首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

Radial growth of silver and red maples was investigated across three forests in northwest Ohio following the outbreak of the invasive emerald ash borer. The growth response of maples was driven by an advancement in canopy class and disturbance severity.

Context

Forest disturbances resulting in species-specific diffuse mortality cause shifts in aboveground and belowground competition. This competition may differentially affect non-impacted trees, depending on crown class, disturbance severity, and species-specific responses.

Aims

The purpose of this study is to elucidate the primary drivers of silver and red maple (Acer saccharinum and A. rubrum) growth following emerald ash borer (EAB, Agrilus planipennis)-induced ash tree (Fraxinus spp.) mortality in riparian forests of northwest Ohio.

Methods

Using dendroecological approaches, we analyzed the pattern of radial growth in red and silver maples in conjunction with the EAB outbreak.

Results

This study revealed growth rates of maples increased 72% following EAB arrival and trees advancing in crown class grew 41% faster than those not advancing. The growth response varied by initial crown class, with trees in the intermediate class responding most dramatically. Furthermore, the positive correlation between relative basal area of ash and the radial growth response of maples indicates the important role of disturbance severity in post-disturbance dynamics.

Conclusion

These findings suggest that, although advancement in crown class may allow predictions of “winners” in forest succession post-disturbance, even trees not changing crown class benefit from decreased competition. Results from this study provide a detailed account of radial growth responses in maples following EAB-induced ash mortality and lend insight into the future canopy composition of ash-dominated riparian forests.
  相似文献   

2.

Key message

Pilodyn and acoustic velocity measurements on standing trees, used for predicting density and stiffness, can be good genetic selection tools for black spruce. Genetic parameters and selection efficiency were conserved in two breeding zones with contrasted bioclimatic conditions.

Context

Given the recent progress made in the black spruce genetic improvement program, the integration of juvenile wood mechanical properties as selection criteria is increasingly relevant.

Aims

This study aims to estimate the genetic parameters of in situ wood density and modulus of elasticity (MoE) measurements and to verify the efficiency of various measuring methods used for large-scale selection of black spruce based on wood quality.

Methods

Height, diameter, wood density, and some indirect measures of density (penetration and drilling resistance) and MoE (acoustical velocity and Pilodyn) were estimated on 2400 24-year-old trees of 120 open-pollinated families in progeny trials located in the continuous boreal or mixed forest subzones.

Results

Heritability of growth, density, and indirect density measurements varied from low to moderate and was moderate for acoustical velocity in both vegetation subzones. Expected genetic gains for wood properties based on in situ methods were higher for MoE proxy estimation combining Pilodyn and acoustic velocity.

Conclusion

Acoustic velocity is a good predictor of MoE. It is virtually unaffected by the environment and can be used on a large scale in the same manner as the Pilodyn for density. Using a proxy estimation that combines both methods helps optimize genetic gain for MoE.
  相似文献   

3.

Key message

Fungal infection was outlined as a potential reason for the onset of indented annual growth ring formation during the juvenile phase of hazel wood growth. Annual growth ring indentations resulted from the formation of disturbed zones which originated solely in close proximity to leaf traces.

Context

Hazel wood is an abnormal type of woody tissue that is formed as a result of exogenous stimuli that may trigger long-term responses in the cambium. Cambial responses produce anatomical alterations in the surrounding xylem tissue that can be observed as an indentation of annual growth rings. The chemical profiles of lignan hydroxymatairesinol may provide an indication of its possible role in the protection of a living tree against the spread of a fungal or microbial infection at the onset of indentation.

Aims

The objectives of this study were to reveal the anatomical differences in the altered woody tissue of Picea abies hazel wood at both the onset and the later stages of annual growth ring indentation and to determine the chemical profiles for hydroxymatairesinol upon elicitation by a fungal infection in the disturbed zones.

Methods

Light and scanning electron microscopy observations were carried out on radial, tangential, and cross sections of hazel wood zones separated from P. abies stems. Concentrations of hydroxymatairesinol were determined for both the disturbed zones and the non-indented zones using a gradient high-performance liquid chromatography.

Results

The formation of disturbed zones was accompanied by significant changes in both the direction and width of the tracheids which produced an abnormal formation of intertwined and twisted tracheids. Fungal hyphae, radial cell wall cracks, and unusually large cross-field pitting were all found in the tracheids of the disturbed zones.

Conclusion

The content of hydroxymatairesinol in the acetone extract determined from the disturbed zones was 3.4 times greater than that present in the non-disturbed tissues. By means of vascular dysfunction in the leaf traces, host trees responded to the fungal infection by plugging the lumens of conductive leaf trace tissue and filling the vascular pathway with polyphenolic compound deposits.
  相似文献   

4.

Key message

In Europe, P. nigra wood presents a density pattern of longitudinal variation with an increase from east to west. However, no latitudinal tendencies were detected. Compared to other Portuguese resinous species, P. nigra revealed higher density, identical radial growth and intra-ring heterogeneity, which presents advantages for industry purposes. The environmental factors (Sites effect) manifest more strongly in the latewood components while the Trees/Sites effect is more strongly expressed in the earlywood components.

Context

Although P. nigra Arnold is one of the most important conifers in Europe, little is known about the wood’s characteristics in the southwest European region.

Aims

Our aims are to outline a first approach to study the growth and wood quality in P. nigra in Portugal comparing to other European natural stands and other resinous species.

Methods

Inter- and intra-wood density variation of P. nigra from six Portuguese sites was studied using microdensitometry. Analysis of variance (ANOVA) was performed in three subsets: 50 common rings, core (juvenile wood) and peripheral analysis (mature wood).

Results

The average ring density was 0.588 g cm?3, with maximum values in the north and low altitudes. Regarding growth traits, no latitudinal and altitudinal tendencies were detected. Compared to the main timber species in Portugal (P. pinaster Aiton), P. nigra showed similar radial growth, higher density but lower intra-ring density homogeneity. The Sites effect mainly influenced latewood density components, while the Trees/Sites effect primarily influenced earlywood components. The Rings effect was found to be relatively low, with a density decrease in the tree’s first years followed by an increase in the periphery. Growth traits showed a reduction from pith to bark.

Conclusion

Considering the quality (density) and growth features of the Black pine, this species could be useful for the reforestation of mountainous Southern Europe areas that are not favourable for other species.
  相似文献   

5.

Key message

Pinus radiata trees showed significantly reduced basal area increments and increased latewood/earlywood ratios, when their stem was charred by surface fires even if no needle damage occurred. An interaction of fire damage and precipitation on growth was observed.

Context

Heat from forest fires is able to penetrate beyond the bark layer and damage or completely kill a tree’s cambium. Short-term growth reductions following surface fires have been reported for some species. However, most studies have in common that they describe a compound effect of stem and foliage damage.

Aims

This study investigated the impact of surface fires on the radial growth of Pinus radiata, where only the stem of trees was charred, while no needle damage was recorded.

Methods

Tree ring measurements were performed on cores obtained at breast height. Analysis of variance and tests, based on annual basal area increment values were calculated to quantify pre- and post-fire growth differences of tree ring width and latewood/earlywood ratios.

Results

The analysis revealed significant growth reductions following a surface fire on P. radiata in the year on which the fire occurred as well as in the following year. As a consequence of the fire, basal area increment and latewood/earlywood ratios were significantly reduced. An interaction of fire damage and precipitation on growth was observed.

Conclusion

The obtained results show how fires without crown damage can affect growth and tree ring structure of P. radiata trees and indicate that stem char could be associated with a significant decrease in ring width and latewood/earlywood ratio.
  相似文献   

6.

Key message

Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

Context

Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

Aims

Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

Methods

Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

Results

Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

Conclusion

Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
  相似文献   

7.

? Key message

Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.

? Context

Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.

? Aims

The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.

? Methods

Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.

? Results

At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.

? Conclusion

The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.
  相似文献   

8.

Key message

Pinus pinaster Ait. susceptibility to pinewood nematode significantly differed among provenances, and the two Atlantic provenances of the Iberian Peninsula being the most affected. However, significant provenance × environment interaction was found. Provenance susceptibility was related to basal diameter, number of branches and oleoresin flow, and some climatic parameters.

Context

The pinewood nematode Bursaphelenchus xylophilus, native to North America, is an important pest affecting pine forests throughout Eurasia. In Europe, it has been detected in Portugal and Spain and is primarily associated with Pinus pinaster, an important Mediterranean tree species.

Aims

We have investigated the differences in susceptibility among several P. pinaster provenances in the Iberian Peninsula and France, as well as their relationship to certain growth traits and physiological parameters.

Methods

Three independent inoculation tests were performed on 3 to 4-year-old trees, followed by assessment of growth traits and physiological variables, along with time course destructive sampling for nematode quantification.

Results

The results showed significant differences among provenances for almost all growth traits, wilting, and mortality, though a significant provenance × environment interaction was also detected. Two Atlantic provenances, Noroeste-Litoral and Leiria, displayed the largest susceptibility to pinewood nematode. Changes in susceptibility to B. xylophilus between experiments were influenced by temperature and seasonality. Autumn precipitation and mean maximum temperature during summer at the original provenance sites could be related to provenance susceptibility.

Conclusion

Noroeste-Litoral and Leiria were the most disease-affected provenances. This study emphasizes the need for further research on how tree growth stage influences susceptibility and on the possibility of cross-breeding among provenances.
  相似文献   

9.

Key message

The position of trees in the canopy impacts xylem structure and its inter-annual variation. After canopy release, the increase in the hydraulic conductivity of growth rings was driven by an increase in radial growth in large trees, and by both an increase in radial growth and changes in xylem structure in saplings.

Context

Forest canopies are frequently subjected to disturbances that allow understory trees to access the upper canopy. The effect of canopy release on xylem anatomy has been assessed in juvenile trees and saplings, while the potential acclimation of larger trees remains poorly documented.

Aims

We estimated the potential hydraulic conductivity of growth rings in large understory trees compared to overstory trees, and evaluated the responses to canopy release in large trees and in saplings.

Methods

We recorded radial growth, wood density, and vessel structure in beech trees according to their position within the canopy and their size. Xylem traits were followed during 6 years after canopy release for large trees, and during 2 years for saplings. Vessel diameter and frequency as well as ring area were used to compute the potential annual ring hydraulic conductivity.

Results

Large understory trees displayed lower radial growth increments and lower potential annual ring hydraulic conductivity than overstory trees. After canopy release, potential annual ring hydraulic conductivity increased in large trees, due exclusively to increased radial growth without any change in specific hydraulic conductivity. It increased in saplings due to both increased radial growth and increased specific conductivity.

Conclusion

Tree size impacted xylem structure and resulted in plasticity of the potential hydraulic conductivity of the annual tree ring following canopy release.
  相似文献   

10.

Key message

More accurate diameter at breast height (dbh)-growth models are needed for developing management tools for mixed-species forests in Mexico. Individual distance-dependent dbh growth models that quantify local neighborhood effects have been developed for four species groups in such forests. The performance of the models is improved by distinguishing between inter- and intraspecific group competitions.

Context

The management of mixed-species forests in the northwest of Durango, Mexico, is mainly based on the selection method. Understanding the interspecific and intraspecific competition is critical to developing management tools for such mixed-species forests.

Aims

An individual-based distance-dependent modeling approach was used to model the growth of dbh and to evaluate neighborhood effects for four species groups in Mexican mixed-species stands.

Methods

Twenty-two species were classified into four groups: Pinus (seven species), other conifers (three species), other broadleaves (four species), and Quercus (eight species). Four methods were used to select neighboring trees and 12 competition indices (CIs) were calculated. Comparisons of the neighboring trees selection methods and CIs and tests of assumptions about neighborhood effects were conducted.

Results

Intra-species-group competition significantly reduced diameter growth for all species groups, except for the Quercus group. The Pinus, other conifers, and Quercus groups had significant and negative neighborhood effects on the other broadleaves species group, and not vice versa. The Quercus group also had negative neighborhood effect on the Pinus and other conifers species groups, and not vice versa. The Pinus and other conifers species groups had negative neighborhood effects on each other. All fitted age-independent dbh growth models showed a good of fit to the data (adjusted coefficient of determination larger than 0.977).

Conclusion

The growth models can be used to predict dbh growth for species groups and competition in mixed-species stand from Durango, Mexico.
  相似文献   

11.

Key message

Geometric morphometric analyses (GMMs) of the leaf shape can distinguish two congeneric oak species Quercus dentata Thunberg and Quercus aliena Blume in sympatric areas.

Contexts

High genetic and morphological variation in different Quercus species hinder efforts to distinguish them. In China, Q. dentata and Q. aliena are generally sympatrically distributed in warm temperate forests, and share some leaf morphological characteristics.

Aims

The aim of this study was to use the morphometric methods to discriminate these sympatric Chinese oaks preliminarily identified from molecular markers.

Methods

Three hundred sixty-seven trees of seven sympatric Q. dentata and Q. aliena populations were genetically assigned to one of the two species or hybrids using Bayesian clustering analysis based on nSSR. This grouping served as a priori classification of the trees. Shapes of 1835 leaves from the 367 trees were analyzed in terms of 13 characters (landmarks) by GMMs. Correlations between environmental and leaf morphology parameters were studied using linear regression analyses.

Results

The two species were efficiently discriminated by the leaf morphology analyses (96.9 and 95.9% of sampled Q. aliena trees and Q. dentata trees were correctly identified), while putative hybrids between the two species were found to be morphologically intermediate. Moreover, we demonstrated that the leaf morphological variations of Q. aliena, Q. dentata, and their putative hybrids are correlated with environmental factors, possibly because the variation of leaf morphology is part of the response to different habitats and environmental disturbances.

Conclusion

GMMs were able to correctly classify individuals from the two species preliminary identified as Q. dentata or Q. aliena by nSSR. The high degree of classification accuracy provided by this approach may be exploited to discriminate other problematic species and highlight its utility in plant ecology and evolution studies.
  相似文献   

12.

Key message

Separating the internal (ontogenetic) and external (environmental) components of maritime pine development during controlled soil water deficit helps to highlight the plastic response. The adjusted measurements reveal significant differences between families for their plastic response for several physiology and growth traits.

Context

Soil water deficit is and will be a growing problem in some regions. Pinus pinaster Ait. is a species of commercial interest and is recognized as a drought-avoiding species. It is thus of interest to evaluate the adaptation potential of P. pinaster to soil water deficit.

Aims

This paper aims to estimate the plastic response to the variation of water availability at the family level (half-sibs).

Methods

Two-year-old P. pinaster cuttings from four families were submitted during 6 weeks to two contrasting watering regimes. The experiment started in April 2011 shortly after sprouting. The photosynthesis and stomatal conductance to water vapor were measured on 1-year-old needles. Intrinsic water-use efficiency was calculated as the ratio of photosynthesis to stomatal conductance. Radial growth, length of terminal shoot, and total height were also measured. The ontogenetic component of tree development was estimated on the well-watered trees for all the traits. Then, this development effect was eliminated from the data collected on the trees submitted to the soil water deficit in order to keep only the effect of this soil water deficit.

Results

After 6 weeks of reduced watering, the value of all adjusted traits decreased. An average plastic response to the variation of water availability was found to be significant and variable at the family level for the six adjusted variables.

Conclusion

These results suggest that there is genetic variation of phenotypic plasticity to drought in P. pinaster for several traits, including stomatal conductance, which appears to be a promising variable for future selection for resistance to drought.
  相似文献   

13.

Key Message

This article presents the enhancement in boron fixation as well as the improved biological resistance against fungi and termites for wood samples treated with tannin-caprolactam and tannin-PEG formulations.

Context

Although the recently developed tannin-boron wood preservatives have shown high biological protection, they presented also average resistance against weathering. The tannin-caprolactam formulations have shown improved weathering resistances and dimensional stability.

Aims

For this reason, more detailed biological tests were performed to evaluate the influence of the caprolactam and PEG on the biological resistance.

Methods

In this paper, the boron leaching of the tannin-caprolactam and tannin-PEG impregnated Scots pine specimens was observed and the biocidal effect against fungi (Antrodia spp. and Coniophora puteana) and insects (Reticulitermes flavipes and Hylotrupes bajulus) were determined according to the guidelines of EN 113, EN 117, and EN 47.

Results

The advanced formulations containing PEG have shown interesting resistance against fungal decay, but very low penetration and weak resistance against larvae while the tannin-caprolactam preservatives have shown overall improved biological performances and higher boron fixations.

Conclusion

The biocidal activity of the caprolactam-added formulations was overall enhanced and therefore these formulations are confirmed to be an interesting alternative for the wood preservation in outdoor environment.
  相似文献   

14.

Key message

Large genetic variation was found in Prunus avium L. populations from the northern parts of the species distribution range. The ranking of genotypes in terms of growth was stable when tested at three trial sites within the northern parts of the species distribution range.

Context

Peripheral populations especially those in the leading edge are isolated from rest of the areas in the species distribution range. This can make them less genetically diverse yet genetically distinct from the rest of the populations in the species distribution range. Evaluation of their genetic diversity is thus crucial in understanding the local adaptation potential of a species.

Aims

We investigated the genetic diversity and genotype by environment interaction at the northern parts of the distribution range of P. avium.

Methods

Quantitative genetic variation of growth, stem form, and spring phenology were assessed in progenies from 93 plus trees of P. avium selected from 43 locations at the north of the species distribution range in Sweden and tested at two Swedish sites and one Danish site.

Results

We find large quantitative genetic variation in growth and phenology at the northern part of the distribution range of P. avium. Only a limited genotype by environment interaction was observed with no clear indication of local adaptation at the northern parts of the species distribution.

Conclusion

We conclude that P. avium harbors a high level of genetic diversity at the north of its distribution range. Present patterns therefore reflect more likely the recent introduction of the species and dispersal dynamics rather than a long-term loss of diversity along South-North ecological clines during the Holocene. With no indications of genetic depletion in growth or phenology, the gene pool in the breeding program is considered suitable for the future propagation of the species in the tested area.
  相似文献   

15.

Key message

Pronounced clonal variation and moderate to high broad-sense heritability estimates of susceptibility to Neonectria neomacrospora were found in Abies nordmanniana in three sites. Significant genotype by environment (G × E) interaction was detected across sites.

Context

Nordmann fir, a widely used Christmas tree species in Europe, has, since 2011, been increasingly damaged by a canker disease caused by Neonectria neomacrospora.

Aims

The objective was to study the genetic variation and genotype by environment interaction in the susceptibility of Nordmann fir to N. neomacrospora.

Methods

Damage caused by N. neomacrospora was evaluated using a visual scale in three Nordmann fir clonal seed orchards in Denmark, partly containing the same clones.

Results

Damage due to N. neomacrospora was substantial at all three sites, and no clone was completely resistant to N. neomacrospora, but a large genetic variation in the susceptibility was detected among clones. Estimates of single-site individual broad-sense heritability for susceptibility varied between 0.38 and 0.47. The average type-B genetic correlation for damage score across sites was 0.34.

Conclusion

Genetic variation was very pronounced, and significant G × E interactions were detected for susceptibility. Further investigations of narrow-sense heritability, expression of the trait in younger material, and identification of the cause of G × E for N. neomacrospora susceptibility in Nordmann fir across different sites are recommended.
  相似文献   

16.

Key message

Foliar phosphorus (P) resorption in Quercus variabilis Blume was significantly lower at a P-rich than at a P-deficient site. Moreover, P resorption strongly decreased, and nitrogen:phosphorus and carbon:phosphorus resorption ratios increased with soil P content. This demonstrates a strong link between foliar P resorption and P content in soils, and emphasizes the importance of P resorption in leaves of trees growing in soils with contrasted P content.

Context

Subtropical ecosystems are generally characterized by P-deficient soils. However, P-rich soils develop in phosphate rock areas.

Aims

We compared the patterns of nutrient resorption, in terms of ecological stoichiometry, for two sites naturally varying in soil P content.

Methods

The resorption efficiency (percentage of a nutrient recovered from senescing leaves) and proficiency (level to which nutrient concentration is reduced in senesced leaves) of 12 elements were determined in two oak (Q. variabilis) populations growing at a P-rich or a P-deficient site in subtropical China.

Results

P resorption efficiency dominated the intraspecific variation in nutrient resorption between the two sites. Q. variabilis exhibited a low P resorption at the P-rich site and a high P resorption at the P-deficient site. Both P resorption efficiency and proficiency strongly decreased with soil P content only and were positively related to the N:P and C:P ratios in green and senesced leaves. Moreover, resorption efficiency ratios of both N:P and C:P were positively associated with soil P.

Conclusion

These results revealed a strong link between P resorption and P stoichiometry in response to a P deficiency in the soil, and a single- and limiting-element control pattern of P resorption. Hence, these results provide new insights into the role of P resorption in plant adaptations to geologic variations of P in the subtropics.
  相似文献   

17.

Key message

Quercus robur seedling mass was affected more by planting density than by taproot pruning. Root pruning enhanced stem biomass at the expense of roots in later growth stages. Alteration of biomass allocation due to nursery practices may result in greater susceptibility to injury and death of the seedlings under unfavorable environmental conditions.

Context

Plants adjust their growth and modulate the resource allocation in response to applied treatments and environmental conditions.

Aims

The aim was to examine how taproot pruning in seedlings grown at different densities affected long-term growth of Quercus robur.

Methods

Seedlings, sown as acorns at two planting densities, with or without pruned roots were harvested in the second, fourth, and fifth years of growth. The effect of root pruning on biomass allocation was determined by measuring leaf, stem, and root mass fractions; carbohydrate concentrations in the roots; and C/N ratios. Specific leaf area and root length were also determined to assess morphological adaptations to growth conditions.

Results

Total seedling mass was affected more by planting density than by taproot pruning. After 4 years of growth, root mass fractions were lower and stem mass fractions were greater in seedlings planted at a higher density. Five-year old root-pruned seedlings also had a lower root mass fraction and higher stem mass fractions than unpruned seedlings. Specific root length was not affected by root pruning or planting density.

Conclusion

Decrease of relative root biomass with simultaneous increase of stem biomass may be a long-term consequence of taproot pruning of Q. robur, and the effects may manifest years after the seedling stage.
  相似文献   

18.

Key message

Pinus sylvestris seedlings quickly expand their roots to deeper soil layers while Pseudotsuga menziesii concentrates its root system in the topsoil, thereby running the risk of desiccation during long dry spells, as indicated by lower survival after simulated summer drought.

Context

Pseudotsuga menziesii (Douglas-fir) is regarded as a promising species to maintain the productivity of Central European lowland forests given the projected increase of long dry spells.

Aims

Will the species be able to regenerate from seed and spread outside plantations in a drier temperate Europe?

Methods

We measured the relative growth rate, biomass allocation, root architecture, and phenotypic plasticity of Pseudotsuga menziesii seedlings sown in a common garden and grown under current precipitation and prolonged drought, respectively. The species’ competitive ability with respect to Pinus sylvestris L., the most drought-tolerant native conifer in Central Europe, was assessed during three growing seasons.

Results

Pinus sylvestris seedlings had higher relative growth rates than did Pseudotsuga menziesii seedlings, first in terms of aboveground biomass and later in terms of shoot height. This resulted in heavier and taller seedlings after three growing seasons under both moist and dry conditions. Shorter vertical roots corresponded with lower survival of Pseudotsuga menziesii seedlings under dry conditions.

Conclusion

Fast root proliferation allows Pinus sylvestris seedlings to reach deeper water pools that are less rapidly depleted during transient drought. By contrast, the shallow root system might put Pseudotsuga menziesii seedlings at the risk of desiccation during prolonged dry spells.
  相似文献   

19.

? Context

Physiological ecologists have been fascinated by height- or position-linked differences of leaf morphology within tall trees >25 m, but the exact cause is still debated, i.e., is it due to light or height-induced water stress?

? Aims

The aim of this study was to demonstrate that relatively small trees (<15 m) have leaf morphologies that vary with height and that such variation depends on site-moisture variability.

? Methods

Leaves were collected from Robinia pseudoacacia trees at two sites in China with contrasting moisture variability to gather baseline data on leaf morphology parameters.

? Results

Most measured parameters changed regularly with height. Water potential linearly decreased with height. Leaf area and stomata area decreased with height, while leaf mass per area, carbon isotope composition (δ 13C), and stomata density increased with height. Mesophyll and epidermal cell width decreased with height, while leaf thickness and palisade cell length increased with height. All the morphology parameters between two sites were also significantly different.

? Conclusions

Based on the field results, it is concluded that minor variations in water potential at the time of leaf growth influence leaf morphology at both site-level and height-level. Controlled environment experiments will be conducted to confirm this conclusion.
  相似文献   

20.

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号