首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
硝态氮促进水稻生长和氮素吸收的生理机制   总被引:2,自引:0,他引:2  
Rice is being increasingly cultivated in intermittently irrigated regious and also in aerobic soil in which Nitrate (NO3-) plays important role in nutrition of plant. However, there is no information regarding the influence of nitrate on the overall growth and uptake of nitrogen (N) in rice plant. Solution culture experiments were carried out to study the effects of NO3- on the plant growth, uptake of N, and uptake kinetics of NH4+ in four typical rice (Oryza sativa L.) cultivars (conveutioual indica, conventional japonica, hybrid indica, and hybrid japonica), and on plasma membrane potential in roots of two conventional rice cultivars (indica and japonica) at the seedling stage. The results obtained indicated that a ratio of 50/50 NH4+-N/NO3--N increased the average biomass of rice shoots and roots by 20% when compared with that of 100/0 NH4+-N/NO3--N. In case of the 50/50 ratio, as compared with the 100/0 ratio, total N accumulated in shoots and roots of rice increased on an average by 42% and 57%, respectively. Conventional indica responds to NO3- more than any other cultivars that were tested. The NO3- supply increased the maximum uptake rate (Vmax) of NH4+ by rice but did not show any effect on the apparent Michaelis-Menten constant (Km) value, with the average value of Vmax for NH4+ among the four cultivars being increased by 31.5% in comparison with those in the absence of NO3-. This suggested that NO3- significantly increased the numbers of the ammonium transporters. However, the lack of effect on the Km value also suggested that the presence of NO3- had no effect on the affinity of the transporters for NH4+. The plasma membrane potential in the roots of conventional indica and japonica were greatly increased by the addition of NO3-, suggesting that NO3- could improve the uptake of N by roots of the rice plant. In conclusion, the mechanisms by which NO3- enhances the growth and N uptake of rice plant was found by the increased value of Vmax of NH4+ and increased plasma membrane potential. Thus promotion of nitrification in paddy soil is of great significance for improving the production of rice.  相似文献   

2.
Plants show different growth responses to N sources supplied with either NH4+ or NO3-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Avena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4+-N, sole NO3--N, or a combination. Sole NO3--fed oat plants accumulated more biomass than sole NH4+-fed ones. The highest biomass accumulation was observed when N was suppliedw ith both NH4+-N and NO3--N. Growth of the plant root increased with the proportion of NO3- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3--fed plants. However, root vigor was the highest when N was supplied with NO3-+NH4+. NH4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg-1. P uptake was increased when N was supplied partly or solely as NO3--N, similarly as biomass accumulation. The results suggested that oat was an NO3--preferring plant, and NO3--N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4+-N did not improve P nutrition, which was most likely due to the absence of P deficiency.  相似文献   

3.
淹水稻田氮的损失   总被引:29,自引:3,他引:29  
A field microplot experiment was conducted during the tillering stage of paddy rice to investigate nitrogen(N) Iosses from flooded rice fields following fertilizer application. After application of ammonium bicarbonate, most of nitrogen in the flood water was present as NH4-N and its concentration varied widely with time. Concentrations of both NO3-N and NO2-N in the floodwater were low due to the weakened nitrification. Under flooded anaerobic reducing conditions, soil solution concentrations of NO3-N and NH4-N were nothigh, ranging from 0.6 mg L-1 to 4.8 mg L-1, and decreased with soil depth. However, the ground water wasstill contaminated with NO3-N and NH4-N. Rainfall simulation tests showed that the N losses via runoff inrice fields were closely related to the time intervals between fertilizer applications and rainfall events. Whena large rain fell for a short period after fertilizer application, the N losses via runoff could be large, which could have a considerable effect on surface water quality. Both irrigation and N fertilizer application must be controlled and managed with great care to minimize N losses via runoff from agricultural land.  相似文献   

4.
A growth experiment on agar medium and a hydroponics experiment were carried out to study the nitrogen (N) metabolism of a low-N tolerant mutant (lnt1) of Arabidopsis thaliana under different N levels as compared with the wildtype (WT) Arabidopsis. On the agar medium, no apparent growth differences were observed between the lnt1 and WT plants under a normal N level of 9 mmol L-1 NO3-. However, under a low N level of 0. 18 mmol L-1 NO3-, the growth of the WT plants was greatly retarded, while the lnt1 plants were not affected by low-N stress and showed similar growth with those grown under a normal N level. In the hydroponics experiment, the lnt1 mutant had higher activities of glutamine synthetase (GS) and NADH-dependent glutamate synthase (NADH-GOGAT) in both leaves and roots under N-deficient conditions. Moreover, they accumulated less ammonium (NH4+) but more free amino acids in leaves compared with the WT plants. These observations suggest that better N assimilation might contribute to the low-N tolerant phenotype of the lnt1 mutant.  相似文献   

5.
上海市土壤中持久性毒害污染物和盐分含量特征研究   总被引:2,自引:0,他引:2  
Some farmland soils in Shanghai had high salinity levels, suggesting secondary salinization of the soils. The soil problems in Shanghai were studied, including the salinity and nitrate nitrogen (NO3--N) concentrations, heavy metal pollution characteristics, and organochlorine pesticide (OCP) residual levels and polycyclic aromatic hydrocarbon (PAH) contents. Accumulation of NO3--N in vegetable soils was the most significant among different functional soils. Heavy metal pollution was significant in the samples collected from the sewage-irrigated land and roadside. The identification of the metal sources through multivariate statistical analysis indicated that Pb, Zn, Cu and Cr in urban soils were from the traffic pollutants; excessive application of fertilizer and irrigation were the main reasons for the metal pollution in agricultural soils; Ni in the observed soils was controlled by parent soils. OCPs could still be detected in farmland soils but degraded greatly in last 20 years after prohibition of their usage. PAHs with 2-3 rings were the main components in industrial soils. The concentrated PAHs in the investigated soils were likely from petroleum and coal combustion.  相似文献   

6.
M. J. KHAN  D. L. JONES 《土壤圈》2009,19(5):631-641
Soil samples from a historic copper mine tailing site at the Parys Mountain,North Wales (UK) were amended with green waste compost (GC),GC+30% sewage sludge (GCS),lime and diammonium phosphate (DAP),to determine the effect of amendments on DTPA-and Ca (NO3) 2-extractable metals in the mine tailing and on the phytoavailability of heavy metals by a lettuce (Lactuca sativa L.).Both compost were added at the rate of 10% by weight,lime was added as calcium carbonate equivalent (pH = 7) and DAP at a 2300 mg kg-1 soil level.The experiment was arranged in randomised complete design with three replicates in pots under control environment.Addition of lime resulted in the largest reduction in metal extractability with DTPA and Ca (NO3) 2 and phytoavailability of Cu,Fe and Zn while DAP was effective in lowering Pb extractability and phytoavailability.With exception of Zn,all other metals extracted decreased with time after amendment applications.The distribution of heavy metals between and within the four procedures of potentially bioavailable sequential extraction (PBASE) varied significantly (P < 0.001).Stronger relationships were noted between the metals extracted with PBASE SE1 and Cu,Pb (P < 0.01) and Fe (P < 0.001) in the lettuce.These results indicate that addition of lime is sufficient to restore the vegetative cover to a high metal mine waste while DAP is good for stabilizing Pb,but its detrimental role on plant growth and the risk associated with presence of N in DAP (through N leaching) may restrict its chances for remediation of contaminated sites.  相似文献   

7.
To study the physiological effects of small root zone, plants of a hybrid wheat variety (Triticum aestivum L. cv. Meiyou 4) were grown in small pots (1 litre) or large pots (8 litre) with low nitrogen (50 mg kg-1 soil) and high nitrogen (200 mg kg-1 soil). Restricting root zone decreased dry weight of plants at the stages of stem elongation and flowering, compared to those of control plants grown in the large pots (P<0.01). Spraying of 6-benzylaminopurine (50 μmol L-1) increased dry weight of plants and chlorophyll concentration in leaves. Restriction of root zone decreased the concentrations of total nitrogen, chlorophyll and soluble protein in the flag leaf and accelerated senescence of the leaves. Supply of high nitrogen delayed senescence of the flag leaf. The results suggested that the shortage of nutrients, especially nitrogen deficiency, was the primary reason for the decreased growth of plant in the treatment of root zone restriction.  相似文献   

8.
农作物的红边特征与农学参数的关系   总被引:12,自引:4,他引:12  
The hyperspectral reflectance of the canopy and the leaves on the main stem for six varieties, two each of rice, corn, and cotton crops, were measured at different growth stages with an ASD FieldSpec Pro FRTM to analyze red edge characteristics for leaf area indices (LAI), aboveground biomass, as well as the chlorophyll, carotenoid, and nitrogen content, emphasizing comparative differences on the red edge parameters. The results showed a ‘double peak' phenomenon for the red edge of the canopy spectra but not for the leaves. There were ‘increase' and ‘decrease' change rules for the red edge position, λr, the red edge slope, Dλr, and the red edge area, Sr, of the canopy spectra for all 3 crops with a ‘blue shift' for λr of the leaf spectra for all 3 crops as the development stages progressed. For rice, corn, and cotton the LAI and fresh leaf mass had highly significant correlations (P < 0.01) so the red edge parameters λr, Dλr, and Sr of their canopy spectra. Additionally, for all crops the chlorophyll-a, chlorophyll-b, total chlorophyll, and carotenoid content of the leaves all had highly significant (P < 0.01) correlations to their λr. For rice, the nitrogen content of the leaves in g kg-1 and phytomass for a unit area of land in g m-2 also had a highly significant (P < 0.01) correlation to λr, Dλr, and Sr of the canopy spectra.  相似文献   

9.
上海郊区园艺土壤氮素的生物形成动态变化   总被引:3,自引:0,他引:3  
Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of 14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH4+-N were maintained at very low levels and did not accumulate, whereas NO3--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4+-N and NH4+-N to NO3--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil > transitional soil > conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.  相似文献   

10.
华北平原冬小麦-夏玉米轮作体系中标记15N的去向及残效   总被引:14,自引:0,他引:14  
A field experiment was conducted to investigate the fate of 15N-labeled urea and its residual effect under the winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) rotation system on the North China Plain. Compared to a conventional application rate of 360 kg N ha-1 (N360), a reduced rate of 120 kg N ha-1 (N120) led to a significant increase (P < 0.05) in wheat yield and no significant differences were found for maize. However, in the 0-100 cm soil profile at harvest, compared with N360, N120 led to significant decreases (P < 0.05) of percent residual N and percent unaccounted-for N, which possibly reflected losses from the managed system. Of the residual fertilizer N in the soil profile, 25.6%-44.7% and 20.7%-38.2% for N120 and N360, respectively, were in the organic N pool, whereas 0.3%-3.0% and 11.2%-24.4%, correspondingly, were in the nitrate pool, indicating a higher potential for leaching loss associated with application at the conventional rate. Recovery of residual N in the soil profile by succeeding crops was less than 7.5% of the applied N. For N120, total soil N balance was negative; however, there was still considerable mineral N (NH4+-N and NO3--N) in the soil profile after harvest. Therefore, N120 could be considered agronomically acceptable in the short run, but for long-term sustainability, the N rate should be recommended based on a soil mineral N test and a plant tissue nitrate test to maintain the soil fertility.  相似文献   

11.
原俊凤  田长彦  马海燕  冯固 《土壤学报》2011,48(5):1035-1043
采用常规离子耗竭方法,以陆地棉(Gossypium hirsutum L.)为对照,在不同Cl-和NO3--N营养状况下,研究了盐生植物囊果碱蓬(Suaeda physophora Pall.)NO3-低亲和吸收动力学特征,探讨了盐胁迫下囊果碱蓬NO3-高效吸收的调控机制。结果表明:两种植物NO3-的低亲和吸收动力学呈线性吸收,且囊果碱蓬NO3-的净吸收速率和硝酸还原酶的活性显著高于陆地棉,说明囊果碱蓬具有较高的氮需求;10 mmol L-1KNO3预处理2 h后,囊果碱蓬和陆地棉地上部全氮的含量分别增加30.6%和36.8%;NO3-的净吸收速率分别降低了46.6%和45.5%,说明两种植物氮的吸收受到体内氮营养的负反馈调节;NaCl长期胁迫30 d显著抑制NO3-的吸收,陆地棉NO3-的净吸收速率下降幅度显著高于囊果碱蓬,而根系Cl-的含量显著高于囊果碱蓬;NO3-的净吸收速率与植物根系Cl-的含量呈显著性负相关,说明囊果碱蓬根系拒Cl-的能力显著高于陆地棉;NaCl或KCl短期胁迫2 h对囊果碱蓬NO3-的净吸收速率没有显著影响,但陆地棉NO3-的净吸收速率分别降低了43.8%和37.5%。研究结果证明了盐胁迫下囊果碱蓬NO3-的高效吸收与植物内部的高氮需求和Cl-的累积有关,而培养介质中Cl-的浓度对NO 3-的低亲和转运系统影响较小。  相似文献   

12.
N. KUDO  H. FUJIYAMA 《土壤圈》2010,20(3):311-317
Salt-affected soils are agricultural and environmental problems on a global scale. Plants suffer from saline stresses in these soils and show nitrogen (N) deficiency symptoms. However, halophytes grow soundly under saline conditions. In order to clarify the N nutrition of the halophyte Salicornia bigelovii, it was grown at several N levels (1, 2, 3, and 4 mmol L-1), supplied in the form of NO3- or ammonium (NH4+), under high NaCl conditions (200 mmol L-1). NH4+-fed plants showed better growth than NO3--fed plants at 1-3 mmol L-1 N, and plants in both treatments showed the same growth at 4 mmol L-1 N. Nitrogen contents in NO3--fed plants increased with the N concentrations in solution; competitive inhibition of NO3- absorption by Cl- was observed under lower N conditions. In addition, shoot dry weight was significantly correlated only with shoot N content. Therefore, growth of NO3--fed plants was regulated by N absorption. Inc ontrast, N contents of shoots in NH4+-fed plants did not change with N concentration. Shoot Na content decreased with increasing N concentration, while K content increased. Dry weight was highly correlated only with K content in NH4+-fed plants. These observations indicated that growth of NH4+-fed plants was mainly regulated by K absorption.  相似文献   

13.
水稻耐盐性的机理   总被引:15,自引:3,他引:15  
Shaheen Basmati was evolved as a salt tolerant fine rice variety by the Soil Salinity Research Institute,Pindi Bhattian, Pakistan. Water culture studies were conducted to investigate the physiological mechanism exercised by this variety in particular and rice plant in general to face the saline environment. Performance of this rice variety and the concentration and uptake of ions were studied under stress of three salinity levels(30, 60 and 90 mmolL^-1) created with NaC1. Recorded data indicated that shoot dry matter was not significantly affected by all the three levels of salinity. However, NaC1 levels of 60 and 90 mmol L^-1 affected the root dry matter significantly. Sodium concentration and uptake was enhanced significantly in root and shoot at the first level of salinity (30 mmol L^-1) but thereafter the differences were non-significant, indicating the preferential absorption of this cation. The K concentration decreased significantly in shoots at all the levels. The impact was less pronounced in roots as far as K absorption was concerned. The effect on Ca and Mg concentrations was not significant. The values of K:Na, Ca:Na and (Ca Mg):Na ratios in shoot and root were comparatively low under stress conditions, indicating that selective ion absorption may be the principal salt tolerance mechanism of variety Shaheen Basmati when grown in a saline medium.  相似文献   

14.
氯化钠不同浓度对夏玉米生长和吸氮的影响   总被引:9,自引:2,他引:9  
采用珍珠岩为基质的温室盆栽试验,研究不同盐分(NaCl)水平对夏玉米生长和吸氮的影响。试验设灌溉水中NaCl浓度为0、10、20、40和60mmol.L5个处理。结果表明,在出苗后的25~101d(7月25日~10月10日),当NaCl浓度达到60mmol.L时,明显降低了夏玉米的叶面积、株高、干物质量和根长;盐分对植株体内各器官的氮含量影响不大。随着NaCl含量的增加,植株的总氮累积量将减少,且植株中累积氮量随时间呈二次函数增长。  相似文献   

15.
硝态氮对盐胁迫下囊果碱蓬幼苗根系生长和耐盐性的影响   总被引:8,自引:0,他引:8  
在溶液培养条件下,设计了4个盐分(1,150,300或450 mmol/L NaCl)和3个氮素(0.05,5或10 mmol/L NO3--N)水平,研究了盐、氮及其互作对囊果碱蓬(Suaeda physophora Pall.)幼苗的离子吸收、氮营养状况、根系形态特征及耐盐性的影响。结果表明,与低盐或低氮相比,增加盐分或氮水平显著增加了囊果碱蓬根部的干重、根系的侧根长、表面积、总吸收面积和活跃吸收面积;且这些根系的形态指标与地上部的离子及氮的累积存在显著的正相关。高盐胁迫下增加氮营养,显著增加了地上部Na+、NO3-、有机氮的含量和硝酸还原酶的活性;降低了Cl-和K+的含量。高盐胁迫下,硝态氮的增加促进了囊果碱蓬幼苗根系的生长,增加了地上部有机氮、NO3-和Na+的累积,改善了植株的营养状况和渗透调节,从而提高了囊果碱蓬的耐盐能力。  相似文献   

16.
Salinity tolerance in some plant species has been related to characteristics of potassium (K) and sodium (Na) uptake and transport. Tomato (Lycopersicon esculentum Mill., cv. Rossel) plants were grown in nutrient solution to determine effects of two K levels [0.2 (low) and 2 mmol (high)] combined with 0, 100, and 200 mmol NaCl on growth, and on Na and K uptake and translocation. Net uptake rates of Na and K were determined by disappearance in the growth medium and by plant accumulation. At the low level of K in solution, salinity decreased shoot and root dry weight and leaf area. Addition of 2 mmol K ameliorated of the added NaCl effects and improved growth parameters. Salinity reduced net K uptake rates and to a lesser extent K translocation from root to shoot, which resulted in higher K shoot concentration and a lower K root concentration. The inhibitory effect of salinity on K translocation was greater with low K level in nutrient solution. Net uptake of K was dependent on K level in the growth medium. Addition of K resulted in decreases of shoot Na uptake. The translocation of Na from roots to shoots was reduced by K level in nutrient solution. These results indicate that K supply and K accumulation and regulation in plant tissue contribute to salt tolerance and growth enhancement.  相似文献   

17.
《Journal of plant nutrition》2013,36(8):1441-1452
Abstract

Saltgrass [Distichlis spicata (L.) Greene var. stricta (Gray) Beetle], accession WA-12, collected from a salt playa in Wilcox, AZ, was studied in a greenhouse to evaluate its growth responses in terms of shoot and root lengths, shoot dry-matter yield, and nitrogen (N) (regular and 15N) absorption rates under control and salt (sodium chloride, NaCl) stress conditions. Plants were grown under a control (no salt) and three levels of salt stress (100, 200, and 400 mM NaCl, equivalent to 5850, 11700, and 23400 mg L? 1 sodium chloride, respectively), using Hoagland solution in a hydroponics system. Ammonium sulfate [(15NH4)2SO4], 53% 15N (atom percent 15N) was used to enrich the plants. Plant shoots were harvested weekly, oven-dried at 60°C, and the dry weights measured. At each harvest, both shoot and root lengths were also measured. During the last harvest, plant roots were also harvested and oven-dried, and dry weights were determined and recorded. All harvested plant materials were analyzed for total N and 15N. The results showed that shoot and root lengths decreased under increasing salinity levels. However, both shoot fresh and dry weights significantly increased at 200 mM NaCl salinity relative to the control or to the 400 mM NaCl level. Shoot succulence (fresh weight/dry weight) also increased from the control (no salt) to 200 mM NaCl, then declined. The root dry weights at both 200 mM and 400 mM NaCl salinity levels were significantly higher than under the control. Concentrations of both total-N and 15N in the shoots were higher in NaCl-treated plants relative to those under the control. Shoot total-N and 15N contents were highest in 200 mM NaCl-treated plants relative to those under the control and 400 mM salinity.  相似文献   

18.
【目的】探究油菜NO3-的吸收、分配和对低氮胁迫的响应及其氮利用效率,为理解油菜在不同低氮胁迫下相关生理变化及其氮素利用效率提供科学依据。【方法】以常规油菜品种814为研究材料,采用砂培试验,在正常供氮水平(10 mmol/L)和低氮胁迫水平(3 mmol/L、1 mmol/L)下,研究油菜的根系特性、蒸腾作用对低氮胁迫的响应及其氮素吸收效率,并研究油菜NO3-的运输分配与同化对低氮胁迫的响应及其氮素利用效率。【结果】与正常供氮处理(10 mmol/L)相比,低氮胁迫处理(3 mmol/L、1 mmol/L)的油菜NO3-含量、全氮含量均显著下降,但(NO3-)叶/根、(全氮(%))叶/根显著升高,植株根系干物质重、根系吸收面积均显著下降,但根冠比显著升高。油菜植株在低氮胁迫下气孔导度和蒸腾速率显著增加,一方面促进植株对NO3-的捕获,另一方面也促使更大比例的NO3-分配在植物的地上部分,但植株的水分散失加剧,水分利用效率显著下降。低氮胁迫处理油菜根和叶中NR、GS活性与正常供氮处理之间的差异不显著或有增加,其叶绿素含量、光合速率均显著下降,但光合氮素利用率显著升高。【结论】在低氮胁迫条件下,油菜植株的氮素和干物质累积均显著下降,但NO3-在植株的地上部分分配比例的增加以及光合氮素利用率的升高促使植株的氮素利用效率显著提高。  相似文献   

19.
This trial was carried out to study the nutritional and productive behavior generated by modifications in the salt concentration in the nutrient solution for Cordyline fruticosa var. Red Edge plants. The anions studied were chloride (Cl), nitrogen (N), and phosphorus (P). Four treatments were tested: T1 [control, 1.5 dS m?1, 14.3 mmol L?1 sodium chloride (NaCl)], T2 (2.5 dS m?1, 22.2 mmol L?1 NaCl), T3 (3.5 dS m?1, 32.7 mmol L?1 NaCl), and T4 (4.5 dS m?1, 38.2 mmol L?1 NaCl). At the end of the cultivation, leaf, petiole, shoot and root fresh and dry weights, elemental extractions, and elemental concentrations were determined. Nutrient concentrations and total plant uptake (extraction) were calculated from the dry matter. The treatment T2 induces a blade protection mechanism, which consists on the accumulation of chloride (Cl?) in root and vessels; so, leaf storage is reduced, avoiding damages. Petiole also contributes to this protection, acting as a salt pool. As NaCl concentration in the nutritive solution arises, N plant concentration increases significantly although there are no significant differences between T1 and T2. With high salinity levels, P in vessels is reduced, whereas root extraction and concentration increases. The greatest N and P extractions are observed in T2, which is due to its higher dry matter. Chloride extractions are lower in T1 than in the other treatments.  相似文献   

20.
The resistance of most plants to salt can be impaired by concurrent waterlogging. However, few studies have examined this interaction during germination and early seedling growth and its implications for nutrient uptake. The aim of the study was to examine the response of germination, early growth, and nutrient uptake to salt (NaCl) and hypoxia applied to barley (Hordeum vulgare L. cv. Stirling), in solution culture. Hypoxia, induced by covering seeds with water, lowered the germination from 94% to 28% but salinity and hypoxia together lowered it further to 13% at 120 mM NaCl. While the germination was 75% at 250 mM NaCl in aerated solution, it was completely inhibited at this NaCl concentration under hypoxia. Sodium ion (Na+) concentrations in germinated seedlings increased with increasing salinity under both aerated and hypoxic conditions during germination, while K+ and Mg+ concentrations were decreased with increasing salinity in 6 d old seedlings. After 20 d, control seedlings had the same dry weights of the roots and shoots with and without hypoxia but at 10 mM NaCl and higher, shoot and root dry weight was depressed with hypoxia. Sodium ion increased in roots and shoots with increased NaCl under both aerated and hypoxic conditions while K+ was depressed when salinity and hypoxia were applied together and Ca2+ was mostly decreased by NaCl. In general, hypoxia had greater effects on nutrient concentrations than NaCl by decreasing N, P, S, Mg, Mn, Zn, and Fe in shoots and by increasing B concentrations. The threshold salinity levels decreased markedly for germination, uptake of a range of nutrients, and for seedling growth of barley under hypoxic compared to well‐aerated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号