首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aims to investigate and quantify the porosity in the cross section of Phyllostachys edulis (Moso bamboo) culm wall. The porosity results are expected to be utilised in numerical study of heat and moisture transfer. Computed tomography (CT) and backscattered electron (BSE) imaging methods are utilised in this study because these two methods allow measurements of the anisotropic features of bamboo specimens. The results of these two methods can be represented as the function of the real dimension rather than the pore size distribution of the specimen. The specimens are obtained from eight different locations along the Moso bamboo culms. Both internodes and nodes specimens are measured in this study. The average porosity, standard deviation (SD) and coefficient of variation (COV) are calculated for BSE and CT results. Pearson product-moment correlation coefficient (PPMCC) is also calculated in this study to analyse the correlation between the BSE results and CT results. Typical porosity results from 400 sampling points and 10 portions average porosity are analysed in this study. The CT scanning results show similar trend with BSE results. The correlation relationship between BSE and CT results approaches moderate correlation level to strong correlation level. The average porosity of internode specimens is from 43.9 to 58.8 % by BSE measurement and from 44.9 to 63.4 % by CT measurement. The average porosity of node specimens is from 37.4 to 56.6 % by BSE measurement and from 32.1 to 62.2 % by CT measurement.  相似文献   

2.
The objective of this study was to find an effective method for treating ma bamboo (Dendrocalamus latiflorus) and moso bamboo (Phyllostachys pubescens) using new water-based reagents containing copper. The effects of green-color protection using various treatments on bamboo culms were examined in this study. Two methods were used: heating in a water bath and ultrasonic dipping. The results revealed that excellent green-color protection (a* value of −6.2) was obtained when ma bamboo culms were treated with 0.25% ammoniacal copper quaternary compound-type B (ACQ-B) in a water bath at 100°C for 2 h. It was also found that the wettability of bamboo epidermis increasedsignificantly after pretreatment in a mixture of 1% KOH and surfactant in a water bath at 100°C for 30 min. Furthermore, pretreated moso bamboo culms exhibited excellent green-color protection after they were treated with 0.25% ACQ-B at 100°C for 2 h (a* value of −8.2). This novel treatment method definitely endows the bamboo culms with a fascinating green skin color and consequently could increase the economic value of bamboo products. No improvement in green-color protection was found when ultrasonic energy was added to the water bath at ambient temperature.  相似文献   

3.
This study examined the antibacterial activity of moso bamboo shoot skin (Phyllostachys pubescens). Bamboo shoot skin itself and its dichloromethane extract had antibacterial activity against Staphylococcus aureus. Results suggest the possibility of effective utilization of antibacterial materials from bamboo shoot skins that are mainly discarded at present.  相似文献   

4.
The decay pattern in bamboo fibers caused by a brown rot fungus, Gloeophyllum trabeum, was examined by microscopy. The inner part of the polylaminate secondary wall was degraded, while the outer part of the secondary wall remained essentially intact. Degradation in bamboo fiber walls without direct contact with the fungal hyphae was similar to wood decay caused by brown rot fungi. Degradation in polylaminate walls was almost confined to the broad layers whereas the narrow layers appeared resistant. The p-hydroxylphenyl unit lignin in middle lamella, particularly in the cell corner regions, was also degraded. The degradation of lignin in bamboo fibers was evidenced by Fourier transform infrared spectra. The present work suggests that the decay of bamboo fiber walls by G. trabeum was influenced by lignin distribution in the fiber walls as well as the polylaminate structures.  相似文献   

5.
Epidermal peeling (EPT) and steam-heating (SHT) treatments are two widely processing methods in bamboo industry. Moso bamboo (Phyllostachys pubescens Mazel) and makino bamboo (Phyllostachys makinoi Hayata) are important economical bamboo species in Taiwan and China. The subject of this study was to access the changes of chemical and mechanical properties in moso and makino bamboo culms, which were collected from Taiwan and China after EPT and SHT. As regard to chemical properties, the amounts of extractives and ash were increased both in moso and makino bamboos after EPT and SHT. In contrast, the contains of holocellulose and α-cellulose were decreased after EPT and SHT for two bamboos. Moso bamboo collected from China contained the lowest cellulose content but the highest amount of hemicellulose by SHT. The lignin contents of all samples were no significant different after SHT, and it might due to the structure of lignin did not destroy at 120 °C. For the mechanical properties, the density of all makino and moso bamboo samples was reduced after SHT; moreover, the decreasing trend of density was similar to the reducing of holocellulose, α-cellulose, hemicellulose, and equilibrium moisture content (EMC). All bamboo samples without EPT presented the highest modulus of elasticity (MOE) and modulus of rupture (MOR) whether SHT or not. Both MOE and MOR of all bamboo samples were decreased after SHT. The integrity of the bamboo skin is important for the dimensional stability of the bamboo, and the water absorption ability would be increased after EPT; however, SHT decreased the water absorption of bamboo.  相似文献   

6.
7.
We derive a two-way volume equation for estimating the apparent culm volume of one of the largest bamboo species, Phyllostachys pubescens Mazel ex Houz. The volume equation was derived from the assumptions that (1) the relative culm form can be expressed by Kunze’s equation and (2) normal form-factors at two different relative heights are steady at constants independent of culm sizes. A total number of 200 sample culms were collected from a stand of P. pubescens in Mt. Toshima, Kumamoto Prefecture, western Japan, and were randomly bisected into two sets of data, i.e. modeling and test data. For the modeling data, normal form-factors at 0.6 and 0.9 in relative height were steady at 0.908 and 0.448, respectively. The coefficients of the volume equation were determined based on these steady values of the normal form-factors. For the test data, the apparent culm volume was estimated from diameter at breast height and culm height with the determined volume equation. The mean error and root mean square error of the estimated culm volume were, respectively, 8.120 × 10−5 and 3.291 × 10−3 m3, and there was no significant difference between estimated and actual volume. In conclusion, the two-way volume equation presented here appears to be convenient for predicting the apparent culm volume for P. pubescens.  相似文献   

8.
In the past few decades, moso bamboo (Phyllostachys pubescens) forests in Japan have rapidly expanded, and moso bamboo is now invading nearby native forests. In this study, we assessed the effects of moso bamboo invasion on the soil microbial community and activity in warm temperate forests in western Japan. We sampled soil, measured soil microbial respiration, and used phospholipid fatty acid (PLFA) analysis to examine changes in microbial community composition. We found that the invasion of bamboo into the native secondary forest of Japan can cause changes to some soil properties. We also observed a significant difference in soil microbial community composition between the bamboo and native forests. The ratio of bacterial PLFA to fungal PLFA was significantly higher after bamboo invasion, while bacterial PLFA contents were significantly lower in the organic layer. Soil microbial respiration rates significantly decreased in the organic layer, and significantly increased in the mineral layer. Microbial respiration activity, as indicated by soil microbial respiration rates per total PLFA content, decreased in the organic layer but increased in the mineral layer after bamboo invasion. These results indicate that bamboo invasion significantly affects associated soil microbial communities and decomposition patterns of soil organic matter.  相似文献   

9.
As a construction material, the phenomenon of creep is critical to bamboo structural design. The present work investigates variation of flexural creep behavior of bamboo (Phyllostachys pubescens) in its radial direction. Bamboo specimens were divided into two groups, half of the specimens were loaded by the green side, which fiber-rich outer culm wall was in compression (A); the other half were loaded by the yellow side, which fiber-rich outer culm wall was in tension (B). The specimen in both groups were cut into three sections along radial direction, the outer part (A1, B1), the middle part (A2, B2), and the inner part (A3, B3). All specimens were conducted to a 24 h-creep tests. The results show that: The creep resistance of outer part of bamboo is favorable, no matter which kind of loading way. Compared to type A loading with fiber-rich part, specimens of type B loading with fiber-less part showed a higher creep residual strength. The fiber volume fraction was linearly associated with the initial creep of type A and the final creep of type B. It mainly related to the feature and distribution of fiber and parenchyma.  相似文献   

10.
The effect of ultraviolet-visible light irradiation on changes in surface chemistry and morphology of moso bamboo (Phyllostachys pubescens Mazel) was investigated. Fourier transform infrared (FT-IR) and FT-Raman spectroscopy were used in combination to study chemical changes induced by exposure to artificial sunlight (xenon lamp) for up to 160 h, and the resulting physical changes of cell walls of bamboo surfaces were examined by scanning electron microscopy (SEM). FT-IR results showed that significant changes occurred in the lignin component as indicated by considerable decreases in the intensities of the characteristic aromatic lignin peak at 1512 cm−1 and other associated bands. This was accompanied by formation of new carbonyl groups at 1735 cm−1, resulting in photooxidation of bamboo surfaces. The photosensitive nature of bamboo lignin was also demonstrated by FT-Raman analysis, in which obvious decreases in intensities of Raman bands at 1604 and 1630 cm−1 mainly derived from lignin and free and esterified p-coumaric and ferulic acids were observed. SEM micrographs of the irradiated cross sections of bamboo revealed that significant damage occurred to the fiber walls, whereas the parenchyma cells exhibited slight distortion and some cracks occurred in the cell walls. The structures of cell corners and middle lamellae were nearly intact after irradiation.  相似文献   

11.
Austrocedrus chilensis forests suffer from a disease caused by Phytophthora austrocedrae, which is found often in wet soils. We applied three widely used modelling techniques, with different data requirements, to model disease potential distribution under current environmental conditions: Mahalanobis distance, Maxent and Logistic regression. Each model was built using field data of health condition and landscape layers of environmental conditions (distance to streams, slope, aspect, elevation, mean annual precipitation and soil pH NaF). We compared model predictions by area under the receiver operating characteristic curve and Kappa statistics. A reasonable ability to predict observed disease distribution was found for each of the three modelling techniques. However, Maxent and Logistic regression presented the best predictive performance, with significant differences with respect to the Mahalanobis distance model. Our results suggested that if good absence data are available, Logistic regression should be used in order to better discriminate sites with high risk of disease. On the other hand, if absence data are not available or doubtful, Maxent could be a very good option. The three models predicted that around 50% (49–56%) of the currently asymptomatic forests are located on sites at risk of disease according to abiotic factors. Most of these asymptomatic forests surround the current diseased patches, at distances lower than 100 m from diseased patches. Management considerations and the scope of future studies were discussed in this article.  相似文献   

12.
Bursaphelenchus mucronatus Mamiya et Enda has been recovered for the first time from adults of the cerambycid beetle, Monochamus urussovi (Fischer), in Hokkaido, Japan. The nematode was also recovered from the inner bark of Picea jezoensis (Siebold et Zuccarini) Carrière and Abies sachalinensis (Fr Schmidt) Masters infested with M. urussovi larvae. PCR–RFLP analysis indicated that B. mucronatus in Hokkaido is the European type.  相似文献   

13.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

14.
The problem of salinized soils has become one of the most serious constraints to agricultural and forest productivity. With the purpose of enhancing salt stress tolerance of Populus tomentosa, we transformed this tree species with spermidine synthase (SPDS) genes derived from an apple by an Agrobacterium-mediated method. Four transgenic clones were confu'med by PCR and Southern blot analysis. As well, the expression of introduced SPDS genes was analyzed by real-time quantitative PCR.  相似文献   

15.
In this study, molding moso bamboo strips to a curved shape using hot-press molding operation was explored. Bamboo strips with different thickness and moisture content (MC) were subjected to press molding under 120–210 °C for different time. Changes in the chemical components of bamboo were analyzed by Fourier-transform infrared spectroscopy (FTIR). Effect of MC on thermal mechanical behavior of bamboo was investigated using dynamic mechanical analysis (DMA). Results showed that the influencing degree of four variables on compression and recovery ratios decreased as: temperature?>?time?>?thickness?>?MC. Compression ratio increased and recovery ratio decreased dramatically when pressing temperature exceeded 180 °C. FTIR analysis indicated that polysaccharide (especially hemicelluloses) underwent a progressive thermal degradation during compression at 180 and 210 °C for 40 min, whereas relative content of lignin increased. DMA results showed that bamboo samples with a higher MC had a lower storage modulus value, confirmed water had a plasticizing effect. The loss factor of bamboo with higher MC (12 and 16%) exhibited two major transitions centred around 100 °C (α1) and 50 °C (α2), respectively. The temperature of these α transitions kept almost unchanged as moisture level increased from 12 to 16%. These findings provide fundamental information for the future preparation of curved bamboo as profiled components in engineered products.  相似文献   

16.
Indonesia’s pulp and paper industry needs a large area of sustainably grown plantations to support its continued development. Acacia mangium has been the key species underpinning the pulp and paper industries in Sumatra, however increased disease pressure on A. mangium is expected to require large-scale conversion of Acacia plantations to Eucalyptus in the near future. The effect of such a large scale change in plantation species on soil moisture, for both tree production, and catchment hydrology is unknown. In this study we sought to characterize the impacts of plantation species (Acacia or Eucalyptus) and nitrogen management, on soil moisture, soil water depletion and depth to groundwater under stands of Acacia mangium and Eucalyptus pellita over the first 2–3 years after establishment. The study was conducted in experiments at four sites in Sumatra, Indonesia. Soil moisture and soil water depletion were not influenced by plantation species or fertilizer treatment. Soil moisture content and soil water depletion were strongly influenced by shallow groundwater at two of the four sites, however depth to groundwater did not influence stem growth. Results from the field trials cautiously suggest that large scale conversion of Acacia mangium to Eucalypt species in these regions is unlikely to result in increased moisture stress, nor is conversion of plantation species likely to lead to substantial differences in catchment hydrology. This study demonstrated the importance of conducting multi-site studies when investigating biophysical relationships in forest/plantation systems.  相似文献   

17.
18.
Epidermal peeling treatment (EPT) and steam-heating treatment (SHT) are two popular pretreatments for bamboo processing. This study examined the effects of EPT and SHT on strength properties, profile density distribution, internal bond strength (IB), rate of springback, nail withdrawal resistance, and dimensional stability of oriented bamboo scrimber board (OBSB) made of moso bamboo (Phyllostachys pubescens Mazel) and makino bamboo (P. makinoi Hayata) strips. Results obtained using non-destructive testing (NDT) revealed that EPT for moso bamboo in the processing of OBSB caused lower ultrasonic-wave velocity (Vu) and dynamic modulus of elasticity (DMOEu) parallel to the fiber direction, but higher Vu and DMOEu perpendicular to the fiber direction. However, EPT slightly affected variations in modulus of elasticity (MOE) and modulus of rupture (MOR) of moso bamboo. In contrast, the effects of SHT on Vu and DMOEu were inconsistent and insignificant among the OBSB samples. On the other hands, SHT caused increasing in MOE and MOR of OBSB, but leads to decrease in MOE and MOR of OBSB comprising bamboo strips after EPT. Both EPT and SHT contributed to more uniform profile densities in OBSB and had a positive impact on nail withdrawal resistance. EPT increased IB of moso bamboo and SHT enhanced IB of makino bamboo with epidermis only. Bamboo strips after SHT resulted in significant decrease in water absorption of all OBSB specimens. Reduction in swelling as a result of SHT not only improved the dimensional stability of OBSB but also enhanced strength.  相似文献   

19.
Anthropomorphic changes in land use have extensively modified natural forests in the European countries over the twentieth century. This yielded a decline in the number of plant species and fragmentation of their populations. Understanding of the impact of land use changes on the spatio-temporal dynamics of forest species is essential to the ecological sustainability of the natural forests in the region. In this study, we examined the spatio-temporal dynamics of Q. faginea forests in the Central Pre-Pyrenees (Spain) over period from 1957 to 2006. Gains and losses in Q. faginea forests were quantified by means of construction of matrix of changes. Patch fragmentation, isolation, and irregularity were assessed using a set of standard landscape metrics. Also, the probable factors influencing these changes were identified employing three statistical models. The univariate generalized additive model (GAM) was used to explore the nature of the relationship between the response and predictor variables. The Bayesian model averaging (BMA) and the adaptative regression mixed with model screening (ARMS) were employed to identify the most important factors affecting changes in Quercus faginea forests. The results of this research revealed substantial changes in the spatial patterns of Q. faginea forests in the Central Pre-Pyrenees over the last 50 years. These changes have been clearly reflected in noteworthy increase of fragmentation, isolation degrees, and patch irregularity. Changes in the spatial patterns of Q. faginea forests were particularly driven by the vast introduction of pine plantations and the former deforestation, associated with increasing the amount of croplands and pastures. In addition, roads acted as attractors for changes in land use and deforestation, which influenced strongly the spatial variability in Q. faginea forests. Therefore, the long-term sustainability of these forests largely depends on the landscape conservation, where this species occurs. Moreover, an improvement in the integrity and connectivity of the remaining patches of native Q. faginea forests is still demanded.  相似文献   

20.
The objectives of this study were to investigate differences in the site preferences of seedlings of Picea jezoensis and Abies sachalinensis on decayed logs, and to examine the occurrence patterns of seedlings and saplings of the two species and whether they occur together or separately on logs. We characterized the habitats of 1–2-year-old seedlings of the two species on logs and examined the relationship of the two species on logs by growth stages in two plots. One plot had been disturbed about 50 years ago whereas the other had not for a long time. Although the thickness of moss and the litter layer in the habitats of 1–2-year-old seedlings were significantly different between the two species, the two species could occur together. In one study plot, seedlings and saplings of the two species occurred together. The initial occurrence pattern of the seedlings affected the occurrence patterns of the saplings on logs. The occurrence patterns of the seedlings and saplings of the two species on logs seemed to be affected by the abundance of seed trees. In the other study plot saplings of the two species occurred separately, but one species was not always competitively superior to the other species. Disturbance history affected the occurrence patterns of the saplings of the two species on decayed logs at the two study plots. Consequently, it is concluded that seed dispersal and the abundance of available logs, which are usually affected by disturbance, are significant factors in the natural regeneration of conifers in Hokkaido.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号