首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
RH‐1965 is a new bleaching herbicide which causes newly developing leaf tissue to emerge devoid of photosynthetic pigments. Mode‐of‐action studies revealed that RH‐1965 inhibited the accumulation of both total chlorophyll and β‐carotene. Concomitantly, it induced the accumulation of the β‐carotene precursors, phytoene, phytofluene and, in particular, ξ‐carotene. Inhibition of chlorophyll accumulation by RH‐1965 is attributed to the photo‐oxidative destruction of chlorophyll in the absence of β‐carotene because RH‐1965 blocked chlorophyll accumulation to a greater extent under high light (50–330 µE m−2 s−1) than under low light (0.8 µE m−2 s−1) conditions. Radish (Raphanus sativus L) and barnyardgrass (Echinochloa crus‐galli (L) Beauv) were very senstive to RH‐1965. Under high light (330 µE m−2 s−1), the I50 values for inhibition of chlorophyll accumulation were 0.10 and 0.15 µM , respectively. Wheat (Triticum aestivus L), on the other hand, was much less sensitive to RH‐1965 (I50 = 1.4 µM ). It is concluded that the mode of action of RH‐1965 involves the inhibition of ξ‐carotene desaturation. © 2000 Society of Chemical Industry  相似文献   

2.
Vetiver (Vetiveria zizanioides Nash) cells derived from an inflorescence were cultured in a modified N6 liquid medium supplemented with 10 µm 2,4‐D and 10 mm proline. Exponentially growing cell suspensions were subcultured with a selection medium containing glufosinate (ammonium dl ‐homoalanin‐4‐yl(methyl)phosphinate). The glufosinate‐resistant cells which can grow in a medium containing 5 × 10?5 M glufosinate was selected by a stepwise selection, and its I50 value was determined to be 4.2 × 10?5 M. The growth of susceptible cells was inhibited by lower concentrations of glufosinate and its I50 value was 2.5 × 10?7 M. This indicated that the selected cells were 170‐fold resistant compared with the susceptible cells. Glutamine synthetase (GS) activity of the resistant cells was twice as high as that of the susceptible cells. The I50 values of glufosinate were 3.2 × 10?5 M and 9.0 × 10?7 M for GS from the resistant and susceptible cells, respectively. The accumulation of ammonia caused by GS inhibition was higher in the susceptible cells. Absorption of [3,4–14C]glufosinate was not significantly different between the resistant and susceptible cells. Both cell types did not metabolize glufosinate. These results suggest that the resistance of the selected vetiver cell suspension to glufosinate is mainly due to increased GS activity and its decreased sensitivity to the herbicide.  相似文献   

3.
BACKGROUND: Herbicides that affect lipid metabolism have been used commercially for many years. Here, napropamide, diphenamid, dimethachlor and cafenstrole are compared; these have all been classified by the Herbicide Resistance Action Committee (HRAC) as K3 herbicides and inhibitors of cell division and/or synthesis of very‐long‐chain fatty acids (VLCFAs). In addition, spiro‐decanedione A and pinoxaden dione are compared as inhibitors of lipid synthesis through inhibition of acetyl‐CoA carboxylase (ACCase). RESULTS: Whereas the chloracetamide dimethachlor and the carboxyamide cafenstrole potently inhibited VLCFA synthesis in both barley and cucumber, the acetamides napropamide and diphenamid which are also classified as K3 herbicides and likewise the unclassified herbicide cinmethylin did not. The graminicide pinoxaden dione inhibited de novo fatty acid synthesis in barley, but not in cucumber, and correspondingly inhibited the plastid form of maize ACCase much more than the cytosolic form (IC50 values of 0.1 and 17 µM ). By contrast, spiro‐decanedione A exhibited herbicidal effects not only on grasses but also on broad leaves, strongly inhibited maize cytosolic ACCase and inhibited synthesis of VLCFAs in cucumber. CONCLUSIONS: The acetamides napropamide and diphenamid, which do not inhibit VLCFA synthesis, should be classified separately from K3 herbicides that do. Pinoxaden dione and spiro‐decanedione A represent new classes of chemicals acting on plant lipid synthesis. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
To help in the development of Sunn Pest-resistant transgenic plants employing protease or α-amylase inhibitors, midgut hydrolytic enzymes of Sunn Pest (Eurygaster integriceps, Put.) (Heteroptera: Scutelleridae) were identified and characterized biochemically. We observed levels of very low proteolytic activity of trypsin (3 nmoles/min/mg), elastase (0.66 nmoles/min/mg) and leucine aminopeptidase-like (14.4 nmoles/min/mg) proteases, but no chymotrypsin and papain-like activity. Proteolytic activities were insensitive to inhibition by soybean trypsin inhibitor (SBTI) and aprotinin, but were inhibited to varying degrees (40–100%) by the synthetic protease inhibitors PMSF, TPCK, CdCl2 and CuCl2. Compared to proteolytic activity, significantly higher amylolytic activity (4.45 mmoles/min/mg) was observed. Αlpha-amylase activity was found to be resistant to inhibition by bean and chickpea α-amylase inhibitors, and only slightly inhibited by wheat (36.9 ± 1.8%) and maize (40.2 ± 2.8) α-amylase inhibitors. Here, we report on the biochemical properties of digestive enzymes from Sunn Pest midgut, and their inhibition patterns by several synthetic and natural hydrolytic enzyme inhibitors.  相似文献   

5.
The fumigant toxicity of various volatile constituents of essential oils extracted from sixteen Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae L (Coleoptera: Curculionidae), was determined. The most potent toxicity was found in the essential oil from Mentha arvensis L var piperascens (LC50 = 45.5 µl litre?1 air). GC–MS analysis of essential oil from M arvensis showed it to be rich in menthol (63.2%), menthone (13.1%) and limonene (1.5%), followed in abundance by β‐pinene (0.7%), α‐pinene (0.6%) and linalool (0.2%). Treatment of S oryzae with each of these terpenes showed menthone to be most active (LC50 = 12.7 µl litre?1 air) followed by linalool (LC50 = 39.2 µl litre?1 air) and α‐pinene (LC50 = 54.9 µl litre?1 air). Studies on inhibition of acetylcholinesterase activity of S oryzae showed menthone to have a nine‐fold lower inhibitory effect than menthol, despite menthone being 8.1‐fold more toxic than menthol to the rice weevil. Different modes of toxicity of these monoterpenes towards S oryzae are discussed. © 2001 Society of Chemical Industry  相似文献   

6.
BACKGROUND: Busseola fusca is a major pest of maize in Africa but unfortunately is difficult to control using chemical insecticides. Insect‐resistant transgenic crops may provide an alternative viable strategy to control this pest. RESULTS: Recombinant Cry1Ab (1%) reduced larval weight by 60% over the trial period, while larval weight in the control group increased by 25%; no effects on mortality were observed. Insect survival, developmental rate and pupal and adult weight were significantly reduced (P < 0.05) on maize expressing Cry1Ab (MON810) compared with the non‐transformed parental line. These differences were more pronounced with second‐instar larvae than with third‐instar larvae. Leaf area consumed by Bacillus thuringiensis (Bt)‐fed larvae was significantly lower (0.5 cm2 larva?1 day?1) compared with the area consumed by control‐fed insects (3.3 cm2 larva?1 day?1). EM studies revealed that consumption of Bt maize deleteriously affected gut integrity. Effects were observed in columnar cells of the midgut epithelium, with the cytoplasm becoming highly vacuolated; the microvilli were disorganised, the mitochondria were abnormal and there was an increase in the number of lysosomal bodies. The rough endoplasmic reticulum had also become dilated. CONCLUSION: This study confirms the potential for Bt maize, when used as part of an IPM programme, for control of B. fusca. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
In order to develop an effective trunk‐injection agent against pine wood nematode, Bursaphelenchus xylophilus, an in vitro assay was used to examine the antinematodal activity of 58 commercially available compounds with known modes of action. Among compounds tested, the GABA receptor agonists had better anti‐nematodal activity than compounds influencing glutamate, N‐methyl‐D ‐aspartate, β‐adrenergic, dopamine, muscarinic acetylcholine and nicotinic acetylcholine receptors, as well as those inhibiting acetylcholinesterase, monoamine oxidase, 5‐hydroxytryptamine uptake and Ca2+, K+, Na+ and Cl channels. Avermectins and milbemycins strongly inhibited propagation of the nematode. Emamectin benzoate proved to be the most active (IC95 0.050 µM ) being over 140 times more active than the active ingredient of conventional trunk‐injection agents. It is concluded that emamectin benzoate is a strong candidate for an anti‐nematodal trunk injection agent. © 2000 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The herbicidal mode of action of flamprop‐M‐methyl [methyl N‐benzoyl‐N‐(3‐chloro‐4‐fluorophenyl)‐D ‐alaninate] was investigated. RESULTS: For initial characterization, a series of bioassays was used, which indicated a mode of action similar to that of mitotic disrupter herbicides. Cytochemical fluorescence studies, which included monoclonal antibodies against polymerized tubulin, were applied to elucidate effects on mitosis and microtubule assembly in maize roots. When seedlings were root treated with 50 µM of flamprop‐M‐methyl, cell division activity in meristematic root tip cells ceased within 4 h. The compound severely disturbed the orientation of spindle and phragmoblast microtubules, leading to defective spindle and phragmoblast structures. Cortical microtubules were only slightly affected. In late anaphase and early telophase cells, phragmoblast microtubules were disorganized in multiple arrays that hampered regular cell plate deposition in cytokinesis. Microtubules of the spindle apparatus were found attached to chromosomal kinetochores, but did not show regular organization associated with a zone of microtubule‐organizing centres at the opposite ends of the cell. On account of this loss of spindle organization, chromosomes remained in a condensed state of prometaphase or metaphase. Unlike known microtubule disrupter herbicides, flamprop‐M‐methyl and its biologically active metabolite flamprop did not inhibit soybean tubulin polymerization to microtubules in vitro at 50 µM . In contrast, soybean plants responded sensitively to the compounds. CONCLUSION: The results indicate that flamprop‐M‐methyl is a mitotic disrupter herbicide with a new antimicrotubule mechanism of action that affects orientation of spindle and phragmoblast microtubules, possibly by minus‐end microtubule disassembly. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Recent studies have focused on materials derived from plant extracts as mite control products against house dust and stored food mites because repeated use of synthetic acaricides had led to resistance and unwanted activities on non‐target organisms. The aim of this study was to evaluate the acaricidal activity of materials derived from Lycopus lucidus against Dermatophagoides farinae, D. pteronyssinus and Tyrophagus putrescentiae. RESULTS: The LD50 values of L. lucidus oil were 2.19, 2.25 and 8.45 µg cm?2 against D. farinae, D. pteronyssinus and T. putrescentiae. The acaricidal constituent of L. lucidus was isolated by chromatographic techniques and identified as 1‐octen‐3‐ol. In a fumigant method against D. farinae, the acaricidal activity of 1‐octen‐3‐ol (0.25 µg cm?2) was more toxic than N,N‐diethyl‐m‐toluamide (DEET) (36.84 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (0.29 µg cm?2), 1‐octen‐3‐yl butyrate (2.32 µg cm?2), 1‐octen‐3‐yl acetate (2.42 µg cm?2), 3,7‐dimethyl‐1‐octene (9.34 µg cm?2) and benzyl benzoate (10.02 µg cm?2). In a filter paper bioassay against D. farinae, 1‐octen‐3‐ol (0.63 µg cm?2) was more effective than DEET (20.64 µg cm?2), followed by 3,7‐dimethyl‐1‐octen‐3‐ol (1.09 µg cm?2). CONCLUSION: 1‐Octen‐3‐ol and 3,7‐dimethyl‐1‐octen‐3‐ol could be useful as natural agents for the management of three mite species. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
BACKGROUND: In this study, the effects of three saponins and one sapogenin with a triterpenoid or steroid structure in two lepidopteran insect cell lines, ovarian Bm5 and midgut CF‐203 cells, were analysed with regard to cell viability, cell membrane permeation, EcR responsiveness and DNA fragmentation. In addition, the entomotoxic action of Q. saponaria saponin with primary midgut cell cultures and larval stages of the cotton leafworm Spodoptera littoralis was tested. RESULTS: Both lepidopteran cell lines show a high sensitivity to all four sapo(ge)nins, with a concentration‐dependent viability loss and EC50 values of 25–100 µM in MTT bioassays. A trypan blue assay with Q. saponaria saponin confirmed rapid cell membrane permeation to be a cause of cytotoxicity. Saponins caused no EcR activation in Bm5 cells, but a loss of ecdysteroid signalling was observed with IC50 values of 5–10 µM . Lower saponin concentrations induced DNA fragmentation, confirming their potential to induce apoptosis. Finally, Q. saponaria saponin caused cytotoxicity in primary midgut cell cultures of S. littoralis (EC50 = 4.7 µM ) and killed 70–84% of S. littoralis larvae at pupation at 30‐70 mg g?1, while lower concentrations retarded larval weight gain and development. CONCLUSIONS: The data obtained provide evidence that saponins exert a strong activity on lepidopteran cells, presumably based on a cytotoxic action due to permeation of the cell membrane. Primary midgut cell cultures and larvae of S. littoralis showed high sensitivity to Q. saponaria saponin, indicating the insect midgut as a primary target for entomotoxicity and the potential use of saponins in the control of pest Lepidoptera. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Cassia alata (Caesalpiniaceae), an ornamental shrub, has many biological properties such as antifungal and antibacterial activities. Several bioactive and phytotoxic compounds have already been isolated from C. alata. Phytotoxic substances from plants have drawn attention as an alternative biological approach to control weeds. Thus, we conducted this research to explore other phytotoxic compounds in C. alata leaves. Aqueous methanol extracts of C. alata leaves strongly inhibited the seedling growth of broccoli, cabbage, cress, radish and rapeseed, in which the level of inhibition correlated with concentration. Two active compounds were isolated through chromatographies and identified using spectral data as (S)‐4‐(3‐hydroxybutyl)phenol [(+)‐rhododendrol] and (E)‐4‐((1R,4R)‐4‐hydroxy‐2,6,6‐trimethylcyclohex‐2‐en‐1‐yl)but‐3‐en‐2‐one [3‐hydroxy‐α‐ionone]. These two active compounds inhibited the growth of cress seedlings in a concentration‐dependent manner. The required concentrations for 50% growth inhibition (I50 value) of cress seedlings were 192.0–296.1 μM for (+)‐rhododendrol and 132.4–195.3 μM for 3‐hydroxy‐α‐ionone. These results indicate that the two phytotoxic compounds play a part in the phytotoxic activity of C. alata leaves.  相似文献   

12.
BACKGROUND: Biorational means for phytonematode control were studied within the context of an increasingly ecofriendly pest management global approach. The nematicidal activity and the chemical composition of essential oils (EOs) isolated from seven plants grown in Greece and ten selected compounds extracted from them against second‐stage juveniles (J2) of Meloidogyne incognita (Kof. & White) Chitwood were evaluated using juvenile paralysis experiments. Additionally, synergistic and antagonistic interactions between nematicidal terpenes were studied using an effect addition model, with the comparison made at one concentration level. RESULTS: The 96 h EC50 values of Foeniculum vulgare Mill., Pimpinella anisum L., Eucalyptus meliodora A Cunn ex Schauer and Pistacia terebinthus L. were 231, 269, 807 and 1116 µg mL?1, respectively, in an immersion bioassay. Benzaldehyde (9 µg mL?1) was the most toxic compound, followed by γ‐eudesmol (50 µg mL?1) and estragole (180 µg mL?1), based on 96 h EC50 values. The most potent terpene pairs between which synergistic actions were found, in decreasing order, were: trans‐anethole/geraniol, trans‐anethole/eugenol, carvacrol/eugenol and geraniol/carvacrol. CONCLUSION: This is the first report on the activity of F. vulgare, P. anisum, E. meliodora and P. terebinthus, and additionally on synergistic/antagonistic nematicidal terpene interactions, against M. incognita, providing alternative methods for nematode control. Copyright © 2010 Society of Chemical Industry  相似文献   

13.

BACKGROUND

1,3,4‐Oxadiazole and imidazolidine rings are important heterocyclic compounds exhibiting a variety of biological activities. In this study, novel compounds with oxadiazole and imidazolidine rings were synthesized from 3‐(methylsulfonyl)‐2‐oxoimidazolidine‐1‐carbonyl chloride and screened for insecticidal activities. The proposed structures of the 17 synthesized compounds were confirmed using elemental analysis, infrared (IR), proton nuclear magnetic resonance (1H‐NMR), and mass spectroscopy.

RESULTS

None of the compounds showed larvicidal activity at the tested concentrations against first‐instar Aedes aegypti larvae. However, nine compounds exhibited promising adulticidal activity, with mortality rates of ≥80% at 5 µg per mosquito. Further dose–response bioassays were undertaken to determine median lethal dose (LD50) values. Compounds 1 , 2b , 2c , 2d , 2 g , 3b , 3c , 3 g, and 3 h were effective, with typical LD50 values of about 5 ? 10 µg per mosquito against female Ae. aegypti. Compounds 2c (bearing a nitro group on the aromatic ring; LD50 = 2.80 ± 0.54 µg per mosquito) and 3 h ( double halogen groups at 2,4 position on the phenyl ring; LD50 = 2.80 ± 0.54 µg per mosquito) were the most promising compounds.

CONCLUSION

Preliminary mode of action studies failed to show consistent evidence of either neurotoxic or mitochondria‐directed effects. Further chemical synthesis within this series may lead to the development of new effective insecticides. © 2017 Society of Chemical Industry
  相似文献   

14.
Isomers of pyrethroids usually have different insecticidal activities. Permethrin, a non‐cyano pyrethroid, is not an exception and cis‐permethrin is much more active than the trans‐isomer against Triatoma infestans, vector of Chagas' Disease in Argentina. The large‐scale separation of cis‐ and trans‐permethrin was performed by successive recrystallizations from ethanol‐water mixtures. An aqueous suspension concentrate (flowable) formulation of pure crystalline cis‐permethrin was prepared and assayed for its insecticidal activity on wood and ceramic surfaces against nymph V of T infestans. This formulation was at least three times more effective than deltamethrin, with LC50 values on ceramic of 0.11 µg cm−2 and 0.33 µg cm−2 respectively. On wood surfaces, the LC50 value was 0.57 µg cm−2 compared with 3.20 µg cm−2 for deltamethrin. Against other insect species such as Periplaneta americana, Aedes aegypti and Culex quinquefasciatus, the suspension concentrate formulation of cis‐permethrin was, however, less effective than similar formulations of deltamethrin or β‐cypermethrin. © 2000 Society of Chemical Industry  相似文献   

15.
BACKGROUND: The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour‐phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. RESULTS: Horseradish oil (24 h LC50, 1.54 µg cm?2) and allyl isothiocyanate (2.52 µg cm?2) were highly toxic. Benzyl isothiocyanate (LC50, 0.62 µg cm?2) was the most toxic compound, followed by 4‐chlorophenyl, 3‐bromophenyl, 3,5‐bis(trifluoromethyl)phenyl, cyclohexyl, 2‐chlorophenyl, 4‐bromophenyl and 2‐bromophenyl isothiocyanates (0.93–1.41 µg cm?2). All were more effective than either benzyl benzoate (LC50, 4.58 µg cm?2) or dibutyl phthalate (24.49 µg cm?2). The structure‐activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour‐phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. CONCLUSION: In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil‐derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry  相似文献   

16.
Tepraloxydim [(EZ)‐(RS)‐2‐{1‐[(2E)‐3‐chloroallyloxyimino]propyl}‐3‐hydroxy‐5‐perhydropyran‐4‐ylcyclohex‐2‐en‐1‐one] showed high activity against annual bluegrass (Poa annua L.), which is relatively tolerant to sethoxydim [(±)‐2‐(1‐ethoxyiminobutyl)‐5‐[2‐(ethylthio)propyl]‐3‐hydroxycyclohex‐2‐en‐1‐one]. Absorption and translocation rates of tepraloxydim and sethoxydim were higher in P. annua than in Setaria faberi, but the absorption and translocation patterns of tepraloxydim in the two plants were similar to those of sethoxydim. Metabolic rates of tepraloxydim and sethoxydim in P. annua and S. faberi were found to be similar. The concentration for 50% inhibition (I50) of acetyl‐coenzyme A carboxylase (ACCase) with tepraloxydim was approximately 3 × 10?6 mol L?1 for P. annua and 7 × 10?7 mol L?1 for S. faberi. For sethoxydim, the I50 was found to be 2 × 10?6 mol L?1 with the enzyme of S. faberi, while sethoxydim showed a slight effect on ACCase from P. annua activity, even at 10?4 mol L?1. The strong inhibition of ACCase with tepraloxydim is considered to be the major factor contributing to the high herbicidal activity against P. annua. Measuring the whole plant growth response, the ratio of the tepraloxydim I50 dose of P. annua to that of S. faberi (P/S) was found to be 2.4, while the P/S ratio of sethoxydim and a tepraloxydim analog with a propyl chain at R2 were 56.3 and 73.3, respectively. The herbicidal activity against P. annua was remarkably influenced by the length of the R2 alkyl chain, while the effect on S. faberi was not affected. Acetyl‐coenzyme A carboxylase from P. annua also exhibited a higher resistance to the tepraloxydim analog with a propyl chain than to tepraloxydim. These results suggest that a binding site structure of cyclohexane‐1,3‐diones in the ACCase differs between P. annua and S. faberi.  相似文献   

17.
BACKGROUND: The current study investigates, for the first time, the mosquito larvicidal activities of leaf and twig essential oils from Clausena excavata Burm. f. and their individual constituents against Aedes aegypti L. and Aedes albopictus Skuse larvae. The yields of essential oils obtained from hydrodistillation were compared, and their constituents were determined by GC‐MS analyses. RESULTS: The LC50 values of leaf and twig essential oils against fourth‐instar larvae of Ae. aegypti and Ae. albopictus were 37.1–40.1 µg mL?1 and 41.1–41.2 µg mL?1 respectively. This study demonstrated that C. excavata leaf and twig essential oils possess mosquito larvicidal activity, inhibiting the growth of mosquito larvae for both species at a low concentration. In addition, results of larvicidal assays showed that the effective constituents in leaf and twig essential oils were limonene, γ‐terpinene, terpinolene, β‐myrcene, 3‐carene and p‐cymene. The LC50 values of these constituents against both mosquito larvae were below 50 µg mL?1. Among these effective constituents, limonene had the best mosquito larvicidal activity, with LC50 of 19.4 µg mL?1 and 15.0 µg mL?1 against Ae. aegypti and Ae. albopictus larvae respectively. CONCLUSION: The findings suggested that the essential oils from Clausena excavata leaf and twig and their effective constituents may be explored as a potential natural larvicide. Copyright © 2008 Society of Chemical Industry  相似文献   

18.
BACKGROUND: In a screening programme for new agrochemicals from Chinese medicinal herbs, the essential oil of Atractylodes chinensis (DC.) Koidz was found to possess strong insecticidal activity against the common vinegar fly, Drosophila melanogaster L. The essential oil was extracted via hydrodistillation, and its constituents were determined by GC‐MS analysis. RESULTS: The main components of A. chinensis essential oil were β‐eudesmol (21.05%), β‐selinene (11.75%), γ‐elemene (7.16%) and isopetasam (5.36%). Bioactivity‐directed chromatographic separation on repeated silica gel columns led to the isolation of five compounds, namely atractylon, α‐elemol, β‐eudesmol, hinesol and β‐selinene. β‐Selinene, α‐elemol and hinesol showed pronounced contact toxicity against D. melanogaster adults, with LD50 values of 0.55, 0.65 and 0.71 µg adult?1 respectively. Atractylon and β‐eudesmol were also toxic to the fruit flies (LD50 = 1.63 and 2.65 µg adult?1 respectively), while the crude oil had an LD50 value of 2.44 µg adult?1. CONCLUSION: The findings suggested that the essential oil of Atractylodes chinensis and its active constituents may be explored as natural potential insecticides. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
BACKGROUND: Triterpenic saponins from Sapindus mukorossi Gaertn. and Diploknema butyracea JF Gmelin were evaluated for in vitro antifungal activity against four phytopathogenic fungi. The study of the structure–antifungal activity relationships of protobassic acid saponins was widened by including semi‐synthetic derivatives. RESULTS: Diploknema butyracea saponins exhibited significant antifungal activity against three fungi (ED50 230–455 µg mL?1), whereas S. mukorossi saponin was effective against two fungi (ED50 181–407 µg mL?1). The n‐butanol extract after preparative HPLC separation provided two saponins from D. butyracea saponin mixture: 3‐O‐[β‐D ‐glucopyarnosyl‐β‐D ‐glucopyranosyl]‐16‐α‐hydroxyprotobassic acid‐28‐O‐[arabinopyranosyl‐glucopyranosyl‐xylopyranosyl]‐arabinopyranoside (MI‐I), and 3‐O‐β‐D ‐glucopyranosyl‐glucopyranosyl‐glucopyranosyl‐16‐α‐hydroxyprotobassic acid‐28‐O‐[arabinopyranosyl‐xylopyranosyl‐arabinopyranosyl]‐apiofuranoside (MI‐III). The single saponin extracted from S. mukorossi saponin mixture was identified as 3‐O‐[O‐acetyl‐β‐D ‐xylopyranosyl‐β‐D ‐arabinopyranosyl‐β‐D ‐rhamnopyranosyl] hederagenin‐28‐O[β‐D ‐glucopyranosyl‐β‐D ‐glucopyranosyl‐β‐D ‐rhamnopyranosyl] ester (SM‐I). Monodesmosides resulting from the partial degradation of hederagenin and hydroxyprotobassic acid bisdesmosides exhibited significant reduction in antifungal effect. Further removal of sugar moiety yielded complete loss in activity. The antifungal activity of the triterpenic saponins was associated with their aglycone moieties, and esterification of the hydroxyl group led to change in antifungal activity. CONCLUSION: Sapindus mukorossi saponin, which is effective against Rhizoctonia bataticola (Taub.) Briton Jones and Sclerotium rolfsii Sacc., can be exploited for the development of a natural fungicide. A sugar moiety is a prerequisite for the antifungal activity of triterpenic saponin. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Various attempts to control the populations of house‐dust and stored‐food mites have been implemented using synthetic chemicals. Although effective, the repeated use of these chemicals has led to resistance owing to the mite's high reproductive potential and short life cycle. Therefore, this study aimed to develop natural acaricides using oils derived from Leptospermum scoparium JR & G Forst., which may affect the overall biological activity of a mite without adverse effects. Results were compared with those from using benzyl benzoate and N,N‐diethyl‐3‐methylbenzamide (DEET). RESULTS: The LD50 values of L. scoparium oil were 0.54, 0.67 and 1.12 µg cm?2 against Dermatophagoides farinae (Hughes), D. pteronyssinus (Troussart) and Tyrophagus putrescentiae (Schrank) respectively. The active constituent isolated from L. scoparium was identified as leptospermone (6‐isovaleryl‐2,2,4,4‐tetramethyl‐1,3,5‐cyclohexanetrione) by spectroscopic analysis. Based on the LD50 values of leptospermone and its derivatives, the most toxic compound against D. farinae was leptospermone (0.07 µg cm?2), followed by 2,2,4,4,6,6‐hexamethyl‐1,3,5‐cyclohexanetrione (1.21 µg cm?2), benzyl benzoate (10.03 µg cm?2) and DEET (37.12 µg cm?2). Furthermore, similar results were observed when the leptospermone and its derivatives were tested against D. pteronyssinus and T. putrescentiae. CONCLUSIONS: These results indicate that L. scoparium oil‐derived materials, particularly leptospermone and 2,2,4,4,6,6‐hexamethyl‐1,3,5‐cyclohexanetrione, have potential for development as new agents for the control of three species of mite. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号