth of a new follicular wave. Ovaries were examined by ultrasonography on D4, D19, D34, D49 and D64, and antral follicles ≥3 mm were counted. Thereafter, cows were assigned to one of two groups: high or low antral follicular count (AFC, ≥30 and ≤15 antral follicles, respectively). After D64, ovaries were collected after slaughter and processed for histological evaluation. There was high repeatability in the numbers of antral follicles for all groups (range 0.77–0.96). The mean (±SD) numbers of antral follicles were 35 ± 9 (Bos indicus) and 38 ± 6 (Bos indicustaurus) for the high AFC group and 10 ± 3 (Bos indicus) and 12 ± 2 (Bos indicus‐taurus) follicles for the low AFC. The mean number of preantral follicles in the ovaries of Bos indicustaurus cows with high AFC (116 226 ± 83 156 follicles) was greater (p < 0.05) than that of Bos indicus cows (63 032 ± 58 705 follicles) with high AFC. However, there was no significant correlation between numbers of antral and preantral follicles.  相似文献   

4.
The aims of this study were to characterize EGF protein expression in ovine ovaries and to verify the effect of EGF on the in vitro development of isolated pre‐antral follicles. After collection, ovarian tissue was fixed for immunohistochemical analysis. Additional pairs of ovaries were collected, and secondary follicles were cultured for 18 days in α‐MEM+ (control) alone or supplemented with EGF (1, 10 or 50 ng/ml). The immunostaining for EGF was observed in oocytes from pre‐antral and antral follicles, in granulosa cells of primary and secondary follicles, as well as in cumulus and mural cells of antral follicles. After 18 days, the results showed that treatment with 50 ng/ml EGF significantly increased the percentage of morphologically normal follicles compared with the control group (α‐MEM+) and significantly reduced the precocious extrusion of oocytes and increased the percentage of antral follicles compared with the control and 1 ng/ml EGF. All the treatments induced a progressive and significant increase of the follicular diameter throughout the period of culture. However, there were no significant differences in follicular diameter or in the daily growth rate among treatments. In conclusion, this study demonstrated the presence of EGF in ovine ovaries. Moreover, 50 ng/ml EGF increased the percentage of normal follicles and improved antrum formation in isolated ovine follicles after 18 days of in vitro culture.  相似文献   

5.
The growth hormone (GH) and growth insulin‐like factor‐1 (IGF‐1) act directly upon the regulation and growth in the different phases of preantral follicles. Thus, it is necessary to define their sequentiality until the in vitro preovulatory development. Therefore, the study aimed to assess the effects of a sequential medium containing GH and/or IGF‐1 in the long‐duration in vitro culture of preantral ovarian follicles. Ovarian fragments were cultivated: first half (days 1–7), second half (days 7–14) or during 14 culture days. Treatments were identified as: αMEM+; GH → IGF‐1; IGF‐1 → GH and GH + IGF‐1. The culture was designed in 24‐well plates, in an incubator at 37°C and 5% CO2. The parameters of normality, viability, follicles (primordial/in developing) and follicle diameter were evaluated. In addition, the ultrastructure was confirmed with electron transmission microscopy. The results showed that the culture treated with GH → IGF‐1 kept the follicular normality and the viability until the 14th day of culture and increased both in the follicular development until 7th day and in the follicular diameter until 14th day, when compared to the control. The treatments IGF‐1 → GH and GH + IGF‐1 were not effective in the developing and follicular diameter after 7 days of culture, and also reduced the percentage of viability. It is concluded that the bovine preantral follicles cultured in the sequential medium treated with GH → IGF‐1 improved the follicular development until the first half of the culture and kept these parameters with normality, viability and ultrastructure until the second half of the in vitro culture.  相似文献   

6.
Luteinizing hormone receptor (LHR) is a specific membrane receptor on the granulosa and theca cells that bind to luteinizing hormone (LH), resulting in androgen and progesterone production. Hence, the regulation of LHR expression is necessary for follicle maturation, ovulation and corpus luteum formation. We examined the immunolocalization of LHR in cyclic gilt ovaries. The ovaries were obtained from 21 gilts aged 326.0 ± 38.7 days and weighing 154.6 ± 15.7 kg. The ovarian tissues were incubated with rabbit anti‐LHR polyclonal antibody. The follicles were categorized as primordial, primary, preantral and antral follicles. Ovarian phase was categorized as either follicular or luteal phases. The immunolocalization of LHR was clearly expressed in primary, preantral and antral follicles. LHR immunostaining was detected in the cytoplasm of granulosa, theca interna and luteal cells. LHR immunostaining was evaluated using imaging software. LHR immunostaining in the theca interna cells in antral follicles was almost twice as intense as that in preantral follicles (65.4% versus 38.3%, < 0.01). LHR immunostaining was higher in the follicular phase than in the luteal phase (58.6% versus 45.2%, < 0.05). In conclusion, the expression of LHR in the theca interna cells of antral follicles in the follicular phase was higher than in the luteal phase. The expression of LHR in all types of the follicles indicates that LHR may impact follicular development from the primary follicle stage onwards.  相似文献   

7.
In this study, the expressions of VEGF in dog follicles were detected by immunohistochemistry and the effects of VEGF treatment on the primordial to primary follicle transition and on subsequent follicle progression were examined using a dog ovary organ culture system. The frozen‐thawed canine ovarian follicles within slices of ovarian cortical tissue were cultured for 7 and 14 days in presence or absence of VEGF. After culture, the ovaries were fixed, sectioned, stained and counted for morphologic analysis. The results showed that VEGF was expressed in the theca cells of antral follicles and in the granulosa cells nearest the oocyte in preantral follicle but not in granulosa cells of primordial and primary follicles; however, the VEGF protein was expressed in CL. After in vitro culture, VEGF caused a decrease in the number of primordial follicles and concomitant increase in the number of primary follicles that showed growth initiation and reached the secondary and preantral stages of development after 7 and 14 days. Follicular viability was also improved in the presence of VEGF after 7 and 14 days in culture. In conclusion, treatment with VEGF was found to promote the activation of primordial follicle development that could provide an alternative approach to stimulate early follicle development in dogs.  相似文献   

8.
卵巢大小及发育状况与牛腔前卵泡采集数量的关系   总被引:3,自引:1,他引:2  
用简单机械分离法处理了 12 7枚成年牛卵巢。结果显示 ,在外观正常的卵巢中 ,腔前卵泡的采集数量与卵巢的大小成正相关关系 ,而有无黄体与腔前卵泡的采集数量无明显关系 ;卵巢上不同大小的可见卵泡的数量和分布与腔前卵泡的采集量有关。卵巢上可见卵泡分布均衡 ,大、中、小卵泡均有分布 ,小卵泡不过多以及无大卵泡 ,但中、小卵泡较多的 ,无论是否有黄体存在 ,均可获得较多腔前卵泡。而卵巢表面脂肪化、卵巢充血、有弥散性片状黄体及幼稚卵巢的 ,则腔前卵泡分离很少或几乎分离不到  相似文献   

9.
To establish a tool for the study of follicular growth and development, we xenotransplanted small pieces (approximately 1 mm3) of porcine ovarian cortical tissues containing only primordial follicles and small preantral follicles under the capsules of kidneys of severe combined immunodeficient (SCID) mice (8-10 weeks old). The changes in cell proliferation and cell death/apoptosis, and vascularization in xenotransplanted follicles during follicular growth and development were analyzed histochemically at 1-26 weeks after operation. Follicles in grafted ovarian tissues grew rapidly forming an antral cavity (a hallmark of tertiary follicles) at 1 week after grafting. The diameter of the follicles in transplanted tissues ranged from 0.5 to 1.5 mm, from 0.5 to 2.0 mm and from 0.5 to 3.0 mm at 1, 2 and 26 weeks after the operation, respectively. Histological observation of ovarian tissues at 26 weeks after grafting revealed that all grafts had abundant capillary vessels, which invaded from murine organs and surrounded the growing follicles. Grafted small preantral follicles developed to the antral stages at 1 week after grafting and growing antral follicles survived at 26 weeks after grafting. The oocytes in the growing follicles were easily recovered for evaluating the quality. Our simple xenografting system is easy to use and a good experimental tool for the study of folliclular growth and development in porcine ovaries.  相似文献   

10.
The present study investigated the effects of time of addition of luteinizing hormone (LH) to culture medium on the in vitro development of caprine pre-antral follicles. Pre-antral follicles (≥ 150 μm) were isolated from fragments of the goat ovarian cortex and individually cultured for 18 days in the absence (control) or presence of 100 ng/ml LH, added on days 0, 6 or 12 of culture. Follicular development was assessed based on antral cavity formation, increased follicular diameter as well as follicular and fully grown oocyte (>110 μm) viability. The results showed that after 18 days of culture, the percentage of surviving follicles in the control treatment was significantly lower when compared to other treatments (p < 0.05). There were no significant differences in antrum formation, follicular diameter and oocyte viability. The addition of LH at D6 of culture significantly increased the rates of oocytes ≥ 110 μm and the resumption of meiosis (p < 0.05). In contrast, when LH was added at the onset of culture, only germinal vesicle oocytes were obtained. In conclusion, the moment of addition of LH to the culture medium affects the performance of in vitro culture of caprine pre-antral follicles. The addition of LH to the medium from day 6 of culture onward improved the rates of follicular survival, as well as the ability of oocytes to resume meiosis. However, prolonged exposure to LH (addition at the onset of culture onward) showed detrimental effects for the meiotic resumption.  相似文献   

11.
The aim of the present study was to evaluate the effects of different medium replacement intervals on the viability, antral cavity formation, growth and in vitro maturation (IVM) of oocytes from caprine and ovine pre‐antral follicles. Pre‐antral ovarian follicles (≥150 μm) were isolated from the ovarian cortex of goats and sheep and were individually cultured for 24 days using two different medium replacement intervals [2 days (T1) or 6 days (T2)]. Follicle development was evaluated on the basis of antral cavity formation, increases in follicular diameter and the presence of healthy cumulus oocyte complexes and fully grown oocytes. For caprine species, results showed a higher percentage (p < 0.05) of viable follicles in T1 than T2 from day 6 until the end of the culture. In addition, when comparing both treatments after the same culture duration, the rate of antrum formation was significantly higher in T1 than in T2 from day 12 onwards. Yet, in ovines, when both treatments were compared on day 24 of the culture, there were more viable follicles in T2 than in T1 (p < 0.05). In the caprine species, percentages of fully grown oocytes (≥110 μm) acceptable for IVM after 24 days of culture were significantly higher in normal follicles cultured in T1 (30.0%) than in T2 (6.7%; p < 0.05). On the other hand, in ovines, at the end of the culture, the percentage of oocytes destined for IVM was higher in T2 than in T1 (23.5% vs 2.9%; p < 0.05). In conclusion, under the same conditions, the frequency of medium replacement significantly affected the in vitro development of caprine and ovine pre‐antral follicles. To improve the efficiency of the culture system, the medium must be replaced every 2 and 6 days for goat and sheep pre‐antral follicles, respectively.  相似文献   

12.
猪腔前卵泡体外培养研究进展   总被引:1,自引:1,他引:0  
哺乳动物卵巢中有数量丰富的腔前卵泡,腔前卵泡体外发育的研究,对于揭示卵子发生和卵泡发育的内在规律有重要意义,并可以最大限度利用卵巢资源促进动物繁殖,保护濒临灭绝物种及人类生殖健康。猪腔前卵泡自开始研究以来,已取得了很大的进展。作者简要阐述了猪腔前卵泡培养方法、培养条件的研究进展及其体外培养技术存在的问题和发展前景。  相似文献   

13.
This study evaluates the effects of ascorbic acid and its interaction with follicle-stimulating hormone (FSH) on the morphology, activation, and in vitro growth of caprine preantral follicles. Ovarian fragments were cultured for 1, 7, or 14 d in minimum essential medium (MEM) containing ascorbic acid (50 or 100 μg/mL), FSH (50 ng/mL), or both of these substances. Ovarian tissue that was either fresh (control) or cultured for 1, 7, or 14 d was processed for histological and ultrastructural evaluation. The results showed that after 14 d of culture, medium supplemented with 50 μg/mL of ascorbic acid alone or combined with FSH showed higher rates of follicular survival compared with MEM. After 7 d of culture, FSH, ascorbic acid at 50 μg/mL with or without FSH, and ascorbic acid at 100 μg/mL increased the percentage of follicular activation compared to fresh control. In addition, FSH alone significantly increased the percentage of growing follicles after 14 d. The combination of 50 μg/mL of ascorbic acid and FSH promoted a significant increase in oocyte and follicular diameter after 7 d of culture. Ultrastructural and fluorescent analysis confirmed the integrity of follicles cultured with 50 μg/mL of ascorbic acid and FSH after 14 d. In conclusion, the combination of 50 μg/mL of ascorbic acid and FSH maintained follicular integrity and promoted follicular activation and growth after long-term in vitro culture of caprine preantral follicles.  相似文献   

14.
To improve the reproductive performance of water buffalo to level can satisfy our needs, the mechanisms controlling ovarian follicular growth and development should be thoroughly investigated. Therefore, in this study, the expressions of growth differentiation factor‐9 (GDF‐9) in buffalo ovaries were examined by immunohistochemistry, and the effects of GDF‐9 treatment on follicle progression were investigated using a buffalo ovary organ culture system. Frozen–thawed buffalo ovarian follicles within slices of ovarian cortical tissue were cultured for 14 days in the presence or absence of GDF‐9. After culture, ovarian slices were fixed, sectioned and stained. The follicles were morphologically analysed and counted. Expression pattern of GDF‐9 was detected in oocytes from primordial follicles onwards, besides, also presented in granulosa cells. Moreover, GDF‐9 was detected in mural granulosa cells and theca cells of pre‐antral follicles. In antral follicles, cumulus cells and theca cells displayed positive expression of GDF‐9. In corpora lutea, GDF‐9 was expressed in both granulosa and theca lutein cells. After in vitro culture, there was no difference in the number of primordial follicles between cultured plus GDF‐9 and cultured control that indicated the GDF‐9 treatment has no effect on the primordial to primary follicle transition. GDF‐9 treatment caused a significant decrease in the number of primary and secondary follicles compared with controls accompanied with a significant increase in pre‐antral and antral follicles. These results suggest that a larger number of primary and secondary follicles were stimulated to progress to later developmental stages when treated with GDF‐9. Vitrification/warming of buffalo ovarian tissue had a little remarkable effect, in contrast to culturing for 14 days, on the expression of GDF‐9. In conclusion, treatment with GDF‐9 was found to promote progression of primary follicle that could provide an alternative approach to stimulate early follicle development and to improve therapies for the most common infertility problem in buffaloes (ovarian inactivity).  相似文献   

15.
The aim of this study was to establish a culture system to improve the meiotic competence of porcine oocyte-granulosa cell complexes (OGCs) obtained from preantral or early antral follicles. Porcine OGCs were recovered from follicles with diameters of 230-300 (preantral follicles), 300-500, and 500-700 mum (early antral follicles) using scalpels. The OGCs were cultured for 2 weeks in culture medium. We examined the effects of the sizes of the follicles from which OGCs were recovered, the concentrations of polyvinylpyrrolidone (PVP, 0-8%) in the culture medium, and 2 types of culture dish (Falcon 3002 vs 1007) on formation of the antrum of OGCs. After culture, the oocytes were matured for 44 h to assess their meiotic competence. OGCs recovered from small follicles (230-500 microm) required longer (P<0.05) than larger follicles to form the antrum structure. The percentage of OGCs forming the antrum structure that were cultured in 2% PVP (31%) was higher (P<0.05) than for those cultured in other PVP concentrations (0-11%). The percentages of antrum-structure formation for OGCs cultured on Falcon 3002 (83% for 2% PVP and 60% for 4% PVP) were higher (P<0.05) than those cultured on Falcon 1007 (47% for 2% PVP and 9% for 4% PVP). Furthermore, all of the intact oocytes that were obtained from culture of OGCs and that formed an antrum were in the GV stage (n=28). When these immature oocytes were cultured for 44 h, the percentage of oocytes that reached the metaphase II stage (25%, n=68) was higher (P<0.0001) than that of oocytes matured without culture (0.7%, n=137). The results of the present study show that porcine OGCs obtained from preantral or early antral follicles acquire meiotic competence in vitro.  相似文献   

16.
Expression of Kit ligand (KL) and insulin‐like growth factor binding protein (IGFBP3) genes was studied at different in vivo and corresponding in vitro stages of development of the ovarian follicles in sheep. The expression of both KL and IGFBP3 was significantly higher in the primordial follicles relative to any other stage of development. Compared to the other stages, the KL expression in the cumulus cells from in vivo grown large antral follicles and that of IGFBP3 in COCs’ isolated from large antral follicles matured in vitro for 24 hr were significantly higher. In the oocytes from in vivo grown ovarian follicles, the expression of KL was the same at all the stages of development. Insulin‐like growth factor binding protein 3 expression was also the same in the oocytes at all the stages of the development except for a significantly lower expression in those from antral follicles. The expression of KL in the cumulus cells decreased significantly in the in vitro grown early antral follicles but did not change further as the development progressed. The expression of IGFBP3 in the cumulus cells from in vitro grown ovarian follicles appeared to increase as the development progressed although the increase was not significant between any two consecutive stages of development. In the oocytes in in vitro grown ovarian follicles, the expression levels of KL and IGFBP3 genes did not change with development. It is concluded that (i) KL and IGFBP3 genes follow specific patterns of expression during ovarian folliculogenesis and (ii) in vitro culture of preantral follicles compromises the development potential through alterations in the stage‐specific patterns of expression of these and other developmentally important genes.  相似文献   

17.
The aims of this study were to investigate the expression levels of mRNA for platelet-derived growth factor (PDGF) receptors (PDGFR-α and -β) in caprine follicles at different developmental stages and to evaluate the influence of PDGF on the in vitro development of pre-antral follicles. For this, goat primordial, primary and secondary follicles, as well as small (1-3 mm) and large (3-6 mm) antral follicles, were obtained, and PDGFR-α and -β mRNA levels were quantified by real-time PCR. Furthermore, pre-antral follicles (≥ 200 μm) were isolated from goat ovaries and cultured for 18 days in α- minimum essential medium supplemented with PDGF at 50 or 100 ng/ml, containing or not FSH. Real-time PCR showed highest PDGFR-α mRNA levels in secondary follicles, while PDGFR-β mRNA levels were highest in primary follicles onwards. Both receptors showed higher mRNA levels in granulosa/theca cells from small and large antral follicles than in their corresponding cumulus-oocyte complexes. In culture, the percentage of antrum formation was significantly higher in 100 ng/ml PDGF compared with the same PDGF concentration associated with FSH. After 18 days, PDGF in both concentrations associated with FSH promoted follicular growth significantly higher than the control. Moreover, the addition of FSH to 50 ng/ml PDGF positively influenced the follicular growth when compared with the same PDGF concentration in the absence of FSH. In conclusion, PDGF is important for early goat folliculogenesis, because the presence of PDGFR-α and -β mRNA was detected in all follicular categories, and PDGF associated with FSH stimulated the growth of goat pre-antral follicles isolated and cultured in vitro.  相似文献   

18.
In a previous survey concerning cows of reproductive age, we demonstrated that oocytes isolated from ovaries with <10 medium antral follicles of 2 to 6 mm in diameter (low ovaries; Lo) show less developmental competence than oocytes collected from ovaries with >10 medium antral follicles (high ovaries; Hi). The aim of the present study was to evaluate whether a defective endothelial nitric oxide synthase/nitric oxide (eNOS/NO) system and vasculature in healthy medium antral follicles is likely to reduce oocyte competence from Lo ovaries. Thus, experiments were conducted to 1) immunolocalize eNOS protein during folliculogenesis; 2) quantify eNOS protein/vasculature in the follicle wall; and 3) verify if NO donor, S-nitroso acetyl penicillamine (SNAP) administration during in vitro maturation affects developmental competence of oocytes isolated from Lo ovaries. Endothelial nitric oxide synthase protein was detected in granulosa and theca cells, as well as in blood vessels from primordial to antral follicles. Quantitative analysis indicated that in medium antral follicles from Lo ovaries, eNOS protein expression and vasculature were reduced (P < 0.05). The addition of SNAP improved blastocyst and hatching rates of oocytes from Lo ovaries, promoting a percentage similar to oocytes from Hi ovaries, and reduced the percentage of apoptotic nuclei in in vitro-produced blastocysts (P < 0.05). Results from our study suggest that in bovine ovaries with small mid antral follicle number, a defective eNOS/NO system is related to a reduced follicle vasculature and may affect oocyte quality, thus inducing a premature decline of fertility.  相似文献   

19.
The objective of this study was to determine whether preantral follicles cultured in vitro for 7 days within ovine ovarian cortical strips could be isolated at the secondary follicles (SF) and grown until antral stage during an additional 6 days period of in vitro culture in the presence of aqueous extract of Justicia insularis. Fresh ovarian fragments from 16 adult sheep were fixed for histological analysis (Control 1) or in vitro cultured individually in α‐MEM+ supplemented with 0.3 mg/ml J. insularis (Step 1) for 7 days. Part of the fragments then were fixed for histological analysis (in vitro culture group). Remaining fragments were exposed stepwise to increasing trehalose concentrations before immediate isolation of SF and viability assessment (Control 2) or after 6 days of culture in α‐MEM++ supplemented with 0.3 mg/ml J. insularis (Step 2). In Step 1, percentage of follicular activation was 80%. In Step 2, a significant increase (p < 0.05) in follicular diameter and antrum formation within 6 days in vitro culture of isolated follicles was achieved. The total antioxidant capacity from both steps significantly increase (p < 0.05) from day 2 to day 6. Confocal analysis of oocytes showed 57.14% oocytes with homogeneous distribution and 42.86% with peri‐cortical distribution. In conclusion, SF can be successfully isolated from sheep ovarian cortex after 7 days of culture and are capable of surviving and forming an antral cavity if cultured in vitro for an additional 6 days in the presence of 0.3 mg/ml J. insularis.  相似文献   

20.
This study aimed to investigate leptin immuno‐staining of the porcine ovary in different reproductive stages. Ovaries from 21 gilts were collected from slaughterhouses. The ovarian tissue sections were incubated with a polyclonal anti‐leptin as a primary antibody. The immuno‐staining in ovarian tissue compartments was calculated using imaging software. Leptin immuno‐staining was found in primordial, primary, preantral and antral follicles. Leptin immuno‐staining was expressed in the oocyte and granulosa and theca interna layers in both preantral and antral follicles. In the corpora lutea, leptin immuno‐staining was found in the cytoplasm of the luteal cells. The leptin immuno‐staining in the granulosa cell layer of preantral follicles did not differ compared to antral follicles (90.7 and 91.3%, respectively, > 0.05). However, the leptin immuno‐staining in the theca interna layer of preantral follicles was lower than antral follicles (49.4 and 74.3%, respectively, < 0.001). There was no difference in leptin immuno‐staining in the granulosa cell layer between follicular and luteal phases (92.4 and 89.7%, respectively, > 0.05). However, the leptin immuno‐staining in the theca interna layer of follicular phase was greater than that in the luteal phase (72.7 and 51.0%, respectively, < 0.001). These findings indicated that leptin exists in different compartments of the porcine ovary, including the oocyte, granulosa cells, theca interna cells, corpus luteum, blood vessel and smooth muscles. Therefore, this morphological study confirmed a close relationship between leptin and ovarian function in the pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号