首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to identify factors that regulate ruminal epithelial insulin‐like growth factor‐binding protein (IGFBP) expression and determine its role in rumen epithelial cell proliferation. Primary bovine rumen epithelial cells (BREC) were incubated with short‐chain fatty acids (SCFAs) at pH 7.4 or 5.6, lactate, lipopolysaccharide (LPS), insulin‐like growth factor‐I (IGF‐I), ‐II (IGF‐II), or recombinant bovine IGFBP2 (rbIGFBP2). The mRNA expression levels of IGFBP in BREC were analyzed using quantitative real‐time polymerase chain reaction (qRT‐PCR). The proliferation rate of BREC was analyzed using a WST‐1 assay. IGFBP2 gene expression tended to be lower with SCFA treatment (p < .1), and IGFBP6 gene expression was significantly lower with SCFA treatment (p < .05). IGFBP3 and IGFBP6 gene expression tended to be higher with d ‐Lactate treatment (p < .1). IGFBP3 gene expression was significantly higher (p < .05) with LPS treatment. BREC treated with IGF‐I grew more rapidly than vehicle control‐treated cells (p < .01); however, recombinant bovine rbIGFBP2 inhibited IGF‐I‐induced proliferation. IGF‐II and/or rbIGFBP2 did not affect BREC proliferation. Taken together, SCFA treatment decreased IGFBP2 and IGFBP6 expression in rumen epithelial cells, and lower expression of these IGFBP might promote rumen epithelial cell proliferation by facilitating IGF‐I.  相似文献   

2.
This study aimed to characterize the relationship between the growth of rumen papillae in calves and the mRNA expression of insulin‐like growth factor‐binding proteins (IGFBPs) in the rumen papillae. The length of rumen papillae, the mRNA expression of IGFBPs in rumen papillae by quantitative real‐time PCR, and the presence of insulin‐like growth factors I and II (IGF‐I and II) by immunohistochemistry (IHC) were analyzed in nine Holstein calves divided into three groups: suckling (2 weeks, n = 3), milk‐continued (8 weeks, n = 3), and weaned (8 weeks, n = 3). The length of rumen papillae was greater (p < 0.01) in weaned calves than in suckling and milk‐continued calves, whereas the expressions of IGFBP2, IGFBP3, and IGFBP6 genes were lower (p < 0.05) in the rumen papillae of weaned calves than in milk‐continued calves. Thus, rumen papillae length and IGFBP2, 3, and 6 expressions were negatively correlated. The IHC analysis showed that IGF‐I and IGF‐II were present in the rumen epithelium of calves. These results suggested that the growth of rumen papillae after weaning is associated with the induction of IGFs by the low levels of IGFBP2, IGFBP3, and IGFBP6.  相似文献   

3.
The objective of this study was to assess the effects of genistein (GEN) on expression of insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 1 (IGFBP‐1) in young and aged rat ovary. Forty young female Sprague Dawley (SD) rats (200 ± 20 g) and forty aged female SD rats (490 ± 20 g) were selected and according to weight, they were divided into the following five groups with eight animals in each: negative control group (NC), low‐dose group (L), middle‐dose group (M), high‐dose group (H) and positive control group (PC). GEN group received GEN of 15, 30, 60 mg/kg respectively. It lasted 30 days. Concentrations of serum hormones, IGF‐1 and IGFBP‐1 were determined by enzyme‐linked immunosorbent assay (ELISA). Gene and protein expressions of IGF‐1 and IGFBP‐1 were determined by real‐time PCR and Western blot respectively. Compared with NC, GEN significantly increased oestradiol‐17β(E2) level in aged rat, reduced luteinizing hormone (LH) level in young and aged rat. Serum levels of IGFBP‐1 in young rats were significantly higher in GEN groups (p < 0.05). mRNA and protein expression levels of IGF‐1 and IGFBP‐1 were positively correlated with GEN dose. GEN could significantly reduce the ratio of IGF‐1/IGFBP‐1 of aged rats. Multivariate Cox regression analysis result showed IGF‐1 and IGFBP‐1 levels significantly correlated with GEN dose. We speculate that there is an association between the addition of GEN and expression of IGF‐1 and IGFBP‐1, and the relationship between them is different in young and aged rat.  相似文献   

4.
The aim of this study was to investigate the effects of deficient or excess of dietary threonine (Thr) levels on intestinal integrity and barrier function of broilers. A total of 432 1‐day‐old commercial broilers (Arbor Acre) were assigned to four experiment groups consisting of six replicates of 18 birds. The treatments were designed as follows: 85%, 100%, 125% and 150% of NRC (Nutrient requirements of poultry (9th edn). Washington, DC: The National Academies Press, 1994) recommendations. The results indicated that expressions of jejunal and ileal secretory immunoglobulin A (sIgA) mRNA were increased linearly or quadratically by increasing Thr (p < .05), and the highest sIgA mRNA abundance was obtained in 125% Thr level. Likewise, the intestinal sIgA content showed similar increasing trend with the intestinal sIgA gene expression in this instance. The high level of Thr inclusion upregulated mucin 2 (MUC2) mRNA expression in the jejunum and ileum (p < .05). In addition, on day 21, the expression levels of jejunal zonula occludens‐2 (ZO‐2) and ileal zonula occludens‐1 (ZO‐1) decreased then increased with increasing Thr level (p < .05), whereas, the mRNA expressions of occludin in the jejunum and ileum had no significant difference amongst groups (p >.05). On day 42, Thr treatments did not affect the mRNA abundance of measured genes in the jejunum and ileum (p > .05). These findings suggested that Thr might be a nutrient immunomodulator that affects intestinal barrier function, moreover, 125% of the NRC (1994) recommendations Thr level was optimum.  相似文献   

5.
Epidermal growth factor (EGF) and glucagon‐like peptides (GLP) modulate the tight junctions (TJ) of the intestinal epithelial barrier (EB) of monogastric animals. This work tried to elucidate whether GLP‐1, GLP‐2 and EGF can affect the EB of the rumen. Ovine ruminal epithelia were incubated in Ussing chambers for 7 hr with 25 or 250 nM of either GLP‐1 or GLP‐2 on the serosal side, with 2.5 nM of EGF on the serosal side or with 0.25 or 2.5 nM EGF on the mucosal side. No treatment affected tissue conductance. Short‐circuit current (Isc) was affected by time and treatment and their interactions. Only 250 nM of either GLP‐1 or GLP‐2 decreased Isc in certain periods compared with 25 nM GLP‐1 or 0.25 nM mucosally applied EGF; however, not when compared to control epithelia. Fluorescein flux rates (Jfluor) of ruminal epithelia were affected by treatment, time and time × treatment interaction. The time × treatment interaction was based on an increase in Jfluor between the first and last hour in epithelia incubated with 25 nM GLP‐1 or GLP‐2 and in epithelia incubated with EGF. After 7 hr incubation, claudin‐7 mRNA expression was downregulated in all treatments. Claudin‐1 mRNA was upregulated after incubation with 2.5 nM EGF on the serosal side, claudin‐4 mRNA was downregulated by 2.5 nM EGF on the mucosal side, and occludin mRNA was increased after incubation with 250 nM GLP‐2. The protein abundance of all tested TJ proteins was not influenced by treatment. We conclude that GLP‐1, GLP‐2, and EGF have no obvious acute effects on the EB of ruminal epithelia under simulated physiological conditions ex vivo. However, by decreasing the mRNA expression of claudin‐7 and partly affecting other TJ proteins, they may modulate EB in the longer term or under certain conditions.  相似文献   

6.
Because of rare glucagon‐like peptide‐2 (GLP‐2) receptor (+) cells within the gut mucosa, the molecular mechanisms transducing the diverse actions of GLP‐2 remain largely obscure. This research identified the naturally occurring intestinal cell lines that endogenously express GLP‐2R and determined the molecular mechanisms of the protective effects of GLP‐2‐mediated tight junctions (TJ) in GLP‐2R (+) cell line. (i) Immunohistochemistry results showed that GLP‐2R is localised to the epithelia, laminae propriae and muscle layers of the small and large bowels of newborn piglets. (ii) GLP‐2R expression was apparent in the cytoplasm of endocrine cells in IPEC‐J2 cell lines. (iii) The protein expressions of ZO‐1, claudin‐1, occludin, p‐PI3K, p‐Akt, p‐mTOR and p‐p70S6K significantly (p < 0.05) increased in GLP‐2‐treated IPEC‐J2 cells, and all of them significantly (p < 0.05) decreased when LY‐294002 or rapamycin was added. GLP‐2 improves intestinal TJ expression of GLP‐2R (+) cells through the PI3k/Akt/mTOR/p70S6K signalling pathway.  相似文献   

7.
The objective of this study was to evaluate the effect of tributyrin (TB) supplementation to milk replacer (MR) on performance, health, and blood concentrations of metabolite and glucagon‐like peptide (GLP‐2) in pre‐weaning calves. Twenty Holstein heifer calves were raised on an intensified nursing program using MR supplemented with either palm oil (CON) or TB (TB) at 0.3% (as fed basis) for 7 weeks starting 1 week after birth. Calves were fed a calf starter and kleingrass from the beginning of the study. Blood samples were obtained weekly to measure blood glucose, serum β‐hydroxybutyric acid (BHBA), insulin‐like growth factor 1 (IGF‐1), and plasma GLP‐2 concentrations. Starter DMI and metabolizable energy (ME) intake were lower in TB calves at 46, 47, from 49 to 55 days after birth compared with the CON calves. However, any growth parameters were not affected by TB treatment. Blood glucose, serum BHBA, and IGF‐1 concentrations were not affected by TB supplementation. On the other hand, mean plasma GLP‐2 concentration among whole experimental period was higher for TB (0.60 ng/ml) compared with CON (0.41 ng/ml). In conclusion, feeding MR supplemented with TB increases plasma GLP‐2 concentration, which might counterbalance the growth performance of TB calves despite the decreased ME intake.  相似文献   

8.
A study was conducted to evaluate the effects of chestnut tannins (CT) on intestinal morphology, barrier function, pro‐inflammatory cytokine expression, microflora and antioxidant capacity in heat‐stressed broilers. Four hundred 28‐day‐old male Ross 308 broilers were randomly assigned into four groups, with 10 replicates per group and 10 broilers per replicate. The broilers in the normal (NOR) group were kept at 22 ± 1°C and fed the basal diet, and each of the other three groups were treated with cyclic heat (33 ± 1°C from 0800 to 1800 and 22 ± 1°C from 1800 to 0800) and fed the basal diet with 0 (HT), 1 (CT1) or 2 (CT2) g of CT/kg of diet. The experiment lasted for 14 days. Compared with the HT group, broilers in the NOR and CT2 groups had higher (p < .05) average daily gain and villus height in the jejunum and lower serum d ‐lactate (p < .001) and diamine oxidase (p < .01) levels. The addition of 2 g CT/kg of diet increased the total antioxidant capacity (p < .001) and superoxide dismutase activities (p < .05) and zonula occludens‐1 mRNA expression level (p < .05) and decreased the malondialdehyde concentration (p < .01) and mRNA expression levels of interleukin‐6 (p < .001) and nuclear factor kappa B (p < .001) in the jejunal mucosa of heat‐stressed broilers. The populations of Escherichia coli and Clostridium in the jejunum (p < .01) and caecum (p < .05) of broilers in the HT group were higher than those in the NOR and CT2 groups. In conclusion, the addition of 2 g CT/kg of diet seemed to be a feasible means of alleviating the negative effects of heat stress on the growth performance and intestinal function of broilers.  相似文献   

9.
The effects of growth hormone (GH) and insulin‐like growth factor‐I (IGF‐I) on protein synthesis and gene expression of κ‐casein in bovine mammary epithelial cell in vitro were studied. The treatments were designed as follows: the growth medium without serum was set as the control group, while the treatments were medium supplemented with GH (100 ng/ml), IGF‐I (100 ng/ml), and GH (100 ng/ml) + IGF‐I (100 ng/ml). The quantity of κ‐casein protein was measured by ELISA, and the κ‐casein gene (CSN3) expression was examined by real‐time quantitative PCR (RT‐qPCR). Compared with the control group, all the experimental groups had greater (p < 0.05) expression of CSN3. The concentration of κ‐casein followed a similar response as CSN3, but the difference between the treatments and the control was not statistically significant (p > 0.05). Furthermore, no synergistic effect of GH and IGF‐I was observed for both the κ‐casein concentration and CSN3 expression. It is therefore concluded that GH or IGF‐I can independently promote the expression of CSN3 in bovine mammary epithelial cells in vitro.  相似文献   

10.
Fat‐tailed sheep breeds can tolerate periods of negative energy balance without suffering from elevated concentration of plasma non‐esterified fatty acid (NEFA). This ability was attributed to unique metabolism of fat‐tailed adipose depot, whereas role of liver as an influential organ in fatty acid metabolism was not evaluated yet. Hence, current study was conducted to evaluate the effects of negative and positive energy balances on liver expression of genes related to fatty acid metabolism in fat‐tailed and thin‐tailed lambs. Lambs experienced negative (21 days) and positive (21 days) energy balances and were slaughtered at the beginning and end of negative energy balance and at the end of positive energy balance. Real‐time quantitative polymerase chain reaction (RT‐Q‐PCR) was conducted to evaluate changes in gene expression. Expression of diglyceride acyltransferase 1 (DGAT1), 3‐hydroxy‐3‐methylglutaryl‐CoA synthase 2 (HMGCS2) and apolipoprotein B (APOB) was not affected by genotype, energy balance and their interaction. Expression of carnitine palmitoyltransferase 1 (CPT1) was significantly higher in liver of fat‐tailed comparing to thin‐tailed lambs regardless of energy balance (p < 0.02). Catalase mRNA abundance was increased in response to negative energy balance (p < 0.02), and severity of this enhancement was higher in fat‐tailed lambs (p < 0.06). Expression of CPT1 was positively correlated with expression of HMGCS2 in both fat‐tailed (p < 0.05) and thin‐tailed lambs (p < 0.002); however, the correlation was weaker in fat‐tailed lambs (0.72 vs. 0.57, respectively, for thin‐tailed and fat‐tailed lambs). There was a positive correlation between DGAT1 and APOB genes expression in fat‐tailed lambs (0.94; p < 0.001), whereas this correlation was not observed in thin‐tailed lambs. Results demonstrate that liver of fat‐tailed lambs has higher capacity for metabolism of mobilized NEFA exposed to liver during negative energy balance.  相似文献   

11.
Myostatin (MSTN) is a negative regulator during muscle differentiation, whereas insulin‐like growth factors (IGFs) are essential for muscle development. MSTN and IGFs act oppositely during myogenesis, but there is little information on the mutual relationship of MSTN and IGFs. The present study was conducted to examine whether MSTN affects IGF expression during early myogenesis in cattle. IGF‐1 mRNA was similarly expressed in M. longissimus thoracis of double‐muscled (DM) and normal (NM) Japanese shorthorn cattle. IGF‐2 mRNA expression was consistently higher in the normal and regenerating muscle of DM cattle than those of NM cattle. When myoblasts were isolated from regenerating M. longissimus thoracis, IGF‐2 mRNA expression showed a significant increase in differentiating DM derived myoblasts (DM‐myoblasts) as compared with differentiating NM derived myoblasts (NM‐myoblasts). An addition of recombinant mouse myostatin (rMSTN) to myoblast cultures attenuated IGF‐2 mRNA expression and decreased myotube formation, but did not effect IGF‐1 mRNA expression. An activin‐like kinase (ALK) inhibitor, SB431542, mediates MSTN action, suppressed the translocation of Smad2/3 into the nucleus in DM‐myoblasts, and restored the attenuated IGF‐2 mRNA expression and the decreased myotube formation induced by rMSTN in myoblast cultures. The findings indicate that MSTN may negatively regulate myoblast differentiation by suppressing IGF‐2 expression via ALK‐Smad signaling.  相似文献   

12.
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin‐like growth factor‐1 (IGF‐1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12, from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28‐days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (< 0.05) and increased the piglet weights (< 0.01) and litter weights (< 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (< 0.05) and tended to lower F:G ratio (= 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF‐1 concentrations and expressions of hepatic IGF‐1 gene and muscular IGF‐1 receptor (IGF‐1r) protein at birth (< 0.05), and greater hepatic IGF‐1 protein (= 0.03) and muscular IGF‐1r gene expressions (< 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF‐1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (< 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF‐1 gene and IGF‐1r, as well as the altered DNA methylation of IGF‐1 gene promotor.  相似文献   

13.
Short-chain fatty acids (SCFAs) play a critical role in regulation of rumen epithelial growth. The mechanisms underlying the regulatory effects of SCFAs on the proliferation of bovine rumen epithelial cells (BRECs) remain unknown; however, SCFAs can bind to G protein-coupled receptor 41 (GPR41); hence, the regulatory effects of SCFAs on BRECs proliferation may be mediated by GPR41. Here, we investigated the molecular mechanisms underlying the effects of SCFAs and GPR41 on BRECs proliferation. We demonstrated that SCFAs activate the expression of GPR41 and inhibit (p < .05) BRECs proliferation, while the GPR41 knockdown (GPR41KD) BRECs exhibited (p < .05) slow proliferation compared with controls. The treatment of BRECs with 10 mM SCFAs significantly enhanced (p < .05) expression of cyclin-dependent kinase inhibitors 1A (CDKN1A), 2A (CDKN2A) and 2B (CDKN2B) and inhibited (p < .05) their transition from G1 to S phase of the cell cycle, compared with controls. Remarkably, the GPR41KD BRECs treated with SCFAs restored high level of CDKN1A, relative to GPR41KD BRECs, but did not affect (p > .05) the expression of CDKN2A and CDKN2B. The GPR41KD BRECs had significantly reduced (p < .05) cyclin-dependent kinase 4 (CDK4) and cyclin D2 mRNA abundance compared with controls. The GPR41KD BRECs treated with SCFAs significantly decreased (p < .05) CDK4, cyclin D2, CDKN2A and CDKN2B mRNA abundance compared with BRECs treated with SCFAs. Overall, our results demonstrated that downregulation of CDK4 and cyclin D2 likely mediates the inhibitory effects of GPR41KD on BRECs proliferation. Additionally, CDKN1A plays a vital role in mediating the inhibitory effect of SCFAs on the BRECs proliferation, and that these changes are not mediated by GPR41.  相似文献   

14.
Luteinizing hormone LH plays important roles in follicular maturation and ovulation. The effects of LH are mediated by LH receptor (LHR) in the ovary. However, the factors that regulate the expression of LHR in bovine granulosa cells (GCs) are not well known. Insulin‐like growth factor‐1 (IGF‐1) is known to play a key role in the acquisition and maintenance of functional dominance. To better understand the roles of LHR expression and IGF‐1, we conducted three experiments to determine (i) mRNA expression of LHR in the GCs of developing follicles, (ii) the effects of IGF‐1 on LHR mRNA expression in cultured GCs and (iii) the effects of IGF‐1 on estradiol (E2), progesterone (P4) and androstenedione (A4) production by non‐luteinized GCs. In experiment 1, small follicles (<6 mm Ø) expressed lower levels of LHR than mid‐sized follicles (6–8 mm Ø) and large follicles (≥9 mm Ø) expressed the highest levels of LHR mRNA (p < 0.05). In experiment 2, IGF‐1 (1 and 100 ng/ml) increased (p < 0.05) the expression of LHR mRNA in GCs from small and large follicles. In experiment 3, IGF‐1 (0.1–100 ng/ml) increased A4 and E2 in GCs from both small and large follicles but increased P4 only in large follicles. IGF‐1 in combination with LH (0.1 and 1 ng/ml) increased P4 and A4 in large follicles, and increased E2 and A4 in GCs of small follicles. These findings strongly support the concept that IGF‐1 upregulates LHR mRNA expression as well as A4 and E2 production in GCs and that IGF‐1 is required for determining which follicle becomes dominant and acquires ovulatory capacity.  相似文献   

15.
Soya bean agglutinin (SBA) is a glycoprotein and the main anti‐nutritional component in most soya bean feedstuffs. It is mainly a non‐fibre carbohydrate‐based protein and represents about 10% of soya bean‐based anti‐nutritional effects. In this study, we sought to determine the effects of N‐Acetyl‐D‐galactosamine (GalNAc or D‐GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC‐J2) cells. The IPEC‐J2 cells were pre‐cultured with 0, 0.125 × 10?4, 0.25 × 10?4, 0.5 × 10?4, 1.0 × 10?4 and 2.0 × 10?4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre‐incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans‐epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre‐treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin‐3 were lower in the SBA‐treated groups without pre‐treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin‐3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre‐treated groups, occludin and claudin‐3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC‐J2s.  相似文献   

16.
Beta‐glucan is currently under consideration as an alternative to in‐feed antibiotics. The aim of the study was to investigate Agrobacterium sp. ZX09 beta‐glucan on intestinal morphology, cytokine concentration, mucin expression and microbial populations of weaning piglets. Pigs were randomly assigned to one of five dietary treatments supplemented with 0, 25, 50, 100 and 200 mg/kg beta‐glucan. Data showed an increase in ADG at the 100 mg/kg group (p = .03). A significant increase in villus height and reduction in crypt depth were fund in ileal tissue at the 100 mg/kg inclusion level (p < .05). Dietary supplementation of 100 mg/kg beta‐glucan enhanced IL‐10 concentration (p = .04) and gene expression of MUC1 and MUC2 (p < .05) in the jejunum. Dietary supplementation of 100 mg/kg beta‐glucan provoked the up‐regulation of Lactobacillus counts and down‐regulation of Escherichia coli counts in the caecum (p = .05). Data suggested that improved growth performance in response to beta‐glucan supplementation at 100 mg/kg in weaned piglets may be explained by the improved intestinal function.  相似文献   

17.
The objective of this study was to explore the underlying mechanism of insulin‐like growth factor 1 (IGF‐1)–caused cell proliferation of rumen epithelium in goats fed a high metabolizable energy (ME) diet. In this study, young goats were fed either a low ME [LL, n = 9, ME: 0.57 MJ/kg0.75/day] or high ME [HL, n = 9, ME: 1.00 MJ/(kg0.75/day)] diet for 42 day. The time duration of G1‐phase was shortened as a result of enhanced expression of cyclin D1 mRNA in the HL group (p < 0.05). It was suggested that a high ME diet promoted cell transition from G0/G1 to S‐phase via cyclin D1. The level of phosphorylation of ERK was higher in HL than LL group (p < 0.05). In cell culture, the ERK was phosphorylated by IGF‐1 treatment. The proliferative effects of insulin‐like growth factor 1 (IGF‐1, 25 ng/ml) on [3H] thymidine (TdR) incorporation into DNA and on cyclin D1 protein expression of rumen epithelial cells were inhibited by PPP (the inhibitor of type 1 IGF receptor) (p < 0.05) and ERK inhibitor (p < 0.05) in vitro. Thus, IGF‐1 up‐regulated cyclin D1 expression and accelerated G1‐phase progression in the cell cycle through Ras/Raf/MEK/ERK pathway in rumen epithelium of goats.  相似文献   

18.
19.
A study was conducted to assess comparatively the growth performance of three different indigenous goat breeds during exposure to summer heat stress. The primary objective of the study was to observe the heat stress impact on the growth performance based on the body weight changes, allometric measurements, growth hormone (GH) concentration and peripheral blood mononuclear cell (PBMC) Insulin‐like growth factor‐1 (IGF‐1) mRNA expression pattern during the summer season in comparison with the local breed (Osmanabadi). Thirty‐six ten‐month‐ to one‐year‐old female goats of Osmanabadi, Malabari and Salem Black breeds were randomly divided into six groups, OC (n = 6; Osmanabadi control), OHS (n = 6; Osmanabadi heat stress), MC (n = 6; Malabari control), MHS (n = 6; Malabari heat stress), SBC (n = 6; Salem Black control) and SBHS (n = 6; Salem Black heat stress). Body weight was recorded at weekly intervals, whereas other growth and allometric measurements and blood collection were carried out at fortnightly intervals. Breed factor significantly (p < .05) influenced only few growth variables such as body weight, body mass index (BMI) and body condition score (BCS). However, heat stress treatment significantly (p < .05) reduced all growth parameters expect BMI. Further, the heat stress significantly (p < .01) increased plasma GH concentration in goats with significantly higher (p < .05) concentration recorded in OHS. Among the stress groups, the lower (p < .05) PBMC IGF‐1 mRNA expression was recorded in OHS, while the higher (p < .05) expression was observed in SBHS indicating the extreme adaptive capability of Salem Black breed. Thus, the results indicated that the Salem Black breed performed much better compared to both Osmanabadi and Malabari breeds indicating the superior ability of this breed to adapt to heat stress challenges. The results also indicated that plasma GH and IGF‐1 gene may act as ideal biomarkers for assessing the heat stress impact on growth performance in indigenous goats.  相似文献   

20.
In dairy cows, retained fetal membranes (RFM) affect reproductive performance. The aim of this study was to examine the leukocyte counts and the gene expression of tumour necrosis factor α (TNFα), interleukin 1β (IL‐1β), IL‐8, and IL‐10 in polymorphonuclear leukocytes (PMNs) and peripheral blood mononuclear cells (PBMCs) in cows with (n = 5) or without (n = 5) RFM during the peripartum period. The lymphocyte counts in RFM cows were higher than those in control cows throughout the experiment (p < .05). The expression of IL‐8 in PMNs of control cows was higher (p < .05) compared with that of RFM cows postpartum. In cows with RFM, IL‐1β expression was higher (p < .05) in PMNs at 6 weeks postpartum whereas the expression of IL‐1β was lower (p < .05) in PBMCs at 4 weeks postpartum. The expression of IL‐10 in PBMCs of control cows was higher (p < .05) than that of RFM cows at 2 weeks prepartum and 4 weeks postpartum. Taken together, our data indicate that changes of gene expression of pro‐ and anti‐inflammatory cytokines in RFM cows might be associated with the delayed placental separation and development of uterine inflammation in RFM cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号