首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of intravenous administration of variable-dose midazolam and ketamine (3 mg/kg) were studied in twelve healthy unmedicated cats from time of administration until full recovery. A range of midazolam doses (0.0, 0.05, 0.5, 1.0, 2.0 and 5.0 mg/kg) was chosen, so that beneficial and/or detrimental effects could be documented and the therapeutic window for further study determined. One minute after administration of ketamine, all cats had assumed a lateral position, mostly with head up. Muscle tone was increased (100%), apneustic breathing pattern evident in 92% of cats, chewing without stimulation of the oropharyngeal area was observed in most cats (97%), but most cats did not salivate (87%). At 2.5 min after completion of ketamine injection and 1 min after administration of saline, a similar picture was observed, except that salivation was evident. All cats chewed or swallowed in response to a finger or laryngoscope placed in the oropharyngeal area and, while most cats were not aware of a noxious stimulus to the tail, some cats were aware of a noxious stimulus to the paw. Recovery from ketamine alone was rapid and smooth with cats rolling into sternal recumbency and then cautiously walking with ataxia. Recovery to walking without incoordination was also rapid (< 2 h) and no abnormal behavioural patterns were observed during recovery. Administration of midazolam after ketamine, had beneficial effects and the therapeutic window for midazolam was found to lie between 0.05 mg/kg and 0.5 mg/kg. Administration of any dose of midazolam after ketamine caused a greater proportion of cats to assume a laterally recumbent position with head down compared with ketamine alone, however, the time period of recumbency was only significantly longer with a midazolam dose of 2.0 mg/kg or above. Doses of midazolam of 0.5 mg/kg or above decreased muscle rigidity but did not affect salivation or respiratory pattern observed in cats which received ketamine alone. A significantly greater proportion of cats which received ketamine and midazolam 0.5 mg/kg or above did not swallow in response to a finger or a laryngoscope placed in the mouth compared with that which received ketamine alone. The length of time in which cats did not swallow was only significantly longer at midazolam doses of 1.0 mg/kg and above. At midazolam doses of 0.5 mg/kg or above, the proportion of cats without a nociceptive response to a tail or paw clamp was significantly greater than cats which received ketamine alone. The time period without nociceptive response, however, was not influenced by midazolam administration. The time taken for cats which received ketamine and midazolam 0.05 mg/kg or 0.5 mg/kg to assume sternal position, walk with ataxia, walk without ataxia, behave normally when approached or restrained and recover normal arousal state was not significantly different from cats which received ketamine alone. Ketamine and midazolam 5.0 mg/kg significantly prolonged all recovery times compared with ketamine alone. Unfortunately, a greater proportion of cats which received ketamine and midazolam 0.5 or 5.0 mg/kg exhibited detrimental behavioural effects. These were more likely to be adverse and included restlessness, vocalization and difficulty approaching and restraining cats. In this study, an  相似文献   

2.
The effects of intravenous administration of variable-dose flumazenil (0, 0.001, 0.005, 0.01, and 0.1 mg/kg) after ketamine (3 mg/kg) and midazolam (0.0 and 0.5 mg/kg) were studied in 18 healthy unmedicated cats from time of administration until full recovery. End-points were chosen to determine whether flumazenil shortened the recovery period and/or modified behaviors previously identified and attributed to midazolam. Overall, flumazenil administration had little effect on recovery or behaviors. One minute after flumazenil administration, all cats were recumbent but a greater proportion of cats which received the highest dose assumed sternal recumbency with head up than any other group. Although not significant, those cats that received the highest flumazenil dose also had shorter mean times for each of the initial recovery stages (lateral recumbency with head up, sternal recumbency with head up and walking with ataxia) than any of the other treatment groups that received midazolam. For complete recovery, flumazenil did decrease the proportion of the cats that was sedated, but did not shorten the time to walking without ataxia. Based on this study, the administration of flumazenil in veterinary practice, at the doses studied, to shorten and/or improve the recovery from ketamine and midazolam in healthy cats cannot be recommended.  相似文献   

3.
The effects of intravenous administration of variable-dose midazolam (0, 0.05, 0.075, 0.1, 0.3 and 0.5 mg/kg) and ketamine (3 mg/kg) were studied in twenty-four healthy unmedicated cats from time of administration until full recovery. End-points were chosen to determine the optimal dose to allow a short period of restraint without noxious stimuli, a short period of restraint with noxious stimuli and endotracheal intubation. Recovery characteristics, as well as undesirable behaviours observed during recovery, were also recorded. The dose of midazolam to achieve lateral recumbency with head down was found to be 0.016 mg/kg in 50% of the population (ED50) and 0.054 mg/kg in 95% (ED95) of the population. A midazolam dose of 0.286 mg/kg was required to prevent conscious perception of a stimulus to the ulnar nerve in 50% of the population and 0.652 mg/kg in 95% of the population. The ED50 and ED95 of midazolam required to prevent swallowing in response to a laryngoscope placed on the back of the tongue were found to be 0.265 mg/kg and 0.583 mg/kg, respectively. The ED50 doses of 0.265 mg/kg for intubation and 0.286 mg/kg for restraint with noxious stimulation were close to the tested dose of 0.3 mg/kg. At that dose, the lack of responses lasted 3.67 ± 2.27 min for laryngoscope and 2.50 ± 2.20 min for ulnar nerve stimulation, with recovery to walking with ataxia taking 41.50 ± 15.18 min and complete recovery taking 3.6 ± 1.3 h. The predominant behavioural pattern during recovery was found to be normal, but some cats also exhibited abnormal behavioural patterns. Nine of the twelve cats exhibited an abnormal arousal state, with 4 being restless and 5 being sedated. Seven of the twelve cats exhibited an abnormal behaviour when approached, with three of the cats being more difficult to approach and four of the cats being easier to approach. Eight of the twelve cats exhibited an abnormal behavioural pattern when restrained, with the cats equally divided between more difficult and easier to restrain. Five of the twelve cats vocalized more during the recovery. The ED50 of 0.042 mg/kg to induce chemical restraint without a noxious stimulus is close to the tested dose of 0.05 mg/kg. At that dose, cats remained lateral with head down for 5.49 ± 4.02 min, took 25.96 ± 5.77 min to walk with ataxia and 1.7 ± 0.4 h for complete recovery. The predominant behavioural patterns during recovery were normal, with several cats exhibiting some abnormal patterns. Two cats were sedated, one cat was more difficult to approach, one cat was easier to restrain and three cats were more vocal.  相似文献   

4.
Pharmacokinetic studies of antibiotics in South American camelids are uncommon, therefore drugs are often administered to llamas and alpacas based on dosages established in other domestic species. The disposition of ceftiofur sodium was studied in llamas following intramuscular administration and in alpacas following intravenous and intramuscular administration. Eleven adult llamas were given ceftiofur sodium by intramuscular injection. Each animal received either a standard dose of 2.2 mg/kg or an allometrically scaled dose ranging from 2.62 to 2.99 mg/kg in a crossover design. Ten adult alpacas were given ceftiofur sodium by intravenous and intramuscular injections. Each animal received a standard dosage of 1 mg/kg or an allometrically scaled dose ranging from 1.27 to 1.44 mg/kg i.v., and 1.31-1.51 mg/kg i.m. Blood samples were collected at 0, 0.25, 0.5, 1, 2, 4, 8, 12, 24, 36, 48, and 72 h after administration of the ceftiofur. Pharmacokinetic parameters of ceftiofur in llamas and alpacas were similar following i.m. dosing at both dose levels. The only differences noted were in the total AUC between dose levels, but the AUC/dose values were not different. A sequence effect was noted in the alpaca data, which resulted in lower AUCs for the second dose when the i.v. dose was given first, and with higher AUCs for the second dose when the i.m. dose was given first. Overall, ceftiofur pharmacokinetics in llamas and alpacas are similar, and also very similar to reported parameters for sheep and goats.  相似文献   

5.
The pharmacokinetics of ceftazidime in yearling loggerhead sea turtles (Caretta caretta) following single i.m and i.v. injections were studied. Eight juvenile 1.25+/-0.18 kg turtles were divided into two groups. Four animals received 20 mg/kg of ceftazidime i.v. and four received the same dose i.m. Plasma ceftazidime concentrations were analyzed by reverse-phase high-performance liquid chromatography. The i.v. and i.m. administration half-lives were 20.59+/-3.24 hr and 19.08+/-0.77 hr, respectively. The volume of distribution was 0.42+/-0.07 L/kg, and the systemic clearance was 0.217+/-0.005 ml/min/kg. Ceftazidime was detected in all blood samples and its concentration exceeded the minimum inhibitory concentration for Pseudomonas for 60 hr after i.m. and i.v. injections.  相似文献   

6.
The purpose of this study was to determine the pharmacokinetics of buprenorphine following intravenous (i.v.) and intramuscular (i.m.) administration in horses. Six horses received i.v. or i.m. buprenorphine (0.005 mg/kg) in a randomized, crossover design. Plasma samples were collected at predetermined times and horses were monitored for adverse reactions. Buprenorphine concentrations were measured using ultra-performance liquid chromatography with electrospray ionization mass spectrometry. Following i.v. administration, clearance was 7.97±5.16 mL/kg/min, and half-life (T(1/2)) was 3.58 h (harmonic mean). Volume of distribution was 3.01±1.69 L/kg. Following i.m. administration, maximum concentration (C(max)) was 1.74±0.09 ng/mL, which was significantly lower than the highest measured concentration (4.34±1.22 ng/mL) after i.v. administration (P<0.001). Time to C(max) was 0.9±0.69 h and T(1/2) was 4.24 h. Bioavailability was variable (51-88%). Several horses showed signs of excitement. Gut sounds were decreased 10±2.19 and 8.67±1.63 h in the i.v. and i.m. group, respectively. Buprenorphine has a moderate T(1/2) in the horse and was detected at concentrations expected to be therapeutic in other species after i.v. and i.m. administration of 0.005 mg/kg. Signs of excitement and gastrointestinal stasis may be noted.  相似文献   

7.
Six adult domestic shorthair obese cats were given 3-mg/kg gentamicin sulfate by rapid i.v. and by s.c. injection in a cross-over design. The plasma concentration-time data were analyzed using statistical moment theory with no assumption of a specific compartmental model. Means +/- SD for the half-life, which was calculated from the terminal slope of the log concentration-time curve, were 1.37 +/- 0.24 and 1.24 +/- 0.22 h following i.v. and s.c. injection, respectively. The apparent volume of distribution at steady state was 118.55 +/- 19.83 ml/kg, and total body clearance was 1.07 +/- 0.25 ml/kg/min. Bioavailability was 83.58 +/- 14.83% after s.c. administration. The calculated s.c. dose in obese cats to produce an average steady-state concentration of 4 micrograms/ml is 2.5 mg/kg every 8 h compared to 3 mg/kg in normal-weight cats.  相似文献   

8.
Plasma concentration time curves following intravenous (i.v.) administration of 1.5 mg/kg of ranitidine, 0.2 mg/kg, 0.4 mg/kg and 0.8 mg/kg of omeprazole, respectively, were analysed in six llamas. Plasma profiles after i.v. administration of both drugs showed plasma concentrations declining in a biexponential manner with a rapid distribution phase. Pharmacokinetics parameters after ranitidine administration to six llamas showed a mean elimination half-life of 1.53 +/- 0.26 h. The mean volume of distribution (Vdss) in llamas was 1.77 +/- 0.31 L/kg, and mean body clearance in llamas was 0.778 +/- 0.109 L/kg/h. Ranitidine produced only a small transitory (<1 h) decline in acid production when administered i.v. at a dose of 1.5 mg/kg. Omeprazole showed dose-dependent nonlinear pharmacokinetics. The mean half-life of 0.2 mg/kg i.v. omeprazole was shorter than that of 0.4 and 0.8 mg/kg i.v. omeprazole, i.e. 0.61, 0.72 and 1.07 h, respectively. The area under the curve (AUC) and mean residence time (MRT) increased with increasing dose, while clearance decreased as dose increased. The decline in acid production following 0.2 mg/kg i.v. omeprazole was highly variable and did not produce a clinically useful suppression of third compartment acid production. In contrast, both 0.4 mg/kg and 0.8 mg/kg omeprazole i.v. administration significantly reduced third compartment acid production. The reduction in acid production following 0.8 mg/kg omeprazole was not significantly greater than the reduction observed following 0.4 mg/kg dosage. Misoprostol (10 microg/kg) was administered i.v. in an absolute alcohol solution. Two animals collapsed following drug administration. While the side-effects could have been produced by either misoprostol or the alcohol vehicle, the clinical changes were more consistent with an adverse drug reaction. Unfortunately, the limitation of UV detection did not provide the sensitivity needed to quantify the amount of misoprostol in llama plasma, and the pharmacokinetics could not be evaluated.  相似文献   

9.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

10.
Ketamine HCl [2-(o-chlorophenyl)-2-(methylamino) cyclohexanone HCl] concentrations in whole blood were used to study the pharmacokinetics of i.v., i.m., and rectal administrations, at a dose of 25 mg/kg, in normal domestic cats. Absorption was rapid with both the i.m. and rectal routes. Systemic availability was 51% (SEM 10) for the i.m. dose and 43.5% (SEM 6.1) for the rectal dose. The first-pass effect had a minimal influence on the metabolism of ketamine HCl administered rectally. The elimination rate constant (beta) of the drug was statistically similar in the i.v., i.m., and rectal groups, at a 95% level of significance (P less than 0.05). At the dosage rates studied, ketamine HCl produced an anesthetic effect in the cat following i.v., i.m. and rectal administration.  相似文献   

11.
Alteration in the arrhythmogenic dose of epinephrine (ADE) was determined in 6 healthy dogs under halothane anesthesia following the administration of xylazine at 1.1 mg/kg i.v. and acepromazine at 0.025 mg/kg i.v. The order of treatment was randomly assigned with each dog receiving both treatments and testing was carried out on 2 separate occasions with at least a 1 wk interval. The ADE determinations were made prior to drug administration during halothane anesthesia (CNTL) and then 20 min and 4 h following drug treatment. Epinephrine was infused for 3 min at increasing dose rates (2.5, 5.0, 10.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached within the 3 min of infusion or the 1 min following cessation. The interinfusion interval was 20 min. There was a significant difference (P = 0.0001) in the ADE determined following acepromazine administration at 20 min (20.95 micrograms/kg +/- 2.28 SEM) compared to CNTL (6.64 micrograms/kg +/- 1.09), xylazine at 20 min (5.82 micrograms/kg +/- 0.95) and 4 h (6.13 micrograms/kg +/- 1.05), and acepromazine at 4 h (7.32 micrograms/kg +/- 0.34). No other significant differences existed (P < 0.05). In this study we were unable to show any sensitization to epinephrine following xylazine administration during halothane anesthesia, while a protective effect was shown with a low dose of acepromazine.  相似文献   

12.
Twelve pigs were randomly assigned to 1 of 2 groups, droperidol or midazolam, to determine a sedative dose of each drug that would facilitate handling of the pigs. Each pig in the group received all of the test doses with 5-7 d between treatments (droperidol--0.1, 0.3, 0.6 mg/kg, or midazolam--0.25, 0.5, 1.0 mg/kg) and saline (3 mL), i.m. One investigator, unaware of the treatment administered, assessed the time of onset, degree, and duration of sedation. The 0.3 mg/kg dose of droperidol and 0.5 mg/kg dose of midazolam were judged to be the most suitable for sedation and produced similar degrees of sedation, although the onset and duration of sedation was significantly longer for the droperidol group. The effects of these 2 doses on heart rate, respiratory rate, systolic blood pressure, and rectal temperature were assessed in 12 pigs randomly assigned to 1 of the 2 treatments. Respiratory rate decreased significantly with droperidol at 10, 15, and 30 min. Temperature was significantly decreased at 60 min following midazolam. This study demonstrates that 0.3 mg/kg i.m. of droperidol and 0.5 mg/kg i.m. of midazolam induce adequate sedation in pigs with minimal cardiorespiratory changes.  相似文献   

13.
The pharmacokinetics of a parenteral formulation of metoclopramide (monochloride monohydrate) were determined following single intravenous (i.v.) and intramuscular (i.m.) 0.5-mg/kg doses to two groups of 4 goats in a crossover design. Mean serum concentrations of metoclopramide following i.v. administration of 0.5 mg/kg declined rapidly from a peak of 277.5 ng/ml at 3 min post-dosing to 25 ng/ml at 90 min. Serum concentrations were not detectable by 120 min after drug administration. The curve of serum concentrations vs. time was characteristic of a two-compartment open model. Mean parameters from analysis of the individual i.v. data gave a biological half-life of 0.62 h and a volume of distribution of the central compartment of 1.34 l/kg. Serum concentrations of metoclopramide following i.m. administration of 0.5 mg/kg rose rapidly to a peak of 160.9 ng/ml at 15 min post-dosing and then declined in parallel with the elimination phase of the i.v. study. These data were best described by a two-compartment open model with first-order absorption. The mean biological half-life was 1.04 h. There were no adverse reactions associated with metoclopramide at the 0.5-mg/kg dose administered by either route.  相似文献   

14.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

15.
Five Finnish Ayrshire cows in mid or end-lactation were treated with 40 mg sulphadiazine/kg and 8 mg trimethoprim/kg using intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes. Elimination of sulphadiazine was not affected by the route of administration (median t1/2 4.4-5.0 h) while elimination of trimethoprim was strongly limited by slow absorption from the injection site after s.c. and i.m. administration (median for apparent t1/2 21-25 h) compared to that after i.v. administration (median t1/2 1.2 h; p < 0.05). The median bioavailability of trimethoprim was also decreased, being 37% and 55% after s.c. and i.m. administration, respectively. When i.v. administration was used, trimethoprim concentration exceeded 0.1 mg/l in milk between 0.15-8 h while sulphadiazine concentrations above 2 mg/l were maintained from 0.5-2 h to 8 h. After s.c. and i.m. administration sulphadiazine in milk behaved similar to that after i.v. administration, while trimethoprim time-concentration curves were flat and trimethoprim concentrations were around 0.1 mg/l for an extended period of time (8-12 h). Median Cmax values in milk were only 0.07 mg/l and 0.10 mg/l for s.c. and i.m. administrations, respectively. After s.c. administration, 4 out of 5 cows showed signs of pain. After i.m. administration, 2 of the cows showed clear signs of pain and one had some local tenderness at the site of injection.  相似文献   

16.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

17.
Piroxicam (PIRO) is a nonsteroidal anti-inflammatory drug (NSAID) recognized for its value as a chemopreventative and anti-tumor agent. Eight cats were included in this study. PIRO was administered in a single oral (p.o.) and intravenous (i.v.) dose of 0.3 mg/kg. The study was designed as a randomized complete crossover with a 2-week washout period. Serial blood samples were collected after each dose and plasma was analyzed for PIRO. Pharmacokinetic parameters of PIRO were determined using noncompartmental analysis. PIRO is well absorbed in the cat with a median bioavailability (F) of 80% (range 64-124%). The median i.v. t1/2 was 12 h (range 8.6-14 h). The median Cmax was 519 ng/mL with a corresponding Tmax of 3 h. PIRO appears to be rapidly absorbed following p.o. administration in cats with a higher Cmax and AUC than in dogs.  相似文献   

18.
Disposition of ofloxacin in female New Zealand White rabbits   总被引:2,自引:1,他引:1  
Limited information exists regarding the disposition of ofloxacin in rabbits. Pharmacokinetic information is necessary for the design of appropriate therapeutic regimens for the treatment of organisms (e.g. Pasteurella multocida ) commonly infecting this species. This study evaluated the pharmacokinetics of ofloxacin following intravenous (i.v.) and subcutaneous (s.c.) administration. Two groups of three female New Zealand White rabbits received a single dose of 20 or 40 mg/kg by the i.v. and s.c. routes. Samples were collected prior to drug administration, then 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, and 8 h postdose. Ofloxacin concentrations in serum were determined using a validated HPLC assay. Mean maximum concentrations were 66.86 ± 10.83 mg/L and 14.1 ± 2.20 mg/L for the i.v. and s.c. administration of 20 mg/kg. The 40 mg/kg dose produced maximum concentrations of 154.96 ± 35.45 mg/L and 23.83 ± 4.01 mg/L for the i.v. and s.c. doses, respectively. The area under concentration–time curve increased proportionally with the dose, while the half-life was unaltered and ranged from 1.5–1.9 h. From these data, it appears that a 20 mg/kg dose administered every 8 h by the s.c. route would optimize the pharmacodynamic profile of ofloxacin and provide an appropriate regimen for the treatment of many susceptible organisms which commonly infect this species.  相似文献   

19.
The minimal inhibitory concentration (MIC) of flumequine for 249 Salmonella, 126 Escherichia coli, and 22 Pasteurella multocida isolates recovered from clinical cases of neonatal calf diarrhoea, pneumonia and sudden death was less than or equal to 0.78 microgram/ml. The pharmacokinetics of flumequine in calves was investigated after intravenous (i.v.), intramuscular (i.m.) and oral administration. The two-compartment open model was used for the analysis of serum drug concentrations measured after rapid i.v. ('bolus') injection. The distribution half-life (t1/2 alpha) was 13 min, elimination half-life (t1/2 beta) was 2.25 h, the apparent area volume of distribution (Vd(area)), and the volume of distribution at steady state (Vd(ss)) were 1.48 and 1.43 l/kg, respectively. Flumequine was quickly and completely absorbed into the systemic circulation after i.m. administration of a soluble drug formulation; a mean peak serum drug concentration (Cmax) of 6.2 micrograms/ml was attained 30 min after treatment at 10 mg/kg and was similar to the concentration measured 30 min after an equal dose of the drug was injected i.v. On the other hand, the i.m. bioavailability of two injectable oily suspensions of the drug was 44%; both formulations failed to produce serum drug concentrations of potential clinical significance after administration at 20 mg/kg. The drug was rapidly absorbed after oral administration; the oral bioavailability ranged between 55.7% for the 5 mg/kg dose and 92.5% for the 20 mg/kg dose. Concomitant i.m. or oral administration of probenecid at 40 mg/kg did not change the Cmax of the flumequine but slightly decreased its elimination rate. Flumequine was 74.5% bound in serum. Kinetic data generated from single dose i.v., i.m. and oral drug administration were used to calculate practical dosage recommendations. Calculations showed that the soluble drug formulation should be administered i.m. at 25 mg/kg every 12 h, or alternatively at 50 mg/kg every 24 h. The drug should be administered orally at 30 and 60 mg/kg every 12 and 24 h, respectively. Very large, and in our opinion impractical, doses of flumequine formulated as oily suspension are required to produce serum drug concentrations of potential clinical value.  相似文献   

20.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号