首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross‐bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed‐to‐gain ratio was obtained for pigs fed LP and NP diets (p < 0.01), while the pigs fed VLP diet showed the worst growth performance (p < 0.01). There was no significant difference in the weights of longissimus dorsi and psoas major muscle between LP and NP groups (p > 0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p < 0.01). Further, the mRNA expression levels of sodium‐coupled neutral amino acid transceptor 2, L‐type amino acid transceptor 1 and proton‐assisted amino acid transceptors 2 were higher in skeletal muscle tissue in LP group compared to those of the pigs fed NP or VLP diet. These results suggested that reduced dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition.  相似文献   

2.
The dietary contents of crude protein and free amino acids (AA) may affect the protein digestion and AA absorption in pigs. Trypsin and chymotrypsin activities, AA serum concentrations and expression of AA transporters in the small intestine of pigs fed a low protein, AA‐supplemented (19.2%, LPAA) or a high protein (28.1%, HP), wheat‐soybean meal diet were measured in two 14‐d trials. The LPAA diet contained free L‐Lys, L‐Thr, DL‐Met, L‐Leu, L‐Ile, L‐Val, L‐His, L‐Trp and L‐Phe. All pigs were fed the same amount of feed (890 and 800 g/d for trial 1 and 2 respectively). In trial 1, samples of mucosa (duodenum, jejunum and ileum) and digesta (duodenum and jejunum) were collected from 14 pigs (17.2 ± 0.4 kg); in trial 2, blood samples were collected from 12 pigs (12.7 ± 0.3 kg). The trypsin and chymotrypsin activities in both intestinal segments were higher in pigs fed the HP diet (p < 0.01). Trypsin activity was higher in jejunum than in duodenum regardless the dietary treatment (p < 0.05). Pigs fed the LPAA diet expressed more b0,+AT in duodenum, B0AT1 in ileum (p < 0.05), and tended to express more y+LAT1 in duodenum (p = 0.10). In pigs fed the LPAA diet, the expression of b0,+AT was higher in duodenum than in jejunum and ileum (p < 0.01), but no difference was observed in pigs fed the HP diet. Ileum had the lowest b0,+AT expression regardless the diet. The serum concentrations of Lys, Thr and Met were higher in LPAA pigs while serum Arg was higher in HP pigs (p < 0.05). Serum concentrations of AA appear to reflect the AA absorption. In conclusion, these data indicate that the dietary protein contents affect the extent of protein digestion and that supplemental free AA may influence the intestinal site of AA release and absorption, which may impact their availability for growth of young pigs.  相似文献   

3.
We investigated the effects of long‐term microalgae supplementation (7% in a piglet diet and 5% in a fattening diet) on muscle microstructure and meat quality, including fatty acid composition in female Landrace pigs (n = 31). The major effects were muscle‐specific increases in n‐3 and n‐6 polyunsaturated fatty acids (PUFA) concentrations, resulting in increased accumulation of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Carcass traits and meat quality of longissimus thoracis muscle were not affected by the microalgae diet with the exception of reduced drip loss (p = 0.01) and increased protein proportion (p = 0.04). In addition, the microalgae diet resulted in a shift to a more oxidative myofibre type composition in semitendinosus but not longissimus thoracis muscle. In conclusion, microalgae supplementation offers a unique opportunity to enhance essential n‐3 PUFA contents in pig meat. The results support small but coordinated changes in skeletal muscle phenotypic appearance and functionality.  相似文献   

4.
Sixty‐four pigs from 16 sows were used to evaluate addition of zinc amino acid complex (ZnAA) to lactating sows and gastric nutriment‐intubation of zinc methionine (ZnMet) to suckling pigs on mineral status, intestinal morphology and bacterial translocation after weaning. Sows were fed a barley‐based diet supplying 120 ppm zinc (Zn; control) or the control diet supplemented with 240 ppm Zn from ZnAA. At birth, day‐10 and day‐21 (weaning) of age, pigs from each litter were nutriment‐intubated with 5 ml of an electrolyte solution without or with 40 mg Zn from ZnMet. At weaning, 24 h prior to the collection of small and large intestinal lymph nodes and sections of the duodenum, jejunum and ileum, the pigs received an intramuscular injection of saline without or with 150 μg/kg body weight of Escherichia coli O26:B6 lipopolysaccharide (LPS). With the exception of a tendency (p = 0.09) for lower serum concentration of copper in pigs at weaning from ZnAA‐supplemented sows, there were no differences (p > 0.1) than for pigs from control‐fed sows for mineral status or intestinal morphology. Nutriment‐intubation of ZnMet increased serum (p = 0.001) and liver (p = 0.003) Zn concentrations, number of goblet cells per 250 μm length of jejunal villous epithelium (p = 0.001) and tended (p = 0.06) to enhance jejunum mucosa thickness. Interactive effects (p < 0.05) for higher jejunal villi height and villi:crypt ratio and increased ileal goblet cell counts were apparent for pigs from ZnAA‐supplemented sows that also received nutriment‐intubation of ZnMet. Challenge with LPS increased (p = 0.05) ileal villous width. Nutriment‐intubation of ZnMet decreased (p = 0.05) anaerobic bacteria colony forming unit counts in the large intestinal mesenteric lymph nodes. In conclusion, nutriment‐intubation of ZnMet increased serum and liver tissue concentrations of Zn and resulted in limited improvement to intestinal morphology of weaned pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号