首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This experiment was conducted to study the effects of different dietary levels of vitamin C, L‐ascorbyl‐2‐polyphosphate (ASPP), on growth and tissue vitamin C concentrations in juvenile olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Fish were fed one of six semi‐purified diets containing an equivalent of 0, 25, 50, 75, 150, or 1500 mg ascorbic acid (AA) kg?1 diet (C0, C25, C50, C75, C150 or C1500) in the form of ASPP for 12 weeks. Weight gain (WG) and protein efficiency ratio (PER) of fish fed the C0 diet were significantly lower than those of fish fed the other diets (P < 0.05), and WG and PER of fish fed the C25, C50 and C75 diets were significantly lower than those of fish fed the C1500 diet (P < 0.05). Fish fed the C0 diet exhibited vitamin C deficiency symptoms such as anorexia, scoliosis, cataract, exophthalmia and fin hemorrhage at the end of the 12‐week test. After 12 weeks of the feeding trial, AA concentrations from gill, kidney, and liver of fish fed the C0, C25, C50 and C75 diets were significantly lower than those of fish fed the C150 and C1500 diets (P < 0.05). Based on broken line analyses for WG and PER, the optimum dietary levels of vitamin C were 91 and 93 mg AA kg?1 diet respectively. These findings suggest that the dietary vitamin C requirement could be 93 mg AA kg?1 diet to support reasonable growth, and greater than 150 mg AA kg?1 diet may be required for AA saturation of major tissues for juvenile olive flounder under experimental conditions.  相似文献   

2.
A 10‐wk feeding trial was conducted to evaluate the potential use of fermented fisheries by‐products and soybean curd residues mixture (FFSM) as a partial replacement for fish meal (FM) in the diet of juvenile olive flounder, Paralichthys olivaceus. Five experimental diets were formulated with FFSM replacing 0, 15, 30, 45, and 60% of the FM protein (FFSM0, FFSM15, FFSM30, FFSM45, and FFSM60, respectively). Juvenile olive flounder averaging 5.99 ± 0.08 g (mean ± SD) were randomly distributed into aquaria at 15 fish/aquarium, with three replicate aquaria for each experimental diet. Weight gain (WG) of fish fed FFSM0, FFSM15, and FFSM30 was significantly higher than that of fish fed FFSM45 and FFSM60 (P < 0.05). Also, WG of fish fed FFSM45 was significantly higher than that of fish fed FFSM60 (P < 0.05). There were no significant differences in WG among fish fed FFSM0, FFSM15, and FFSM30 (P > 0.05). Specific growth rate (SGR) of fish fed FFSM15 was significantly higher than that of fish fed FFSM45 and FFSM60 (P < 0.05). Also, SGR of fish fed FFSM0, FFSM15, FFSM30, and FFSM45 was significantly higher than that of fish fed FFSM60 (P < 0.05). There were no significant differences in SGR among fish fed FFSM0, FFSM15, and FFSM30 and among those fed FFSM0, FFSM30, and FFSM45 (P > 0.05). Feed efficiency (FE) and protein efficiency ratio (PER) of fish fed FFSM60 were significantly lower than those of fish fed FFSM0, FFSM15, FFSM30, and FFSM45 (P < 0.05); however, there were no significant differences in FE and PER among fish fed FFSM0, FFSM15, FFSM30, and FFSM45. Hepatosomatic index of fish fed FFSM0, FFSM15, and FFSM30 was significantly higher than that of fish fed FFSM60 (P < 0.05); however, there were no significant differences among fish fed FFSM0, FFSM15, FFSM30, and FFSM45 and among those fed FFSM45 and FFSM60. No significant differences were observed in condition factor and survival rate among all dietary groups tested. The whole‐body proximate composition averaged 75.0 (% dry matter basis [DM]), 8.66 (% DM), 16.38 (% DM), and 76.1%, for crude protein, crude lipid, ash, and moisture, respectively. Based on growth performance, the FFSM could replace up to 30% FM protein by the ANOVA test; however, broken‐line model analysis indicated 28.7% as an optimum replacement level in juvenile olive flounder diets.  相似文献   

3.
This experiment was conducted to study the effects of the graded recombinant bovine somatotropin (rBST) levels on growth, plasma rBST concentrations, and body composition of Korean rockfish, Sebastes schlegeli, and to estimate the optimum oral dosage of rBST. Seven experimental diets were formulated to be isonitrogenous and isocaloric and to contain 49.0% crude protein and 16.7 kJ available energy/g, with 0, 5, 10, 15, 20, 25, or 50 mg rBST/kg body weight (BW)/wk (rBST0, rBST5, rBST10, rBST15, rBST20, rBST25, and rBST50, respectively). After the feeding trial, fish fed all the diets supplemented with rBST showed higher weight gain (WG), feed efficiency (FE), specific growth rate (SGR), and protein efficiency ratio (PER) than those fed the rBST0 diet (P < 0.05). WG of fish fed rBST15, rBST20, rBST25, and rBST50 diets was significantly higher than that of fish fed rBST0 and rBST5 diets (P < 0.05); however, there were no significant differences among fish fed rBST10, rBST15, rBST20, rBST25, and rBST50 diets. FE of fish fed rBST15 and rBST20 diets was significantly higher than that of fish fed rBST0, rBST5, rBST10, and rBST50 diets, and fish fed rBST10, rBST25, and rBST50 diets had significantly higher FE than those fed rBST0 and rBST5 diets (P < 0.05). SGR of fish fed all the diets supplemented with rBST was significantly higher than that of fish fed rBST0 diet (P < 0.05); however, there were no significant differences among fish fed all the diets supplemented with rBST. PER of fish fed rBST15 and rBST20 diets was significantly higher than that of fish fed rBST0, rBST5, and rBST50 diets, and fish fed rBST10, rBST25, and rBST50 diets had significantly higher PER than those fed rBST0 and rBST5 diets (P < 0.05). Whole‐body protein of fish fed rBST15 diet was significantly higher than that of fish fed rBST0, rBST5, and rBST10 diets (P < 0.05); however, there were no significant differences among fish fed rBST15, rBST20, rBST25, and rBST50 diets. Plasma rBST concentrations of fish fed all the diets began to rise at 3 h after oral administration of rBST; the maximum plasma rBST concentration peaked at 12 h and returned to the basal level at 24 h. Broken‐line model analyses of WG and FE were 12.8 and 13.2 mg rBST/kg BW/wk, respectively. These results indicated that the optimum oral dosage could be greater than 12.8 mg rBST/kg BW/wk but less than 13.2 mg rBST/kg BW/wk in juvenile Korean rockfish.  相似文献   

4.
A 6‐wk feeding trial was conducted to reevaluate the phosphorus (P) requirement of juvenile olive flounder and the bioavailability of various inorganic phosphorus sources (IPS). Eight experimental diets were prepared such that all diets contained the same amount of calories, nitrogen, and calcium. Each diet included 0.33% total phosphorus (TP) and 0.60 % total calcium supplied by the basal diet. The eight experimental diets were: the basal diet without P supplementation (BD), three diets consisting of the BD supplemented with NaH,PO4.2H2O (NaP0.45 NaP0.57 or NaP1.14) to supply 0.45, 0.57 or 1.14% TP, and four diets consisting of the BD supplemented with K2HPO4 (KP0.57), Ca(H2PO4);H2O (Cap0.57), CaH2PO4;2H2O (CaHP0.57) or flounder bone meal (FBP0.57) to supply 0.57% TP. Fish (N = 480)averaging 4.02 ± 0.03 g (Mean ± SD) were distributed randomly into 24 aquaria (20 fish per aquarium), and were fed one of the eight experimental diets in triplicate groups. The weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER) and feed efficiency (FE) of fish fed the NaP0.57 diet were significantly higher than those of fish fed the BD, NaP1.14, KP0.57, CaHP0.57 and FBP0.57 diets (P > 0.05). There was no significant difference in WG, SGR, PER, and FER among fish fed the Nap0.45, NaP0.57 and Cap0.57, diets. Whole body P retention (WBPret) in fish fed the Nap0.57 diet was significantly higher than in fish fed the BD, NaP1.14, KP0.57 CaHP0.57 and FBP0.57diets (P > 0.05). There was no significant difference in WBPret among fish fed the NaP0.47, NaP0.57, and CaP0.57, diets. The ability of the fish to digest the phosphorus in the NaP0.45, Nap0.57, NaP1.14, and CaP0.57 diets was significantly better than that of fish fed the other diets (P > 0.05). These results indicated that the dietary P requirement for juvenile olive flounder could be 0.45457%. Also, NaH,PO; 2H2O and Ca(H2PO4);H2O appeared to have a better bioavailability than the other P sources in juvenile olive flounder.  相似文献   

5.
An 8‐week feeding trial was conducted to evaluate the synergistic effects of dietary vitamin E and selenomethionine (SeMet) on induced methylmercury (MeHg) toxicity in juvenile olive flounder Paralichthys olivaceus. Nine semi‐purified diets were formulated to contain three different vitamin E levels as DL‐α‐tocopheryl acetate (0, 100 and 200 mg TAkg?1 diet) and three different selenium (Se) levels (0, 2 and 4 SeMet mg kg?1 diet) on the constant mercury toxicity level (20 mg MeHgkg?1 diet). Nine experimental diets, in a 32 factorial design (E0Se0, E0Se2, E0Se4, E100Se0, E100Se2, E100Se4, E200Se0, E200Se2 and E200Se4), were fed to triplicate groups of fish averaging 2.3 ± 0.04 g (mean ± SD) in the semi‐recirculation system. After 8 weeks of feeding trial, vitamin E and Se showed significant effects on weight gain (WG) of fish (P < 0.05). We found that there was a clear trend of increasing WG with elevating vitamin E and Se levels in the diets. Feed efficiency (FE), specific growth rate (SGR), protein efficiency ratio (PER) and survivability exhibited a similar trend with WG. Both antioxidants had significant interaction effects on FE and PER (P < 0.05). Methylmercury concentrations in fish muscle, liver and kidney decreases in a dose‐dependent manner as dietary vitamin E and Se levels increase. Interestingly, the most significant interactive effects of vitamin E and Se were found in liver tissue for depleting Hg concentrations (P < 0.05). These findings suggest that dietary vitamin E more than 100 mg TA kg?1 diet with 2 or 4 mg SeMet kg?1‐supplemented diets could have synergistic effects on growth and liver mercury bioaccumulation on MeHg‐induced toxicity in juvenile olive flounder.  相似文献   

6.
This study evaluated the effects of dietary fermented tuna by‐product meal (FTBM) in juvenile olive flounder, Paralichthys olivaceus. Five diets were formulated to replace fishmeal (FM) with FTBM at 0% (FTBM0), 12.5% (FTBM12.5), 25.0% (FTBM25), 37.5% (FTBM37.5), or 50% (FTBM50). After 8 wk, weight gain, specific growth rate, and feed efficiency of fish fed FTBM0 and FTBM12.5 diets were significantly higher than fish fed the other diets (P < 0.05). Also, mean cumulative survival rates (%) of fish fed the FTBM0 and FTBM12.5 diets were significantly higher than those fed FTBM50 diet at Day 9 postchallenge with Edwardsiella tarda (P < 0.05). Protein efficiency ratio of fish fed FTBM0 and FTBM12.5 diets was significantly higher (P < 0.05) than fish fed diets FTBM37.5 and FTBM50. Broken‐line regression analysis of weight gain showed an optimal FM replacement level of 10.65% with FTBM. Therefore, the optimal dietary inclusion of FTBM in juvenile olive flounder diets could be greater than 10.65% but less than 12.5% without any adverse physiological effects on fish health.  相似文献   

7.
Abstract.— The present study was conducted to investigate the effects of dietary supplementation of β‐1,3 glucan and a laboratory developed feed stimulant, BAISM, as feed additives for juvenile olive flounder, Paralichthys olivaceus. Eight experimental diets were formulated to be isonitrogenous and isocaloric and to contain 50.0% crude protein and 16.4 kJ of available energy/g with or without dietary β‐1,3 glucan and BAISM supplementation. β‐1,3 glucan (G) and BAISM (B) were provided at 0% in the control diet (G0B0) and at 0.05% G + 0.45% B (G0.05B0.45), 0.05% G + 0.95% B (G0.05B0.95), 0.1% G + 0.90% B (G0.1B0.9), 0.10% G + 1.90% B (G0.1B1.9), 0.15% G + 1.35% B (G0.15B1.35), 0.15% G + 2.85% B (G0.15B2.85), and 0.30% G + 2.70% B (G0.3B2.7) in experimental diets. After the feeding trial, fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets had higher percent weight gain (WG), feed efficiency ratio (FER), specific growth rate (SGR), protein efficiency ratio (PER), and condition factor (CF) than those fed G0B0, G0.05B0.45, G0.05B0.95, G0.15B2.85, and G0.3B2.7 diets (P < 0.05); however, there was no significant differences among fish fed G0.1B0.9, G0.1B1.9, and G0.15B1.35 diets. Fish fed G0.1B0.9 and G0.1B1.9 diets had higher chemiluminescent responses (CL) than those fed the other diets (P < 0.05). Lysozyme activity of fish fed G0.1B0.9 diet was significantly higher than that of fish fed the other diets (P < 0.05). These results indicated that the optimum dietary supplementation level of β‐1,3 glucan and BAISM could be approximately 0.10% β‐1,3 glucan + 0.90% BAISM (G0.1B0.9) of diet based on WG, FER, SGR, PER, CF, CL, and lysozyme activity in juvenile olive flounder, P. olivaceus.  相似文献   

8.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

9.
The present study was conducted to determine the safe and toxic levels of dietary copper in juvenile olive flounder, Paralichthys olivaceus, fed Mintrex® copper, a chelated dietary copper source. Fish averaging 3.8 ± 0.13 g (mean ± SD) were fed 1 of 10 diets (n = 3) containing 7 (Cu0), 10.4 (CuM5), 15.8 (CuM10), 24.9 (CuM20), 43.4 (CuM40), 82.1 (CuM80), 158 (CuM160), 308 (CuM320), 658 (CuM640), and 1267 (CuM1280) mg Cu/kg diet. At the end of 12 wk of feeding trial, weight gain (WG), specific growth rate, and protein efficiency ratio of fish fed CuM5 and CuM10 diets were significantly higher than those fed CuM80, CuM160, CuM320, CuM640, and CuM1280 diets (P < 0.05). Survival of fish fed Cu0, CuM5, CuM10, CuM20, and CuM40 diets was significantly higher than those of fish fed CuM320, CuM640, and CuM1280 diets. Whole‐body lipid content of fish decreased while whole‐body ash increased with dietary copper levels. Whole‐body and tissue copper concentrations increased with dietary copper levels. Although ANOVA test suggested that the toxic level of dietary Cu in juvenile olive flounder, P. olivaceus, could be 320 mg/kg diet, broken‐line analysis of WG indicated a level of 286 mg/kg diet when Mintrex®Cu is used as the dietary copper source.  相似文献   

10.
Replacing dietary fish oil with DHA‐rich microalgae Schizochytrium sp. and EPA‐rich microalgae Nannochloropsis sp. for olive flounder (Paralichthys olivaceus) was examined. Three experimental isonitrogenous and isolipidic diets with lipid source provided by 50% fish oil (F50S50), 50% (M50F25S25) and 100% microalgae raw material (M100) respectively were compared with a soybean oil (S100) diet as control. Triplicate groups of olive flounder juveniles (16.5 ± 0.91 g) were fed the experimental diets, and a group was fed the control diets for 8 weeks in a recirculation system. Results showed feed efficiency and growth performance were not significantly changed when fish oil (FO) was totally substituted by soybean oil (SO) or microalgae raw material (MRM). The whole‐body composition, lipid content of liver and muscle, and lipid composition of plasma were not significantly influenced by the total substitution of FO by MRM. The polyunsaturated fatty acids (PUFA) content of muscle and liver declined in fish fed S100 diet, whereas it was not significantly reduced in fish fed M50F25S25 and M100 diets. The total substitution of FO by MRM not only maintained the levels of arachidonic acid, EPA or DHA but also increased n‐3/n‐6 ratio. In conclusion, MRM as the sole lipid source is sufficient to obtain good feed efficiency, growth performance and human health value in olive flounder juveniles.  相似文献   

11.
The present experiment was conducted to evaluate the efficacy of dietary fermented by‐product of mushroom, Pleurotus ostreatus, (FBPM) as an additive in juvenile Amur catfish, Silurus asotus. Five diets were formulated to contain 0%, 0.1%, 0.2%, 0.4% and 0.8% (FBPM0, FBPM0.1, FBPM0.2, FBPM0.4 and FBPM0.8 respectively) of FBPM. Fifteen fish averaging 5.7 ± 0.1 g (Mean ± SD) were fed one of the five diets in triplicate groups at 3–4% of wet body weight/day for 8 weeks. Average weight gain (WG) and specific growth rate (SGR) of fish fed FBPM0.1 and FBPM0.2 diets were significantly higher than those of fish fed FBPM0. Hematocrit contents of fish fed FBPM0.2 were significantly higher than that of fish fed FBPM0. Lysozyme activity of fish fed FBPM0.1 was significantly higher than those of fish fed FBPM0, FBPM0.2, FBPM0.4 and FBPM0.8, while chemiluminescent (CL) responses of fish fed FBPM0.2 was significantly higher than those of fish fed FBPM0, FBPM0.1, FBPM0.4 and FBPM0.8. Broken line regression analysis of WG showed that optimum dietary FBPM levels based on WG could be 0.11%. Therefore, these results suggested that the optimum dietary inclusion level of mushroom, Pleurotus ostreatus by‐product fermented using lactobacillus and yeast could be greater than 0.11% but less than 0.2% based on WG and immunological responses in Amur catfish, Silurus asotus without any adverse effects on serological characteristics and body composition.  相似文献   

12.
An 8‐week feeding trial was conducted to estimate the optimum dietary protein to energy (P/E) ratio in juvenile olive flounder Paralichthys olivaceus. Eight experimental diets were formulated with two energy levels and four protein levels at each energy level. Two energy levels of 12.5 and 16.7 kJ g?1 diets were included at crude protein (CP) levels of 25%, 30%, 35% and 45% with 12.5 kJ g?1, and CP levels of 35%, 45%, 50% and 60% with 16.7 kJ g?1. After 1 week of the conditioning period, fish initially averaging 8.1±0.08 g (mean±SD) were randomly distributed into the aquarium as groups of 15 fish. Each diet was fed on a dry‐matter basis to fish in three randomly selected aquariums at a rate of 3–5% of total wet body weight per day for 8 weeks. After 8 weeks of the feeding trial, weight gain (WG), feed efficiency ratio and specific growth rate of fish fed 45% CP with 16.7 kJ g?1 energy diet were significantly higher than those from the other dietary treatments (P<0.05). WG of fish fed 12.5 kJ g?1 energy diets increased with the increase of dietary protein levels. However, WG of fish fed 16.7 kJ g?1 energy diets increased with the increase of dietary protein levels up to 45% CP and then decreased when fish fed 50% and 60% CP diets. Both dietary protein and energy affected protein retention efficiency and energy retention efficiency. Haemoglobin (Hb) of fish fed 35% and 45% CP diets with 12.5 kJ g?1 energy were significantly high and not different from Hb of fish fed 45% and 50% CP diets with 16.7 kJ g?1 energy. Haematocrit of fish fed 45% CP diet with 16.7 kJ g?1 energy was significantly higher than those from fish fed 25% and 30% CP diets with 12.5 kJ g?1 energy (P< 0.05). Based on the results of this experiment, we concluded that the optimum dietary P/E ratio was 27.5 mg protein kJ?1 with diet containing 45% CP and 16.7 kJ g?1 energy in juvenile olive flounder.  相似文献   

13.
A 2 × 3 factorial design was used to reevaluate the dietary protein requirements and to determine the optimum dietary protein to energy (P/E) ratios in Japanese eel, Anguilla japonica, reared in the recirculating system. For each of two experiments, six experimental diets (45P16, 45P17, 45P19, 50P16, 50P17, and 50P19) were formulated and prepared to contain two protein levels (45 and 50%) and three energy levels (16, 17, and 19 kJ/g diet) at each protein level. In the first experiment, glass eel of initial weight 0.1 ± 0.02 g (mean ± SD) were used, while the second experiment was conducted with juvenile eel of initial weight 15.0 ± 3 g (mean ± SD). The first and second experimental periods were 6 and 16 wk for the glass and juvenile eel, respectively. At the end of the first experiment, there were no protein, energy, and their interaction effects. Also, there were no significant differences in weight gain (WG), specific growth rate (SGR), feed efficiency (FE), and protein efficiency ratio (PER) for glass Japanese eel fed all diets. Although there were no significant differences in growth parameters of glass eel fed all experimental diets, these parameters were higher for fish fed 50P16 than for fish fed the other diets. For the second experiment, there were significant protein effects on WG, SGR, and PER (P < 0.05). However, there were neither significant energy effects nor protein and energy interaction effects on WG, SGR, FE, and PER. Fish fed 45P19 had a higher WG, SGR, and PER than did fish fed 45P16, 50P16, and 50P19 (P < 0.05). However, there were no significant differences in growth parameters among fish fed 45P16, 45P17, 50P16, 50P17, and 50P19 and among those fed 45P17, 45P19, and 50P17. These results may indicate that the optimum dietary protein requirement and the P/E ratio could be 44.3% and 24.1 mg protein/kJ (45P19), respectively, in juvenile Japanese eel, based on WG, SGR, and PER.  相似文献   

14.
Two feeding trials were carried out to determine the optimum feeding rates in juvenile olive flounder, Paralichthys olivaceus, at the optimum rearing temperature. Fish averaging 5.0 ± 0.11 g (mean ± SD) in experiment 1 and 20.2 ± 0.54 g (mean ± SD) in experiment 2 were fed a commercial diet at the feeding rates of 0%, 3.0%, 4.0%, 4.25%, 4.5% and 4.75% body weight (BW) day?1 and satiation (5.52% BW day?1) in experiment 1 and 0%, 1.0%, 2.0%, 3.0% and 3.5% BW day?1 and satiation (4.12% BW day?1) in experiment 2 at 20 ± 1 °C. Both feeding trials lasted for 2 weeks. Results from experiment 1 indicated that weight gain (WG) and specific growth rate (SGR) of fish fed to satiation were significantly higher than those of fish fed at other feeding rates while feed efficiency (FE) and protein efficiency ratio (PER) of fish fed at 4.25% BW day?1 were significantly higher than those of fish fed to satiation and fish fed at 3.0% BW day?1 (< 0.05). In experiment 2 WG, SGR and PER leveled out after the feeding rate of 3.5% BW day?1 whereas FE reached a plateau at 3.0% BW day?1. anova of FE indicated that the optimum feeding rates in 5.0 and 20 g juvenile olive flounder could be 4.25% and 3.0% BW day?1, respectively. Broken line analysis of WG suggested the optimum feeding rates of 5.17% and 3.47% BW day?1 in 5.0 and 20 g fish, respectively. Therefore, these results indicated that the optimum feeding rates could be >4.25 but <5.17% BW day?1 for 5.0 g, and it could be >3.0 but <3.47% BW day?1 for 20 g size of juvenile olive flounder at the optimum rearing temperature.  相似文献   

15.
A 70‐day feeding experiment was conducted to assess the dietary vitamin A (VA) requirements of juvenile Japanese flounder (Paralichthys olivaceus). Six semi‐purified diets with VA supplementations of 0, 5000, 10 000, 15 000, 20 000 and 25 000 IU kg?1 were fed twice a day to triplicate groups of 20 juveniles per tank with an initial weight of 1.59 ± 0.01 g (mean ± SE). Weight gain (WG) and specific growth rate (SGR) increased as dietary VA increased up to 10 000 IU kg?1. Significantly lower WG and SGR were observed for the 0 IU kg?1 treatment than for treatments of 5000, 10 000 and 15 000 IU kg?1. Highest WG and SGR were observed in fish fed 10 000 IU kg?1; slightly lower values were recorded in fish fed 15 000, 20 000 or 25 000 IU kg1. No significant difference was observed in survival rate among treatments. Whole body total lipid was significantly higher in fish fed 0 and 5000 IU kg?1 than for other levels. Reduced growth and small livers were observed as signs of VA deficiency in fish fed 0 IU kg?1. Slightly reduced growth and pale fragile livers were observed as effects of VA excess in fish fed 25 000 IU kg?1. Total retinol contents in liver and eyes increased with increasing levels of dietary VA. No retinol was detected in livers, and significantly lower total retinol content was observed in eyes, of fish fed 0 IU kg?1. WG analysed by the broken line method indicated that an optimum dietary VA requirement of 9000 IU kg?1.  相似文献   

16.
Two experiments were conducted to determine the optimum dietary inclusion level of dehulled soybean meal (DHSM) as a fish meal (FM) replacement in diets for olive flounder Paralichthys olivaceus. All the experimental diets were formulated to be isonitrogenous and isoenergetic to contain 50% crude protein (CP) and 16.7 kJ energy g?1 diet. In the first experiment, eight diets were formulated to replace FM with DHSM at 0%, 10%, 20% without amino acid (AA) supplementation; 20%, 30%, 40% with AA supplementation and 30%, 40% with AA & attractant supplementation (DHSM0, DHSM10, DHSM20, DHSM20+AA, DHSM30+AA, DHSM30+AA+Att, DHSM40+AA, DHSM40+AA+Att respectively). Triplicate groups of 25 fish averaging 5.0±0.04 g (mean±SD) were fed one of eight experimental diets for 8 weeks. In the second experiment, six diets were formulated to replace FM with DHSM at 0%, 10%, 20%, 30% without attractant supplementation and 20%, 30% with attractant supplementation (DHSM0, DHSM10, DHSM20, DHSM30, DHSM20+Att, DHSM30+Att respectively). Triplicate groups of 15 fish averaging 45.5±0.08 g (mean±SD) were fed one of six experimental diets for 10 weeks. Based on growth performance, we concluded that DHSM could replace FM up to 20% without AAs (lysine and methionine) and attractant supplementation, and up to 30% with AAs and/or attractant supplementation in diets for fingerling and growing olive flounder.  相似文献   

17.
An 11-week feeding trial was conducted to study the effects of the different levels of dietary vitamin C on growth, tissue ascorbic acid concentrations and histopathological changes in parrot fish. Casein and gelatin-based diets were formulated to contain 0, 60, 120, 240, 480 and 2000 mg l-ascorbic acid (AA) per kg diets on AA equivalent basis in the form of l-ascorbyl-2-monophosphate (AMP), 60 and 240 mg AA per kg diet as l-ascorbic acid. However, the analyzed AA levels were 0, 50, 100, 205, 426 and 1869 mg AA per kg diet in AMP supplemented diets; 36 and 149 mg AA per kg diet in l-ascorbic acid supplemented diets. Thus, the diets were designated as AA-free, AMP50, AMP100, AMP205, AMP426, AMP1869, AA36 and AA149. Fish averaging 3.9±0.06 g (mean±S.D.) randomly were fed the experimental diets in triplicate groups for 11 weeks. Weight gain (WG) of fish fed AMP50 and AA36 diets were significantly lower than those of the other groups, and fish fed AMP1869 diet showed a higher WG than did fish fed AMP50, AMP100, AMP205, AA36 and AA149 diets (P<0.05). However, there was no significant difference in WG between fish fed diets AMP426 and AMP1869, and among fish fed AMP100, AMP205, AMP426 and AA149 diets. Fish fed the AA-free diet began to show deficiency signs, such as retarded growth, darkening, anorexia and high mortality, after 3 weeks of feeding trial. After 6 weeks of the feeding trial, liver from fish fed the AA-free diet showed severe atrophy. By the end of the seventh week, all fish fed the AA-free diet were dead. Liver AA concentration from fish fed AMP50 diet was significantly lower than that from fish fed AMP205, AMP426, AMP1869 and AA149 diets, and fish fed AMP50, AMP100, AA36 diets showed a significant lower AA concentration in liver than did fish fed AMP205, AMP426 and AMP1869 diets.Broken line analysis of weight gain indicated that the dietary vitamin C requirement of parrot fish is 118±12 mg AA per kg diet in the form of l-ascorbyl-2-monophosphate for maximum growth.  相似文献   

18.
A 3 × 4 factorial design was used to evaluate the dietary protein requirement and to determine the optimum dietary protein to energy (P/DE) ratio in sub‐yearling Persian sturgeon, Acipenser persicus, reared in the indoor system. Twelve experimental diets (40P16, 40P17, 40P18, 40P19, 45P19, 45P17, 45P18, 45P19, 50P16, 50P17, 50P18 and 50P19) were formulated and prepared to contain three protein levels (40%, 45% and 50%) and four digestible energy levels (16, 17, 18 and 19 kJ g?1 diet) at each protein level. Fish averaging 103.3 ± 3.5 (mean ± SD) were fed one of the experimental diets for 14 weeks. At the end of the experimental period, there were significant energy effects (P < 0.05) on weight gain (WG) and specific growth rate (SGR). Weight gain and SGR tended to decrease, although non‐significantly, with increase in dietary protein levels. Furthermore, there were significant protein and energy interaction effects on WG, SGR, hepatosomatic index and protein efficiency ratio. However, there were no significant dietary protein, energy or their interaction effects on feed efficiency for fish fed all diets. Weight gain and SGR of fish fed 40P19 were significantly higher than those of fish fed 40P16, 45P16, 45P17, 50P16 and 50P17 diets (P < 0.05). There were no significant differences in WG and SGR among fish fed 40P17, 40P18, 40P19, 45P18, 45P19, 50P18 and 50P19 diets. These results may indicate that the optimum dietary protein requirement and the P/DE ratio could be 40% protein and 22.0 mg protein kJ?1 (40P18), respectively, in Persian sturgeon, based on growth performance and feed utilization.  相似文献   

19.
20.
The effect of feeding ratio on growth and body composition of juvenile olive flounder fed extruded pellets was determined during the summer season. Thirty juvenile olive flounder (initial body weight of 17 g) per tank were distributed into 21, 180-l flow-through tanks. Seven treatments that included triplicate groups of feeding ratio in 5% decrement were prepared for this study: 100% (satiation), 95%, 90%, 85%, 80%, 75% and 70% of satiation. Fish in the control group were hand-fed to apparent satiation twice a day. Then feed allowance in the rest of the six groups was determined based on average feed consumption in the control group. The feeding trial lasted for 7 weeks. Survival was over 97% and was not significantly (P > 0.05) affected by the feeding ratios. Weight gain and SGR of fish fed to 100% of satiation were not significantly different from those fed to 95% of satiation but significantly (P < 0.05) higher than those of fish fed to 90%, 85%, 80%, 75% and 70% of satiation. Weight gain, SGR and feed consumption of flounder linearly (P < 0.001) decreased with a decrease in feeding ratio. However, feed efficiency ratio, protein efficiency ratio and protein retention in fish body were not significantly (P > 0.05) affected by the feeding ratio. The crude protein levels of the whole body without liver or liver were significantly affected by the feeding ratio. Hepatosomatic index and condition factor of fish were not significantly (P > 0.05) affected by the feeding ratio. It can be concluded that optimum feeding ratio for growth of juvenile olive flounder could be lowered to 95% of satiation without growth suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号