共查询到20条相似文献,搜索用时 78 毫秒
1.
Steffen Taeger Barbara Fussi Monika Konnert Annette Menzel 《European Journal of Forest Research》2013,132(3):481-496
Seedlings of ten provenances of Scots pine (Pinus sylvestris L.) from the southwestern to the central part of the species distribution range were investigated in a greenhouse experiment under dry conditions compared to a well-watered control. We conducted an isozyme study and recorded phenology as well as growth traits during the first year of growth. Genetic variability and genetic diversity increased from the westernmost provenances to those central to the distribution. Provenances from the Apennines and Spain revealed the strongest genetic differentiation compared to all others, whereas populations from Germany, Poland and Bulgaria were found to belong to the same gene pool. Seedling development and bud set were faster in northern populations. Shoot length was highest for Polish and German provenances within both regimes, populations from France and Spain had the longest roots. Reduced soil moisture slowed later development stages and delayed bud set for all provenances by about 5 days. Shoot growth decreased considerably under the dry regime for all provenances. German provenances were the most sensitive to drought, whereas Spanish provenances showed adaptation to drought conditions indicated by the lowest reduction in shoot growth relative to optimum conditions. The results of this pilot study show that under more pronounced drought conditions with repeated drought events, the so far established superiority of northeastern provenances compared to southwestern ones could diminish in the future. 相似文献
2.
Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics
The development of anatomical, hydraulic and biomechanical properties in Scots pine (Pinus sylvestris L.) stems aged 7 to 59 years was followed. The hydraulic diameter and length of tracheids increased with age to a maximum at 15 and 35 years, respectively. Number of tracheids per unit of sapwood area decreased with age to a minimum of 500-600 tracheids mm(-2). Variations in specific hydraulic conductivity and Young's modulus of stems were associated with variation in anatomical properties. Over the time sequence considered, hydraulic and mechanical properties were positively related to each other and followed a similar developmental pattern, with no suggestion of a trade-off between the two. For most of the tree's life-cycle, heartwood made only a small contribution to whole-section mechanical stiffness because of its location close to the flexural neutral axis, and because of the presence of juvenile wood. 相似文献
3.
Fluctuations in nitrate reductase activity (NRA), nitrate, nitrite, protein and total nitrogen content of bare-root Scots pine seedlings (Pinus sylvestris L.) raised outdoors were investigated during the first growing season. Nitrate reductase activity was higher in roots than in needles, whereas NO(3) (-) content was higher in needles than in roots and increased in both from June to October. Nitrate reductase activity in roots correlated more closely with NO(3) (-) N in the soil than did NO(3) (-) in the roots. In autumn, there was a closer correlation between foliar NRA and NO(3) (-) in the needles than with NO(3) (-)-N in the soil. Nitrite was not detected in the seedlings during the growing season. Total nitrogen content decreased toward the autumn, whereas protein content initially decreased but increased again in autumn. Acrylic netting placed above the seedlings increased both air and soil temperatures and apparently accelerated the use of nitrate. 相似文献
4.
Galina F. Antonova Tamara N. Varaksina Tatiana V. Zheleznichenko Victoria V. Stasova 《Wood Science and Technology》2014,48(5):919-936
Lignin deposition at consecutive secondary wall thickening stages of early and late xylem cells during annual ring wood formation in Scots pine (Pinus sylvestris L.) stems was studied. Lignin patterns, isolated by thioglycolic acid method, consisted of alcohol-soluble (LTGA-I) and alkali-soluble (LTGA-II) fractions. The sum of two fractions, being the total lignin content, gradually increased in the course of lignification. However, the increments of lignin amount at each development stage of early and late tracheids were different. The intensity of lignin deposition increased in the course of earlywood tracheid maturation and decreased toward the end of latewood cell differentiation. The deposition of two lignin fractions in each layer of forming wood also occurred oppositely. The increment of LTGA-I descended, whereas that of LTGA-II increased from the beginning to the end of early xylem lignification. In contrast, LTGA-I increment dropped, whereas LTGA-II rose during late xylem lignification. Gel permeation chromatography showed that the lignins, formed at the beginning of lignification, were more homogeneous and had higher molecular weight compared with the lignins at the end of cell differentiation. Besides, the content of cellulose, estimated as the residue after lignin isolation, and of cell wall substances, presented as cell wall cross-section areas, at consecutive maturation stages of early and late xylem cells have been found to be different. The data show that lignin deposition occurred in different conditions and with opposite dynamics during early and late xylem formation. 相似文献
5.
Sveshnikov D Ensminger I Ivanov AG Campbell D Lloyd J Funk C Hüner NP Oquist G 《Tree physiology》2006,26(3):325-336
We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 degrees C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 micromol m(-2) s(-1)) than in shaded plants (50 micromol m(-2) s(-1)). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to -5 degrees C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from -5 to 20 degrees C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively). In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the exposed seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 degrees C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to -5 degrees C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone Q(B)- (S2Q(B)-) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor Q(A)- (S2Q(A)-) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2Q(B)- and S2Q(A)-, which might result in increased probability for non-radiative radical pair recombination between the PSII reaction center chlorophyll a (P680+) and Q(A)- (P680+)Q(A)-) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions. 相似文献
6.
Dielectric spectroscopy of Scots pine 总被引:1,自引:0,他引:1
Laura Tomppo Markku Tiitta Tapio Laakso Anni Harju Martti Venäläinen Reijo Lappalainen 《Wood Science and Technology》2009,43(7-8):653-667
Dielectric properties of Scots pine (42 trees) were compared with density, moisture content (MC), and resin acid content (RAC) (of heartwood). The samples were measured in frozen, green, conditioned and non-conditioned dry moisture states to evaluate the potential of dielectric spectroscopy in determining the wood characteristics at different stages of wood processing. Heartwood and sapwood parts of each sample were measured separately, and through-transmission measurement was conducted in longitudinal and tangential direction at frequencies from 1 MHz to 1 GHz. The MC and density correlated significantly with the dielectric parameters in both measurement directions but especially in longitudinal direction. The RAC of the heartwood correlated significantly with tanδ and ε″/(ε′ ? 1) of the green samples measured in the tangential direction at frequencies above 200 MHz. The correlation at 1 GHz was ?0.56 for green samples, ?0.66 for conditioned samples and ?0.61 for non-conditioned samples (P < 0.001, for all). The study suggests that the extractives also affect radio-frequency dielectric responses, which might be used for extractive analyses of pine heartwood. 相似文献
7.
We previously traced 10B-enriched boric acid from shoots to roots to demonstrate the translocation of boron (B) in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings. To gain a more detailed understanding of B translocation, we sought: (1) to demonstrate B retranslocation directly, by showing that foliar-applied 10B is located in the new growth after dormancy; and (2) to assess whether shoot-applied B affects growth in the long term. We applied 10B-enriched boric acid to needles of Scots pine and Norway spruce seedlings. After a dormancy period and 9 weeks of growth, small but significant increases in the 10B isotope were found in the new stem and needles of both species. In Scots pine, the total B concentration of the new stem was also increased. Both species contained polyols, particularly pinitol and inositol. Boron-polyol complexes may provide a mechanism for mobilizing B in these species. To determine the long-term effects of applied B, seedlings were grown for two growing seasons after the application of 10B to shoots. In Norway spruce, the proportion of 10B in the root systems and current needles of the harvest year was slightly higher than in the controls, and in Scots pine root systems, marginally so. The B treatment had no effect on growth of Norway spruce seedlings. In Scots pine seedlings, the B treatment caused a 33% increase in total dry mass and significantly increased the number of side branches. 相似文献
8.
9.
This research investigates wood defects, particularly the formation of surface cracks, during the production of thermally modified wood and its exposure to cyclic moisture changes. Boards of Norway spruce and Scots pine originating from different steps within the production of ThermoWood® were collected and wood defects were investigated at macroscopic and microscopic scale. Subsequently, the wood was exposed to capillary wetting cycles to record its sensitivity towards cracking. After the modification process, typical anatomical defects of conventional kiln-drying became more frequent and severe, with the magnitude being to some extent depending on the presence of defects in the raw material. At microscopic scale, damages to ray parenchyma and epithelial cells as well as longitudinal cracks within the cell walls of earlywood tracheids were evident in thermally modified wood. Despite a lower water uptake and higher dimensional stability, thermally modified wood was more sensitive to surface cracking during wetting cycles than unmodified wood, i.e. at the outside face of outer boards (near bark). For limiting surface cracking of thermally modified wood during service life, the use of high-quality raw material, the exposure of the inside face of the boards (near pith) and the application of a surface coating are considered beneficial. 相似文献
10.
Models for predicting microfibril angle variation in Scots pine 总被引:1,自引:0,他引:1
David Auty Barry A. Gardiner Alexis Achim John R. Moore Andrew D. Cameron 《Annals of Forest Science》2013,70(2):209-218
Context
Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.Aims
The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.Methods
Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.Results
The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.Conclusion
A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems. 相似文献11.
Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ~51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought stress. 相似文献
12.
The purpose of this study was to construct models for predicting the structure of young Scots pine (Pinus sylvestris L.) stands. The two-parameter Weibull function characterized the height distribution of the stands. In young stands height was preferred to dbh as a random variable because of its continuous feature. Tree diameters were predicted using a multiplicative model, fitted as a linearized mixed-effect model. The modelling data consisted of repeatedly measured Scots pine dominated juvenile stands, carried out on a sub-sample of the 7th National Forest Inventory. The data covered a dominant height range from 0.2 up to 17 m. Two independent data sets were used to validate the models. The Weibull function was fitted using the maximum likelihood method. Four methods for predicting the distributions were compared: (1) parameter prediction models (PPM) consisting of seemingly unrelated regression equations, (2) a generalized linear model (GLM) which was a one-stage distribution and model fitting procedure, (3) a hybrid method including PPM for the shape parameter together with moment-based parameter recovery for the scale parameter, and (4) inclusion of moment-based parameter recovery for the scale parameter in the estimated GLM. Goodness-of-fit were tested in terms of Kolmogorov–Smirnov and error index statistics. Parameter recovery showed no improvement when used with PPM, but it improved GLM and gave the overall best performance for this new method. The constructed diameter–height model showed quite flexible and unbiased behaviour. Models are recommended as practical tools for Finnish forest management planning purposes. 相似文献
13.
R.‐L. Petäistö 《Forest Pathology》2005,35(2):85-93
The connection between natural conidia dispersal of Gremmeniella abietina (A‐type) and the disease incidence and severity in first and second year conifer seedlings of Pinus sylvestris was studied in central Finland. The seedlings where exposed to natural infection for a 3‐week period throughout the growth season, followed by a 3‐week incubation period in a growth chamber to promote symptom expression. In second year seedlings the infection periods in May–June had a similar effect as regards disease outbreak and roughly half of the successful infections occurred during these periods. However, the first year seedlings were more severely diseased after the infection period in late July/early August, although the inoculum density was lower during this time compared with the period in late June/early July. This result is consistent with earlier studies. The effect of age and growth phase of the seedlings, temperature sum and the number of conidia on the disease occurrence is discussed and compared with the results of earlier studies in which artificial inoculation was employed. 相似文献
14.
Stand Density Control Diagrams for Scots pine and Austrian black pine plantations in Bulgaria 总被引:1,自引:0,他引:1
Stand Density Control Diagram (SDCD) is a stand-level mathematical model, which describes the relationships between yield,
density and mortality throughout all stages of stand development. The SDCD is primarily used to derive density control schedules
by management objectives. The main objectives of the present study are to define a modified model of SDCD for application
to Scots pine (Pinus sylvestris L.) and Austrian black pine (Pinus nigra Arn.) plantations in Bulgaria, to examine the fitness of the model with representative experimental data sets from plantations
of both species and to present a way of direct application of the SDCDs for practical purposes. The constructed SDCDs characterize
the spatial-temporal dynamics of the pine plantations in a broad range of densities, forest sites and growth stages from 4
to 26 (28) m of dominant height class. The full density lines were fixed with self-thinning exponents α = 1.69 and α = 1.75
for Scots pine and Austrian black pine, respectively, and the trajectories of natural thinning for 23 initial densities (444-40000/ha)
were determined. A direct way for application of the SDCDs to the plantation management was designed to estimate the optimal
initial densities for the maximum attainable final yield and large-size wood production by self-thinning stands. 相似文献
15.
The response of free polyamines (putrescine, spermidine and spermine) in needles of Scots pine (Pinus sylvestris L.) to varying needle potassium concentrations was investigated in two potassium fertilization experiments on drained peatlands. A significant negative correlation was observed between putrescine and potassium concentrations in needles. Putrescine responded more sensitively to decreasing needle K concentrations during the growing season than during the winter. Putrescine accumulation started when needle potassium concentrations were above 5.5 mg g(dw) (-1) in summer and above 5.0 mg g(dw) (-1) in winter. A decrease in needle potassium concentrations below 4.3 mg g(dw) (-1) in summer and below 3.5 mg g(dw) (-1) in winter resulted in an exponential increase in putrescine concentrations. Putrescine accumulation was initiated well above the needle potassium concentrations generally considered indicative of deficiency. The exponential increase in putrescine concentrations in winter occurred within the range of needle potassium concentrations that has been identified as indicating severe potassium deficiency. 相似文献
16.
E. Bilgili M. Ozturk K. A. Coskuner I. Baysal B. Serdar H. Yavuz M. Eroglu Y. Usta 《Forest Pathology》2018,48(4)
Mistletoe infection results in substantial growth losses in mistletoe‐infected forests. This study reports and evaluates the results of retrospective analyses of radial growth of Scots pine (Pinus sylvestris) in relation to the level of infection of pine mistletoe (Viscum album ssp. austriacum). A total of 43 Scots pine trees were destructively sampled from different sites. Of these trees, 14 were uninfected and 29 were infected. Infection classes were determined using six‐class dwarf mistletoe rating system (DMRS). All needle and mistletoe biomass were removed completely and weighed for each sampled tree. Subsamples from needles and all mistletoe biomass were taken to the laboratory for oven‐dried weight determinations. Five‐cm‐thick wood discs were cut from the stem at the breast height (1.3 m) to determine annual basal area increment for the last 25 years. In addition to DMRS, new infection classes were created using mistletoe‐to‐needle biomass (MB/NB) ratio. The results showed that the radial growth losses could be as much as 41% to 64% at different infection levels. The rate of growth loss in relation to DMRS and MB/NB ratio was similar, but with a larger variability in DMRS values. The results showed that both DMRS rating and MB/NB ratio seem to be important for quantifying growth loss on Scots pine trees infected with mistletoe. The results of this study can also be invaluable in modelling the effects of mistletoe on the growth of Scots pine trees. 相似文献
17.
The aim of this study was to investigate the differences in infections caused by Agrobacterium tumefaciens in a conifer, Scots pine (Pinus sylvestris), and in a non-host deciduous species, silver birch (Betula pendula). All the Agrobacterium tumefaciens strains tested caused crown-gall formation in both tree species, but the infection rates varied remarkably. In Scots pine, the development of galls was rare, and slower than in silver birch. Inoculation into the base of the stem were the most successful in gall induction. Silver-birch galls were large, often surrounding the whole stem, in contrast to Scots pine galls, which were characterized by their small size and neck-like connection with the host plant. In silver birch, no other morphological changes could be seen. In Scots pine, abnormal phenotypes with proliferating short shoots above the galls were observed during the second and third growing season. The results indicate that, of the two non-host tree species, the deciduous one, silver birch, is more susceptible to an A. tumefaciens infection than the conifer, Scots pine. The matrix for A. tumefaciens infection in silver birch differs from that in Scots pine, since the terpene compounds of Scots pine seem either to kill the agrobacteria or to suppress their growth. The differences between the species could be partly caused by their difference in sensitivity to phytohormones. These features reflect evolutionary incompatibility between A. tumefaciens and a gymnosperm. 相似文献
18.
Jyrki Tomminen 《Forest Pathology》1993,23(4):236-243
The objective of the study was to determine the role of Finnish Bursaphelenchus mucronatus as a possible pathogen in Scots pine, Pinus sylvestris, under Finnish ambient weather conditions. Small seedlings and young field grown trees were used as inoculation targets. The results suggested the nematode being of minor importance as a tree pathogen in Finland. 相似文献
19.
From March to October, acid phosphatase activity and phosphorus (P) concentration were measured in four needle age classes of the upper and lower crowns of fertilized and unfertilized Scots pine (Pinus sylvestris L.) trees. Negative correlations between acid phosphatase activity and P concentration were observed in current-year needles and in needles in the upper part of the crown, whereas there was a positive correlation between enzyme activity and P concentration in older needles and in needles in the lower part of the crown. In May and October, needles of all ages showed increased acid phosphatase activity. The most sensitive response of acid phosphatase activity to phosphate supply and phosphorus status of the whole tree was seen in current-year needles on the first whorl where a 300% increase in acid phosphatase activity was observed in response to a decrease in foliar P concentration of 1.7-1.8 mg P g(DW) (-1). 相似文献
20.
Miren del Río Rafael Calama Isabel Cañellas Sonia Roig Gregorio Montero 《Annals of Forest Science》2008,65(3):308-308
The effect of different thinning intensities on growth and yield was studied in Pinus sylvestris L. stands at the south-western limit of its distribution area (Central Spain), using five long-term thinning trials. Data were analysed collectively considering several factors (trial, block, plot and period) as random effects. Total volume and volume increment decreased with thinning intensity, this loss being more significant in the case of moderate and heavy thinning. No difference was found among treatments for total basal area or the increment in basal area. The results revealed an optimum basal area (Assmann’s definition) between 85 and 100% of the basal area in unthinned plots. Volume growth loss associated with heavy thinnings (reduction of 18% in volume increment) was smaller than that reported in Central and Northern European regions (greater than 25%). Height increment was not influenced by thinning, whereas dominant and quadratic mean diameter increments increased with the thinning intensity. The response of diameter growth to thinning was greater at younger ages (less than 50 y) and in medium-sized trees. 相似文献