首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Pilodyn and acoustic velocity measurements on standing trees, used for predicting density and stiffness, can be good genetic selection tools for black spruce. Genetic parameters and selection efficiency were conserved in two breeding zones with contrasted bioclimatic conditions.

Context

Given the recent progress made in the black spruce genetic improvement program, the integration of juvenile wood mechanical properties as selection criteria is increasingly relevant.

Aims

This study aims to estimate the genetic parameters of in situ wood density and modulus of elasticity (MoE) measurements and to verify the efficiency of various measuring methods used for large-scale selection of black spruce based on wood quality.

Methods

Height, diameter, wood density, and some indirect measures of density (penetration and drilling resistance) and MoE (acoustical velocity and Pilodyn) were estimated on 2400 24-year-old trees of 120 open-pollinated families in progeny trials located in the continuous boreal or mixed forest subzones.

Results

Heritability of growth, density, and indirect density measurements varied from low to moderate and was moderate for acoustical velocity in both vegetation subzones. Expected genetic gains for wood properties based on in situ methods were higher for MoE proxy estimation combining Pilodyn and acoustic velocity.

Conclusion

Acoustic velocity is a good predictor of MoE. It is virtually unaffected by the environment and can be used on a large scale in the same manner as the Pilodyn for density. Using a proxy estimation that combines both methods helps optimize genetic gain for MoE.
  相似文献   

2.

Key message

The radial wood growth curves of Cinnamomum kanehirae Hayata (an endangered species of subtropical Taiwan) exhibit an S shape. The dominant trees displayed a larger radial growth than the codominant trees, and their growth was more sensitive to air temperature.

Context

Knowledge of wood radial growth is important for evaluating the factors that limit tree growth performance. The relevant experiments have mostly been conducted in cold and temperate ecosystems, but rarely in subtropical ecosystems.

Aims

In this study, we aimed to construct a unified radial growth model for Cinnamomum kanehirae Hayata and to identify its sensitivity to temperature.

Methods

The wood radial increments were quantified for 3 years by either pinning or microcoring. The radial wood growth curves were modelled integratively by semiparametric regression and individually by curve fitting. The effects of tree social class, interannual and environmental factors on radial growth were analysed quantitatively.

Results

A unified S-shaped growth model for C. kanehirae was successfully constructed. By including the social class effect, the model was significantly improved. The maximum radial increment (A) was significantly correlated with the maximum growth rate (μ); both A and μ were significantly higher in dominant than in codominant trees. The time-varying radial growth rate was more sensitive to air temperature in dominant than in codominant trees.

Conclusion

Semiparametric models revealed an S-shaped growth curve of C. kanehirae and confirmed the higher temperature sensitivity of dominant trees compared to codominant trees in humid subtropical areas.
  相似文献   

3.

Key message

Comparisons between compression and opposite wood formation in prostrating Pinus mugo indicate that the secondary meristem can produce more tracheids with thicker walls by also increasing the number of contemporaneously differentiating cells, rather than only increasing the duration or the rate of cell formation.

Context

Although cambium tissues within a stem experience the same climatic conditions, the resulting wood structure and properties can strongly differ. Assessing how meristem differently regulates wood formation to achieve different anatomical properties can help understanding the mechanisms of response and their plasticity.

Aims

We monitored the formation of compression (CW) and opposite (OW) wood within the same stems to understand whether achieved differences in wood structure are caused by modifications in the process of cell formation.

Methods

We collected weekly microcores of compression and opposite wood from the curved stem of ten treeline prostrating mountain pines (Pinus mugo Turra ssp. mugo) at the Majella massif in Central Italy.

Results

Results indicate that cambium formed approximately 1.5 times more cells in CW than OW, despite that CW cell differentiation only extended 2 weeks longer and the residence time of CW cells in the wall-thickening phase was only 20% longer. Differences in their formation were thus mainly related to both the rates and the width of the enlarging and wall-thickening zones (i.e., the number of cells simultaneously under differentiation) and less to duration of cell formation.

Conclusion

We conclude that to achieve such a different wood structures, the efficiency of the secondary meristem, in addition of altered rate of cell division and differentiation, can also modify the width of the developing zones. Thus, deciphering what rules this width is important to link environmental conditions with productivity.
  相似文献   

4.

Key message

Onset and cessation of radial and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in southern Finland were independent phenomena. They both contributed to the increment period duration, which was a more crucial factor defining the magnitude of annual radial and height increment.

Context

Phenology of diameter and height increment is a critical component of growth, also contributing to damage and survival of trees.

Aims

We quantified annual variation in intra-annual tracheid production and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.).

Methods

The number of tracheids and the day of the year for the onset and cessation of tracheid production were monitored from microcores collected repeatedly during growing seasons 2001–2012 in southern Finland. Weekly height increment was also measured in an adjacent sapling stand in 2008–2012.

Results

The first tracheids in pine were found around mid-May and in spruce a week later. The cessation of the tracheid production occurred during the last week of August for both tree species. Increment onset and cessation were independent phenomena, both contributing to the magnitude of tracheid production via increment period duration, which appeared to be a more crucial factor defining the number of tracheids. Duration of the height increment period was also related to shoot length but the connection was less tight than the link between the duration of tracheid production and the number of tracheids. A thermal threshold around 100 d.d. (degree days) was found for the onset of radial increment. No single environmental factor triggered the cessation of tracheid production, but in some years, soil water availability appeared to play a role.

Conclusion

The results indicate that extending growing seasons due to the climatic warming may increase growth in the Finnish forests.
  相似文献   

5.

Key message

In Europe, P. nigra wood presents a density pattern of longitudinal variation with an increase from east to west. However, no latitudinal tendencies were detected. Compared to other Portuguese resinous species, P. nigra revealed higher density, identical radial growth and intra-ring heterogeneity, which presents advantages for industry purposes. The environmental factors (Sites effect) manifest more strongly in the latewood components while the Trees/Sites effect is more strongly expressed in the earlywood components.

Context

Although P. nigra Arnold is one of the most important conifers in Europe, little is known about the wood’s characteristics in the southwest European region.

Aims

Our aims are to outline a first approach to study the growth and wood quality in P. nigra in Portugal comparing to other European natural stands and other resinous species.

Methods

Inter- and intra-wood density variation of P. nigra from six Portuguese sites was studied using microdensitometry. Analysis of variance (ANOVA) was performed in three subsets: 50 common rings, core (juvenile wood) and peripheral analysis (mature wood).

Results

The average ring density was 0.588 g cm?3, with maximum values in the north and low altitudes. Regarding growth traits, no latitudinal and altitudinal tendencies were detected. Compared to the main timber species in Portugal (P. pinaster Aiton), P. nigra showed similar radial growth, higher density but lower intra-ring density homogeneity. The Sites effect mainly influenced latewood density components, while the Trees/Sites effect primarily influenced earlywood components. The Rings effect was found to be relatively low, with a density decrease in the tree’s first years followed by an increase in the periphery. Growth traits showed a reduction from pith to bark.

Conclusion

Considering the quality (density) and growth features of the Black pine, this species could be useful for the reforestation of mountainous Southern Europe areas that are not favourable for other species.
  相似文献   

6.

Key message

Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

Context

Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

Aims

Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

Methods

Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

Results

Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

Conclusion

Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
  相似文献   

7.

Key message

The emergence of the characteristic tree-ring pattern during xylogenesis is commonly thought to be controlled by a gradient of morphogen (auxin, TDIF peptide...). We show that this hypothesis accounts for several developmental aspects of wood formation, but not for the final anatomical structure.

Context

Wood formation is a dynamic cellular process displaying three generic features: (i) meristematic cell proliferation is restricted to the small cambial zone, preventing exponential xylem radial growth along the growing season; (ii) developmental processes result in a stable zonation of the developing xylem; (iii) the resulting mature wood cells form the typical tree-ring structure made of early and late wood with a gradient of cell sizes, an important trait for wood functioning in trees and for lumber quality. The mechanisms producing these spatial-temporal patterns remain largely unknown. According to the often-cited morphogenetic-gradient hypothesis, a graded concentration profile of a signalling molecule (e.g. auxin, TDIF) controls xylogenesis by providing positional information to differentiating cells.

Aims

We assessed the predictions of the morphogenetic-gradient theory.

Methods

We developed a computational model of wood formation implementing hypotheses on how a morphogen flows through the developing xylem and controls cell division and growth and we tested it against data produced by studies monitoring wood formation in conifers.

Results

We demonstrated that a morphogenetic gradient could indeed control xylem radial growth and wood-forming tissue zonation. However, it failed to explain the pattern of final cell sizes observed in tree-rings. We discussed the features that candidate additional regulatory mechanisms should meet.
  相似文献   

8.

Key message

The position of trees in the canopy impacts xylem structure and its inter-annual variation. After canopy release, the increase in the hydraulic conductivity of growth rings was driven by an increase in radial growth in large trees, and by both an increase in radial growth and changes in xylem structure in saplings.

Context

Forest canopies are frequently subjected to disturbances that allow understory trees to access the upper canopy. The effect of canopy release on xylem anatomy has been assessed in juvenile trees and saplings, while the potential acclimation of larger trees remains poorly documented.

Aims

We estimated the potential hydraulic conductivity of growth rings in large understory trees compared to overstory trees, and evaluated the responses to canopy release in large trees and in saplings.

Methods

We recorded radial growth, wood density, and vessel structure in beech trees according to their position within the canopy and their size. Xylem traits were followed during 6 years after canopy release for large trees, and during 2 years for saplings. Vessel diameter and frequency as well as ring area were used to compute the potential annual ring hydraulic conductivity.

Results

Large understory trees displayed lower radial growth increments and lower potential annual ring hydraulic conductivity than overstory trees. After canopy release, potential annual ring hydraulic conductivity increased in large trees, due exclusively to increased radial growth without any change in specific hydraulic conductivity. It increased in saplings due to both increased radial growth and increased specific conductivity.

Conclusion

Tree size impacted xylem structure and resulted in plasticity of the potential hydraulic conductivity of the annual tree ring following canopy release.
  相似文献   

9.

Key message

The chronology of periods of organogenesis and elongation is highlighted in Pinus halepensis.The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year.

Context

Analysis of annual shoot length growth phenology is crucial to assess the impact of climate change on tree production. Little is known about the basic growth characteristics and the phenology of pines.

Aims

The present study disentangles the roles of shoot organogenesis vs elongation in the annual growth cycle of the polycyclic Aleppo pine.

Methods

Growth of young Pinus halepensis trees was monitored monthly for 1 year. At each monitoring date, the bud content and meristem dimensions of the main stem shoots apices were analyzed.

Results

The two first growth units of an annual shoot are preformed inside the bud during the previous year. The following growth units are formed during the spring or summer of the current year. The gap between a shoot organogenesis and its elongation may vary from 1 month, for the last growth unit, to half a year, for the first growth units.

Conclusion

Our results underline the importance of taking seasonal environmental conditions from both the previous and the current year into account, in order to study the plasticity of annual shoot growth and its response to climate change and variability.
  相似文献   

10.

Key message

Segregating stands and logs based on internal wood properties is likely to lead to improvements in value for forest and mill owners, but some situations were found where no segregation was the best alternative. Where segregation was the best alternative, segregating logs at the landing, or stands based on pre-harvest inventory assessments, led to the greatest value improvements.

Context

The benefits of segregating stands, stems and logs based on wood properties are not clear due to the high variability of wood properties, poor market signals for wood with superior properties and poor understanding of the costs across the value chain.

Aims

The aim of this study was to determine if the benefits of segregating stands and logs outweighed the additional costs.

Methods

A techno-economic model (SEGMOD) was constructed that allowed comparisons of segregation at different approaches in the supply chain. The model was populated with Pinus radiata (D.Don) stand, cost and price data from companies operating in four forestry regions of New Zealand. A total of 255 segregation scenarios were modelled, which included variations in segregation approach, stand type, stand location, terrain type, market focus and market horizon.

Results

Segregating logs based on internal wood properties led to improvements in stumpage and mill door value for most of the scenario sets evaluated. The No Segregation option was found (infrequently) to be best in unpruned stands. Segregating logs based on pre-harvest inventory assessments or at the landing would appear to be the best approach.

Conclusion

The economic benefits of segregating stands and logs for forest and mill owners outweighed the additional costs in most of the scenarios evaluated.
  相似文献   

11.

Key message

Quercus robur seedling mass was affected more by planting density than by taproot pruning. Root pruning enhanced stem biomass at the expense of roots in later growth stages. Alteration of biomass allocation due to nursery practices may result in greater susceptibility to injury and death of the seedlings under unfavorable environmental conditions.

Context

Plants adjust their growth and modulate the resource allocation in response to applied treatments and environmental conditions.

Aims

The aim was to examine how taproot pruning in seedlings grown at different densities affected long-term growth of Quercus robur.

Methods

Seedlings, sown as acorns at two planting densities, with or without pruned roots were harvested in the second, fourth, and fifth years of growth. The effect of root pruning on biomass allocation was determined by measuring leaf, stem, and root mass fractions; carbohydrate concentrations in the roots; and C/N ratios. Specific leaf area and root length were also determined to assess morphological adaptations to growth conditions.

Results

Total seedling mass was affected more by planting density than by taproot pruning. After 4 years of growth, root mass fractions were lower and stem mass fractions were greater in seedlings planted at a higher density. Five-year old root-pruned seedlings also had a lower root mass fraction and higher stem mass fractions than unpruned seedlings. Specific root length was not affected by root pruning or planting density.

Conclusion

Decrease of relative root biomass with simultaneous increase of stem biomass may be a long-term consequence of taproot pruning of Q. robur, and the effects may manifest years after the seedling stage.
  相似文献   

12.

Key Message

This article presents the enhancement in boron fixation as well as the improved biological resistance against fungi and termites for wood samples treated with tannin-caprolactam and tannin-PEG formulations.

Context

Although the recently developed tannin-boron wood preservatives have shown high biological protection, they presented also average resistance against weathering. The tannin-caprolactam formulations have shown improved weathering resistances and dimensional stability.

Aims

For this reason, more detailed biological tests were performed to evaluate the influence of the caprolactam and PEG on the biological resistance.

Methods

In this paper, the boron leaching of the tannin-caprolactam and tannin-PEG impregnated Scots pine specimens was observed and the biocidal effect against fungi (Antrodia spp. and Coniophora puteana) and insects (Reticulitermes flavipes and Hylotrupes bajulus) were determined according to the guidelines of EN 113, EN 117, and EN 47.

Results

The advanced formulations containing PEG have shown interesting resistance against fungal decay, but very low penetration and weak resistance against larvae while the tannin-caprolactam preservatives have shown overall improved biological performances and higher boron fixations.

Conclusion

The biocidal activity of the caprolactam-added formulations was overall enhanced and therefore these formulations are confirmed to be an interesting alternative for the wood preservation in outdoor environment.
  相似文献   

13.
14.

Key message

Pinus pinaster Ait. susceptibility to pinewood nematode significantly differed among provenances, and the two Atlantic provenances of the Iberian Peninsula being the most affected. However, significant provenance × environment interaction was found. Provenance susceptibility was related to basal diameter, number of branches and oleoresin flow, and some climatic parameters.

Context

The pinewood nematode Bursaphelenchus xylophilus, native to North America, is an important pest affecting pine forests throughout Eurasia. In Europe, it has been detected in Portugal and Spain and is primarily associated with Pinus pinaster, an important Mediterranean tree species.

Aims

We have investigated the differences in susceptibility among several P. pinaster provenances in the Iberian Peninsula and France, as well as their relationship to certain growth traits and physiological parameters.

Methods

Three independent inoculation tests were performed on 3 to 4-year-old trees, followed by assessment of growth traits and physiological variables, along with time course destructive sampling for nematode quantification.

Results

The results showed significant differences among provenances for almost all growth traits, wilting, and mortality, though a significant provenance × environment interaction was also detected. Two Atlantic provenances, Noroeste-Litoral and Leiria, displayed the largest susceptibility to pinewood nematode. Changes in susceptibility to B. xylophilus between experiments were influenced by temperature and seasonality. Autumn precipitation and mean maximum temperature during summer at the original provenance sites could be related to provenance susceptibility.

Conclusion

Noroeste-Litoral and Leiria were the most disease-affected provenances. This study emphasizes the need for further research on how tree growth stage influences susceptibility and on the possibility of cross-breeding among provenances.
  相似文献   

15.

Key message

This paper briefly reviews the state of the art in various types of wood- and bio-based composites, summarizes recent advances, and then discusses future possibilities for improving the durability of wood- and bio-based composites.

Context

Wood can be processed and reformed into a number of different biocomposites.

Aims

We aimed at reviewing the state of the art in various types of wood- and bio-based composites.

Methods

Review of utility, performance and durability of wood- and bio-based composites.

Results

The advanced biocomposites will:Combine wood, natural biofibers, and non-biomaterials to create synergistic hybrid materials that far exceed performance capabilities of current biocompositesBe renewable, recyclable, and totally sustainableProvide superior performance and serviceability exceeding performance of current biocompositesBe more durable, dimensionally stable, moisture proof, and fire resistantBe less expensive to produce and use (over the life cycle of use) than the materials they replace

Conclusion

The next generation of advanced wood- and bio-based composites must provide high-performance construction and specialty products that simultaneously promote resource and environmental sustainability and provide advanced performance, long-term performance, enhanced durability, and value.
  相似文献   

16.

Key message

Pith-to-bark wood density profiling is interesting in forestry science. By comparing it with the X-ray method, this study proved that a fiber optic NIR spectrometer with a high-precision displacement system could accurately measure intra-ring wood density with a spatial resolution of 0.5 mm.

Context

Most near-infrared spectroscopy (NIRS) studies for wood density determination use samples that have been pulverized beforehand. Attenuation of ionizing radiation is still the standard method to determine wood density with high spatial resolution. However, there is evidence that NIRS could be an accurate and affordable method for determining intra-ring density in solid wood strips.

Aims

In this study, we research whether the results published for intra-ring density predictions in wood can be improved when calibrated with X-ray microdensitometry.

Methods

The measurements were made using a fiber optic probe with a separation between measurement points of 0.508 mm in a range between 1200 and 2200 nm. A total of 4520 density points were used to create partial least squares regression (PLSR). X-ray densitometry data were used as reference values. Twenty PLSR calibrations were randomly executed on 31 samples collected from 28 Pinus radiata D. Don trees.

Results

Upon selecting 20 latent variables, the R 2 value was 0.873 for the training group and 0.895 for the validation group, while RMSEP values are 43.1 × 10?3 and 47.1 × 10?3 g cm?3 for the training and validation groups, respectively. The range error ratio (RER) was 13.7.

Conclusion

The RER was high and almost in the range suggested for quantification purposes. Results are superior to wood density studies in the literature which do not employ spatial resolution and to those found in studies using hyperspectral imaging.
  相似文献   

17.

Key message

Diachronic photogrammetric canopy height models can be used to quantify at a fine scale changes in dominant height and wood volume following storms. The regular renewal of aerial surveys makes this approach appealing for monitoring forest changes.

Context

The increasing availability of aerial photographs and the development of dense matching algorithms open up new possibilities to assess the effects of storm events on forest canopies.

Aims

The objective of this research is to assess the potential of diachronic canopy height models derived from photogrammetric point clouds (PCHM) to quantify changes in dominant height and wood volume of a broadleaved forest following a major storm.

Methods

PCHMs derived from aerial photographs acquired before and after a storm event were calibrated using 25 field plots to estimate dominant height and volume using various modeling approaches. The calibrated models were combined with a reference damage maps to estimate both the within-stand damage variability, and the amount of volume impacted.

Results

Dominant height was predicted with a root mean squared error (RMSE) of 4%, and volume with RMSEs ranging from 24 to 32% according to the type of model. The volume impacted by storm was in the range of 42–76%. Overall, the maps of dominant height changes provided more details about within-stand damage variability than conventional photointerpretation do.

Conclusion

The study suggests a promising potential for exploiting PCHM in pursuit of a rapid localization and quantification of wind-throw damages, given an adapted sampling design to calibrate models.
  相似文献   

18.

Key message

This article presents the leaching, fire and weathering resistance improvements of samples treated with tannin-based wood preservatives added of caprolactam. PEG-added formulations show limited applicability. The FT-IR and 13 C-NMR analyses of the caprolactam-added formulations show some evidences of copolymerization.

Context

Tannin-boron wood preservatives are known for their high resistance against leaching, biological attacks, fire as well as for the good mechanical properties that they impart to wood. These properties promoted these formulations for being a candidate for the protection of green buildings. However, the low elasticity of these polymers and their dark colour implied limited weathering resistances.

Aims

The aim of the study is to find suitable additives for tannin-based formulations to overcome their limited weathering resistances, without compromising the other properties.

Methods

Treatment, leaching and fire tests, dimensional stability as well as artificial and natural weathering of the timber treated with caprolactam-added and PEG-added formulations were performed. FT-IR and 13C-NMR of the formulations were presented.

Results

The presence of caprolactam improved the properties of the formulation with particularly significant results in terms of resistance against leaching and dimensional stability. These enhancements were imparted also to the weathering resistance of the tannin-caprolactam formulations. Indeed, the colour changes during the artificial and natural exposures were stable for longer periods. FT-IR and 13C-NMR investigations of the advanced formulations were led, and covalent copolymerization of the caprolactam with the tannin-hexamine polymer was observed.

Conclusion

The tannin formulations with caprolactam improved the durability of the wood specimens, while the PEG-tannin presented strong application drawbacks.
  相似文献   

19.

Key message

Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity.

Context

Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground and belowground competition. This competition may differentially affect non-impacted trees, depending on crown class, disturbance severity, and species-specific responses.

Aims

The purpose of this study is to elucidate the primary drivers of silver and red maple (Acer saccharinum and A. rubrum) growth following emerald ash borer (EAB, Agrilus planipennis)-induced ash tree (Fraxinus spp.) mortality in riparian forests of northwest Ohio.

Methods

Using dendroecological approaches, we analyzed the pattern of radial growth in red and silver maples in conjunction with the EAB outbreak.

Results

This study revealed growth rates of maples increased 72% following EAB arrival and trees advancing in crown class grew 41% faster than those not advancing. The growth response varied by initial crown class, with trees in the intermediate class responding most dramatically. Furthermore, the positive correlation between relative basal area of ash and the radial growth response of maples indicates the important role of disturbance severity in post-disturbance dynamics.

Conclusion

These findings suggest that, although advancement in crown class may allow predictions of “winners” in forest succession post-disturbance, even trees not changing crown class benefit from decreased competition. Results from this study provide a detailed account of radial growth responses in maples following EAB-induced ash mortality and lend insight into the future canopy composition of ash-dominated riparian forests.
  相似文献   

20.

Key message

Pinus radiata trees showed significantly reduced basal area increments and increased latewood/earlywood ratios, when their stem was charred by surface fires even if no needle damage occurred. An interaction of fire damage and precipitation on growth was observed.

Context

Heat from forest fires is able to penetrate beyond the bark layer and damage or completely kill a tree’s cambium. Short-term growth reductions following surface fires have been reported for some species. However, most studies have in common that they describe a compound effect of stem and foliage damage.

Aims

This study investigated the impact of surface fires on the radial growth of Pinus radiata, where only the stem of trees was charred, while no needle damage was recorded.

Methods

Tree ring measurements were performed on cores obtained at breast height. Analysis of variance and tests, based on annual basal area increment values were calculated to quantify pre- and post-fire growth differences of tree ring width and latewood/earlywood ratios.

Results

The analysis revealed significant growth reductions following a surface fire on P. radiata in the year on which the fire occurred as well as in the following year. As a consequence of the fire, basal area increment and latewood/earlywood ratios were significantly reduced. An interaction of fire damage and precipitation on growth was observed.

Conclusion

The obtained results show how fires without crown damage can affect growth and tree ring structure of P. radiata trees and indicate that stem char could be associated with a significant decrease in ring width and latewood/earlywood ratio.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号