首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Key message

This paper presents a greenhouse study for assessing the genetic variation in maritime pine (Pinus pinaster Aiton) in response to pinewood nematode (Bursaphelenchus xylophilus (Steiner et Buhren) Nickle), which is a causal agent of pine wilt disease. Fifteen out of 96 half-sib families were selected as less susceptible. This experiment is an important first step for creating a resistance breeding program.

Context

Pine wilt disease is caused by the pinewood nematode (Bursaphelenchus xylophilus (Steiner et Buhren) Nickle), a quarantine pest, and is a concern to maritime pine (Pinus pinaster) in Portugal due to its economic, environmental, and social impacts. This disease is regarded as a major threat to European forests.

Aims

This paper aimed to evaluate the genetic variation in maritime pine families that were inoculated with pinewood nematode, identify the most resistant families, and establish the guidelines for a resistance improvement program.

Methods

Two-year-old half-sib progenies obtained from 96 plus trees were inoculated. The plants were monitored for survival on four different dates. The statistical analysis followed the mixed model theory.

Results

Genetic variability of the susceptibility to pine wilt disease was observed. At 157 days after inoculation, the 15 highest genetic ranking families out of 96 were selected, having a predicted survival mean of 15.6% instead of 11.0% on average for the all 96 families.

Conclusion

This study allows for the implementation of an improvement program to help control pine wilt disease.
  相似文献   

2.

Key message

Slopes and intercepts of allometric equations for organs’ biomass varied among half-sib families of Norway spruce and between age categories in a family-dependent manner. Genetic variation should be accounted for when applying allometric analysis to mixtures of genetic groups.

Context

Genetic variation in relationships among plant biomass components was rarely addressed in trees, though depending on deployment strategies in tree improvement programs, variation among genetic groups in plant organs’ growth rates, and thus biomass allocation, would affect forest growth and carbon balance.

Aims

We investigated growth and biomass distribution in Norway spruce (Picea abies [L.] H. Karst) half-sib families. We assumed invariance among families in allometric relationships, and stability in growth rates of different organs between ages 2 and 8 years in the subset of those families. We also tested for ontogenetic trend in allometry using the independent dataset of biomass at age 21 years.

Methods

We analyzed allometric relationships among plant components using standardized major axis regression.

Results

Slopes and intercepts of allometric relationships varied among families, indicating variation in both organs’ growth rates and biomass partitioning at a given plant size. Variation in scaling exponents between age categories was also dependent on the family and plant organ considered.

Conclusion

Variation in slopes of allometric relationships indicates that a single scaling coefficient should not be applied when different genetic groups are compared. For the interpretation of age effect on biomass partitioning, both slopes and intercepts of allometric relationships should be examined.
  相似文献   

3.

Key message

Pertinence of alternative adaptation strategies to business as usual, namely reactive, active, and robust adaptation strategies, can be evaluated by incorporating the expected costs and benefits of adaptation, climate change uncertainty, and the risk attitudes of decision-makers.

Context

Forest management is used to coping with risky and uncertain projections and estimates. However, climate change adds a major challenge and necessitates adaptation in many ways.

Aims

This paper highlights the dependency of the decisions on adaptation strategies to four aspects of forest management: (i) the costs of mitigating undesirable climate change impacts on forests, (ii) the value of ecosystem goods and services to be sustained, (iii) uncertainties about future climate trajectories, and (iv) the attitude of decision-makers towards risk (risk aversion level).

Methods

We develop a framework to evaluate the pertinence of reactive, active, and robust adaptation strategies in forest management in response to climate change.

Results

Business as usual may still be retained if the value of the forest and cost of climate impacts are low. Otherwise, it is crucial to react and facilitate the resilience of affected forest resources or actively adapt in advance and improve forest resistance. Adaptation should be robust under any future climate conditions, if the value of the ecosystem, the impacts from climatic changes, and the uncertainty about climate scenarios are very high.

Conclusion

The decision framework for adaptation should take into account multiple aspects of forest management under climate change towards an active and robust strategy.
  相似文献   

4.

Key message

Pilodyn and acoustic velocity measurements on standing trees, used for predicting density and stiffness, can be good genetic selection tools for black spruce. Genetic parameters and selection efficiency were conserved in two breeding zones with contrasted bioclimatic conditions.

Context

Given the recent progress made in the black spruce genetic improvement program, the integration of juvenile wood mechanical properties as selection criteria is increasingly relevant.

Aims

This study aims to estimate the genetic parameters of in situ wood density and modulus of elasticity (MoE) measurements and to verify the efficiency of various measuring methods used for large-scale selection of black spruce based on wood quality.

Methods

Height, diameter, wood density, and some indirect measures of density (penetration and drilling resistance) and MoE (acoustical velocity and Pilodyn) were estimated on 2400 24-year-old trees of 120 open-pollinated families in progeny trials located in the continuous boreal or mixed forest subzones.

Results

Heritability of growth, density, and indirect density measurements varied from low to moderate and was moderate for acoustical velocity in both vegetation subzones. Expected genetic gains for wood properties based on in situ methods were higher for MoE proxy estimation combining Pilodyn and acoustic velocity.

Conclusion

Acoustic velocity is a good predictor of MoE. It is virtually unaffected by the environment and can be used on a large scale in the same manner as the Pilodyn for density. Using a proxy estimation that combines both methods helps optimize genetic gain for MoE.
  相似文献   

5.

Key message

Large genetic variation was found in Prunus avium L. populations from the northern parts of the species distribution range. The ranking of genotypes in terms of growth was stable when tested at three trial sites within the northern parts of the species distribution range.

Context

Peripheral populations especially those in the leading edge are isolated from rest of the areas in the species distribution range. This can make them less genetically diverse yet genetically distinct from the rest of the populations in the species distribution range. Evaluation of their genetic diversity is thus crucial in understanding the local adaptation potential of a species.

Aims

We investigated the genetic diversity and genotype by environment interaction at the northern parts of the distribution range of P. avium.

Methods

Quantitative genetic variation of growth, stem form, and spring phenology were assessed in progenies from 93 plus trees of P. avium selected from 43 locations at the north of the species distribution range in Sweden and tested at two Swedish sites and one Danish site.

Results

We find large quantitative genetic variation in growth and phenology at the northern part of the distribution range of P. avium. Only a limited genotype by environment interaction was observed with no clear indication of local adaptation at the northern parts of the species distribution.

Conclusion

We conclude that P. avium harbors a high level of genetic diversity at the north of its distribution range. Present patterns therefore reflect more likely the recent introduction of the species and dispersal dynamics rather than a long-term loss of diversity along South-North ecological clines during the Holocene. With no indications of genetic depletion in growth or phenology, the gene pool in the breeding program is considered suitable for the future propagation of the species in the tested area.
  相似文献   

6.

? Key message

Insurance might be an efficient tool to strengthen adaptation of forest management to climate change. A theoretical model under uncertainty is proposed to highlight the effect, on adaptation decisions, of considering adaptation efforts in forest insurance contracts. Results show that insurance is relevant to increase adaptation efforts under some realistic conditions on forest owner’s uncertainty and risk preferences, and on the observability or not of adaptation efforts.

? Context

One of the challenges of forest adaptation to climate change is to encourage private forest owners to implement adaptation strategies.

? Aims

We suggest the analysis of forest insurance contracts against natural hazards as a vector to promote the implementation of adaptation efforts by private forest owners.

? Methods

We propose a theoretical model of insurance economics under risk and under uncertainty.

? Results

Our results indicate that when climate change makes the probability of the occurrence of the natural event uncertain, then it may be relevant to include adaptation efforts in the insurance contract, leading to an increase in the adaptation efforts of risk-averse and uncertainty-averse forest owners. In addition, we show that the relevance of insurance as a vector to promote adaptation efforts is greater when the forest owner’s effort is unobservable by the insurer as compared to a situation of perfectly observable effort.

? Conclusion

Under some realistic assumptions, the forest insurance contract seems to be a relevant tool to encourage forest owners to adapt to climate change.
  相似文献   

7.

Key message

Separating the internal (ontogenetic) and external (environmental) components of maritime pine development during controlled soil water deficit helps to highlight the plastic response. The adjusted measurements reveal significant differences between families for their plastic response for several physiology and growth traits.

Context

Soil water deficit is and will be a growing problem in some regions. Pinus pinaster Ait. is a species of commercial interest and is recognized as a drought-avoiding species. It is thus of interest to evaluate the adaptation potential of P. pinaster to soil water deficit.

Aims

This paper aims to estimate the plastic response to the variation of water availability at the family level (half-sibs).

Methods

Two-year-old P. pinaster cuttings from four families were submitted during 6 weeks to two contrasting watering regimes. The experiment started in April 2011 shortly after sprouting. The photosynthesis and stomatal conductance to water vapor were measured on 1-year-old needles. Intrinsic water-use efficiency was calculated as the ratio of photosynthesis to stomatal conductance. Radial growth, length of terminal shoot, and total height were also measured. The ontogenetic component of tree development was estimated on the well-watered trees for all the traits. Then, this development effect was eliminated from the data collected on the trees submitted to the soil water deficit in order to keep only the effect of this soil water deficit.

Results

After 6 weeks of reduced watering, the value of all adjusted traits decreased. An average plastic response to the variation of water availability was found to be significant and variable at the family level for the six adjusted variables.

Conclusion

These results suggest that there is genetic variation of phenotypic plasticity to drought in P. pinaster for several traits, including stomatal conductance, which appears to be a promising variable for future selection for resistance to drought.
  相似文献   

8.

Key message

This study presents the results of a systematic genetic analysis between wild and cultivated chestnuts in an orchard in southern Spain, highlighting a complex structure and considerable genetic diversity and opening the possibility to generalize this approach to other Mediterranean orchards.

Context

Tree genetic monitoring offers a good opportunity to evaluate populations and preserve their long-term adaptive evolutionary potential. Chestnut is a multipurpose species of high economic importance in the Mediterranean basin and considered an example of integration between natural and man-driven distribution of diversity under changing environmental and historical conditions. Due to its multipurpose characteristics, man influenced its populations (grafting/sexual propagation) and a complex genetic structure is expected.

Aims

We monitored the trees of a chestnut orchard for studying the genetic diversity and relationship in grafts and rootstocks and detecting possible response in its adaptive potential.

Methods

For this, morphological traits and genomic and genic microsatellite markers were used.

Results

Chestnut trees showed considerable genetic structure, with high level of clonality in the varieties and genetic diversity in rootstocks. The similarity analysis revealed a different clustering pattern for varieties, detecting higher variability for genomic microsatellite markers. Rootstocks harboured a high level of diversity, not previously described, and not contained in the genetic information from populations and varieties from the same region.

Conclusion

Results contribute to understanding the human role in the management of chestnut and demonstrate that rootstocks constitute an unexploited reservoir of variation valuable for conservation strategies against stress factors and future and unpredictable environmental changes.
  相似文献   

9.

Key message

Norway spruce seed has been traded extensively for at least three centuries throughout the natural distribution range in Europe and beyond. However, our knowledge about these transfers is limited. Historic data are essential tools to trace back human-mediated gene flow and for interpretation of recent genetic studies.

Context

Human-mediated gene flow can potentially have a major impact on the genetic composition of forest tree populations, yet our knowledge about seed sources used within the current species’ range is still limited. Norway spruce is one of the most important coniferous species in European forestry, and data drawing conclusions about the genetic composition of current populations are vital with regard to gene conservation and sustainable forest management. Because molecular data are not available on a more detailed scale, historic records provide crucial information about translocations.

Aims

Our aim is to provide the first pan-European review on Norway spruce translocations from the seventeenth until the twentieth century.

Methods

We analysed historic and recent literature compiling information on the cultivation and transfer of Norway spruce reproductive material. Historic records are compared with recent molecular studies.

Results

Seed exchanges have profoundly altered the native genetic population structure of Norway spruce. Especially, Central European seeds have been used throughout and beyond the natural distribution area. Figures illustrating the historic plantings in Europe are provided.

Conclusion

Recent molecular data reveal persisting effects of past translocations. Historical records can be extremely useful for providing information about autochthony and thus guide gene conservation strategies and explain the performance of extant populations.
  相似文献   

10.

Key message

Diachronic photogrammetric canopy height models can be used to quantify at a fine scale changes in dominant height and wood volume following storms. The regular renewal of aerial surveys makes this approach appealing for monitoring forest changes.

Context

The increasing availability of aerial photographs and the development of dense matching algorithms open up new possibilities to assess the effects of storm events on forest canopies.

Aims

The objective of this research is to assess the potential of diachronic canopy height models derived from photogrammetric point clouds (PCHM) to quantify changes in dominant height and wood volume of a broadleaved forest following a major storm.

Methods

PCHMs derived from aerial photographs acquired before and after a storm event were calibrated using 25 field plots to estimate dominant height and volume using various modeling approaches. The calibrated models were combined with a reference damage maps to estimate both the within-stand damage variability, and the amount of volume impacted.

Results

Dominant height was predicted with a root mean squared error (RMSE) of 4%, and volume with RMSEs ranging from 24 to 32% according to the type of model. The volume impacted by storm was in the range of 42–76%. Overall, the maps of dominant height changes provided more details about within-stand damage variability than conventional photointerpretation do.

Conclusion

The study suggests a promising potential for exploiting PCHM in pursuit of a rapid localization and quantification of wind-throw damages, given an adapted sampling design to calibrate models.
  相似文献   

11.

Key message

A remote sensing-based approach was implemented to detect the effect of a late spring frost on beech forests in the Mediterranean mountain region. The analysis of spatio-temporal variability of frost effects on normalised difference vegetation index (NDVI) highlighted the distribution of the canopy damage across the forest according to geomorphic factors such as slope, aspect, and altitude.

Context

Increased intensity and frequency of extreme temperatures such as late spring frosts and heat waves represent the main drivers affecting forest ecosystem structure and composition in the Mediterranean region.

Aims

The main objective of this study was to evaluate the effects of a late spring frost disturbance, which occurred during spring 2016 in southern Italy, through the assessment of the spatial pattern of the damage to the beech forest canopy associated with the peak decrease in normalised difference vegetation index (NDVI), and the analysis of the NDVI temporal recovery after this frost disturbance.

Methods

The forest areas affected by frost were detected through the NDVI differencing technique based on Landsat 8 (OLI/TIRS) imagery time series. The influence of local geomorphic factors (i.e., aspect, elevation, and slope) on forest NDVI patterns was assessed by means of a generalized additive model (GAM).

Results

A rather counterintuitive NDVI patterns emerged according to the forest exposition, with NDVI significantly higher on the north facing areas than the southerly ones. The main canopy damage occurred at about 1250 m and reached up to 1500 m asl, representing the altitudinal range affected by the frost disturbance. Finally, the full canopy recovery occurred within 3 months of the frost event.

Conclusion

The analysis of seasonal Landsat 8 image time series related to local geomorphic factors, such as aspect, slope, and altitude, and plant phenology on a frost event date, contributed to highlight the NDVI spatio-temporal variation and canopy recovery of a Mediterranean mountain beech forest.
  相似文献   

12.

Key message

Near- and mid-infrared spectroscopy allows for the detection of local patterns of forest soil properties. In combination with dendrometric data, it may be used as a prospective tool for determining soil heterogeneity before setting up long-term forest monitoring experiments.

Context

Forest soils and stands generally exhibit higher spatial heterogeneity than other terrestrial ecosystems. This variability needs be taken into account before setting up long-term forest monitoring experiments to avoid multiple interactions between local heterogeneity and the factors tested in the experiment.

Aims

We hypothesized that raw near- and mid-infrared spectra can be used as an integrated proxy of a large set of soil properties. The use of this method, in combination with dendrometric data, should provide a quick and cost-effective tool for optimizing the design of experimental forest sites.

Methods

We assessed the local soil heterogeneity at 11 experimental sites in oak and beech stands, which belong to a new forest long-term ecological research (LTER) network. We used near- and mid-infrared spectroscopy in soil and litter samples. The spectra were subjected to principal components analyses (PCA) to determine the intra-site variability of the soil and litter layers.

Results

Based on mapped PCA coordinates and basic dendrometric data, it was possible to design the experiment and minimize the interactions between the treatment layout and the tested variables. The method was validated with chemical analyses of the soil. No interaction was detected at the set-up of the experiment between the treatment layout and chemical soil properties (C, N, C/N ratio, pH, CEC, Al, Mg, P2O5, Fe, Mn, Na, and K).

Conclusion

Near-infrared (NIR) and mid-infrared (MIR) spectroscopy is a useful tool for characterizing the overall heterogeneity of soil chemical properties. It can be used without any preliminary calibration. In combination with dendrometric data, it provides a reliable method for optimizing LTER plots in different types of ecosystems.
  相似文献   

13.

Key message

Pronounced clonal variation and moderate to high broad-sense heritability estimates of susceptibility to Neonectria neomacrospora were found in Abies nordmanniana in three sites. Significant genotype by environment (G × E) interaction was detected across sites.

Context

Nordmann fir, a widely used Christmas tree species in Europe, has, since 2011, been increasingly damaged by a canker disease caused by Neonectria neomacrospora.

Aims

The objective was to study the genetic variation and genotype by environment interaction in the susceptibility of Nordmann fir to N. neomacrospora.

Methods

Damage caused by N. neomacrospora was evaluated using a visual scale in three Nordmann fir clonal seed orchards in Denmark, partly containing the same clones.

Results

Damage due to N. neomacrospora was substantial at all three sites, and no clone was completely resistant to N. neomacrospora, but a large genetic variation in the susceptibility was detected among clones. Estimates of single-site individual broad-sense heritability for susceptibility varied between 0.38 and 0.47. The average type-B genetic correlation for damage score across sites was 0.34.

Conclusion

Genetic variation was very pronounced, and significant G × E interactions were detected for susceptibility. Further investigations of narrow-sense heritability, expression of the trait in younger material, and identification of the cause of G × E for N. neomacrospora susceptibility in Nordmann fir across different sites are recommended.
  相似文献   

14.

Key message

Self-thinning lines are species- and climate-specific, and they should be used when assessing the capacity of different forest stands to increase biomass/carbon storage.

Context

The capacity of forests to store carbon can help to mitigate the effects of atmospheric CO2 rise and climate change. The self-thinning relationship (average size measure ~ stand density) has been used to identify the potential capacity of biomass storage at a given density and to evaluate the effect of stand management on stored carbon. Here, a study that shows how the self-thinning line varies with species and climate is presented.

Aims

Our main objective is thus testing whether species identity and climate affect the self-thinning line and therefore the potential amount of carbon stored in living biomass.

Methods

The Ecological and Forest Inventory of Catalonia was used to calculate the self-thinning lines of four common coniferous species in Catalonia, NE Iberian Peninsula (Pinus halepensis, Pinus nigra, Pinus sylvestris and Pinus uncinata). Quadratic mean diameter at breast height was chosen as the average size measure. The self-thinning lines were used to predict the potential diameter at a given density and study the effect of environmental variability.

Results

Species-specific self-thinning lines were obtained. The self-thinning exponent was consistent with the predicted values of ?3/2 and ?4/3 for mass-based scaling for all species except P. sylvestris. Species identity and climatic variability within species affected self-thinning line parameters.

Conclusion

Self-thinning lines are species-specific and are affected by climatic conditions. These relationships can be used to refine predictions of the capacity of different forest stands to increase biomass/carbon storage.
  相似文献   

15.

Key message

The chronology of periods of organogenesis and elongation is highlighted in Pinus halepensis.The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year.

Context

Analysis of annual shoot length growth phenology is crucial to assess the impact of climate change on tree production. Little is known about the basic growth characteristics and the phenology of pines.

Aims

The present study disentangles the roles of shoot organogenesis vs elongation in the annual growth cycle of the polycyclic Aleppo pine.

Methods

Growth of young Pinus halepensis trees was monitored monthly for 1 year. At each monitoring date, the bud content and meristem dimensions of the main stem shoots apices were analyzed.

Results

The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year. The gap between a shoot organogenesis and its elongation may vary from 1 month, for the last growth unit, to half a year, for the first growth units.

Conclusion

Our results underline the importance of taking seasonal environmental conditions from both the previous and the current year into account, in order to study the plasticity of annual shoot growth and its response to climate change and variability.
  相似文献   

16.

Key message

Molecular markers were used for paternity recovery in a maritime pine ( Pinus pinaster Ait.) polycross trial, facilitating forward selection. Different breeding strategies for seed orchard establishment were evaluated by comparing genetic gains and diversity. This work opens up new perspectives in maritime pine breeding.

Context

Polycross mating designs are widely used in forest tree breeding to evaluate parental breeding values for backward selection. Alternatively, polycross progeny trials may be used to select the best trees on the basis of individual breeding values and molecular pedigree analysis.

Aims

This study aimed to test such a forward selection strategy for the maritime pine breeding program.

Methods

In a maritime pine polycross trial, progeny with higher breeding values for growth and stem straightness was first preselected with or without relatedness constraints. After paternity recovery, the preselected trees were ranked on the basis of their breeding values, estimated from the recovered full pedigree. Finally, the best candidates were selected with three different strategies (forward, backward, mixed) and three levels of coancestry constraints to establish a virtual clonal seed orchard.

Results

Complete pedigrees were successfully recovered for most of the preselected trees. There was no major difference in expected genetic gains between the two preselection strategies which differed for relatedness constraints. Genetic gains were slightly higher for forward selection than for classical backward selection.

Conclusion

This seminal study opens up new perspectives for using forward selection within the French maritime pine breeding program.
  相似文献   

17.

Key message

Tree heights in the central Congo Basin are overestimated using best-available height-diameter models. These errors are propagated into the estimation of aboveground biomass and canopy height, causing significant bias when used for calibration of remote sensing products in this region.

Context

Tree height-diameter models are important components of estimating aboveground biomass (AGB) and calibrating remote sensing products in tropical forests.

Aims

For a data-poor area of the central Congo Basin, we quantified height-diameter model performance of local, regional and pan-tropical models for their use in estimating AGB and canopy height.

Methods

At three old-growth forest sites, we assessed the bias introduced in height estimation by regional and pan-tropical height-diameter models. We developed an optimal local model with site-level randomizations accounted for by using a mixed-effects modeling approach. We quantified the error propagation of modeled heights for estimating AGB and canopy height.

Results

Regional and pan-tropical height-diameter models produced a significant overestimation in tree height, propagating into significant overestimations of AGB and Lorey’s height. The pan-tropical model accounting for climatic drivers performed better than the regional models. We present a local height-diameter model which produced nonsignificant errors for AGB and canopy height estimations at our study area.

Conclusion

The application of general models at our study area introduced bias in tree height estimations and the derived stand-level variables. Improved delimitation of regions in tropical Africa with similar forest structure is needed to produce models fit for calibrating remote sensing products.
  相似文献   

18.

Key message

Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

Context

Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

Aims

Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

Methods

Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

Results

Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

Conclusion

Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
  相似文献   

19.

Key message The application of the ITOC model allows the estimation of available biomass potentials from forests on the basis of National Forest Inventory data. The adaptation of the model to country-specific situations gives the possibility to further enhance the model calculations.

Context

With the rising demand for energy from renewable sources, up-to-date information about the available amount of biomass on a sustainable basis coming from forests became of interest to a wide group of stakeholders. The complexity of answering the question about amounts of biomass potentials from forests thereby increases from the regional to the European level.

Aims

The described ITOC model aims at providing a tool to develop a comparable data basis for the actual biomass potentials for consumption.

Methods

The ITOC model uses a harmonized net annual increment from the National Forest Inventories as a default value for the potential harvestable volume of timber. The model then calculates the total theoretical potential of biomass resources from forests. By accounting for harvesting restrictions and losses, the theoretical potential of biomass resources from forests is reduced and the actual biomass potentials for consumption estimated.

Results

The results from ITOC model calculations account for the difference between the amounts of wood measured in the forests and the actual biomass potentials which might be available for consumption under the model assumptions.

Conclusion

The gap between forest resource assessments and biomass potentials which are available for consumption can be addressed by using the ITOC model calculation results.
  相似文献   

20.

Key message

Segregating stands and logs based on internal wood properties is likely to lead to improvements in value for forest and mill owners, but some situations were found where no segregation was the best alternative. Where segregation was the best alternative, segregating logs at the landing, or stands based on pre-harvest inventory assessments, led to the greatest value improvements.

Context

The benefits of segregating stands, stems and logs based on wood properties are not clear due to the high variability of wood properties, poor market signals for wood with superior properties and poor understanding of the costs across the value chain.

Aims

The aim of this study was to determine if the benefits of segregating stands and logs outweighed the additional costs.

Methods

A techno-economic model (SEGMOD) was constructed that allowed comparisons of segregation at different approaches in the supply chain. The model was populated with Pinus radiata (D.Don) stand, cost and price data from companies operating in four forestry regions of New Zealand. A total of 255 segregation scenarios were modelled, which included variations in segregation approach, stand type, stand location, terrain type, market focus and market horizon.

Results

Segregating logs based on internal wood properties led to improvements in stumpage and mill door value for most of the scenario sets evaluated. The No Segregation option was found (infrequently) to be best in unpruned stands. Segregating logs based on pre-harvest inventory assessments or at the landing would appear to be the best approach.

Conclusion

The economic benefits of segregating stands and logs for forest and mill owners outweighed the additional costs in most of the scenarios evaluated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号