首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the field of yarn spinning engineering, the importance of the processing parameters taken depends directly on the quality characteristics of the yarn. This study aimed to find the optimal processing parameters for an open-end rotor spinning frame at work to identify its multiple quality characteristics for yarn. In this study, Bamboo charcoal and cotton 70 %/polyester 30 % (CVC) blended fibers were adopted as the materials, and the open-end rotor spinning frame was used to spin the yarn. In order to identify optimal conditions of an open-end rotor spinning frame, the Taguchi experimental method was applied to design open-end rotor spinning experiments, and the L9 orthogonal array was chosen in accordance with nine sets of experiments and contained four control factors and three levels. Furthermore, a response surface methodology (RSM) was used to obtain the models of significant processing parameters for the strength, unevenness, I.P.I, and hairiness. Based on experiments designed to obtain an open-end rotor spun yarn Ne 30, the strength, unevenness, imperfection indicator/km (I.P.I) and hairiness were then chosen as the quality characteristics. In addition, grey relational analysis integrated the optimal processing parameter of multiple quality characteristics, and a confirmation experiment was performed. In conclusion, the optimal processing parameters under steady spinning conditions were a rotor speed of 88000 rpm, a feed speed of 0.392 m/min, and a winding speed of 39.466 m/min.  相似文献   

2.
This work describes a novel method for preparing electro-conductive rotor yarns by in situ oxidative chemical polymerization of pyrrole. The effects of different process parameters on electrical resistivity of the yarn were studied by using Box-Behnken response surface design. The concentration of monomer, polymerization time and polymerization temperature were found to influence the electrical resistivity of the yarn. It was observed that electrical resistivity of the yarn increased linearly with increase of measuring length of it. Whereas the effects of yarn twist and tensile strain found to had negative correlation with electrical resistivity of electro-conductive rotor yarns. Microscopic image analysis showed that there was uniform distribution of PPy polymer on the surface of cotton fibres and FTIR analysis depicted possible chemical interaction between polypyrrole and cellulose.  相似文献   

3.
The effects of some yarn properties (i.e. type, count, twist level, ply number, unevenness and crimp) and fabric constructional properties (i.e. cover, thickness and balance) on surface roughness values of cotton woven fabrics were investigated. A general overview of the results showed that surface roughness values of fabrics were affected from yarn and fabric properties and the effects were related to fabric balance, fabric cover (not cover factor), fabric thickness and crimp values of yarns in fabric structures. Surface roughness values of fabrics decreased as yarn fineness and yarn twist levels increased but as yarn ply number decreased. Also, surface roughness values gradually decreased from open-end yarn constituting fabrics to combed yarn constituting fabrics. Results showed that different properties of yarns caused changes in yarn crimps in fabric structure and also governed the changes in fabric balance, as well as changes in roughness of fabric surfaces. The changing properties of yarns and impact of these properties on fabric construction affected the formation of cotton fabric surfaces from smooth to coarse.  相似文献   

4.
The quality of ring spun yarns is largely determined by its level of hairiness. The existence of hairiness inevitably affects the quality of ring spun yarns. This paper presents an innovative method on lowering the level of hairiness of ring spun yarns. This can be achieved by shooting compressed air to the yarn, through a swirl nozzle comprising a yarn duct and an airjet nozzle attached to a traditional ring spin frame. When compressed air is applied from the air-jet nozzle to the yarn duct, the swirling air flow tucks surface fibers of the ring spun yarns into its body. Four controllable variable parameters for the process, supplied pressure, nozzle position, twist factor and spindle speed, and their effects on the lowering of yarn hairiness will be clarified. Their impact on the quality of the yarn is statistically analyzed, and the optimum outcome of the combination of parameters for the process, will thus be determined.  相似文献   

5.
The aim of this study was to model the air permeability of polyester cotton blended woven fabrics. Fabrics of varying construction parameters i.e. yarn linear densities and thread densities were selected and tested for air permeability, fabric areal density and fabric thickness. A total of 135 different fabric constructions were tested among which 117 were allocated for development of prediction model while the remaining were utilized for its validation. Four variables were selected as input parameters on basis of statistical analysis i.e. warp yarn linear density, weft yarn linear density, ends per 25 mm and picks per 25 mm. Response surface regression was applied on the collected data set in order to develop the prediction model of the selected variables. The model showed satisfactory predictability when applied on unseen data and yielded an absolute average error of 5.1 %. The developed model can be effectively used for prediction of air permeability of the woven fabrics.  相似文献   

6.
The formation of a symmetric electrospinning triangle zone (E-triangle) via a technique based on using two oppositely charged nozzles is described for fabricating continuous twisted nanofiber yarn of polyamide (Nylon 66). This study shows how changing the dimensions and geometry of the E-triangle influences the distribution of nanofiber tension and diameter in this zone, and consequently how it affects the nanofiber yarn strength. The twist effect on the E-triangle geometry was investigated by changing the rotational speed of the twister plate of values of 96, 160, 224 and 288 rpm. The results showed that by increasing the twist rate, the apex angle of the E-triangle increased, whereas the height and width of the Etriangle decreased. An energy method was adopted to study the distribution of tension on nanofibers in the E-triangle. Considering a constant spinning tension, it was observed that the gradient of the nanofiber tension curve was steeper and the extreme values of tension on nanofibers were increased by increasing the twist rate. Furthermore, the mean diameter reduction of nanofibers confirmed these results. It is concluded that mechanical properties of nanofiber yarn have been considerably improved by increasing the twist rate and changing the shape of the E-triangle.  相似文献   

7.
In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.  相似文献   

8.
Classical statistical analysis has been generally used in obtaining optimum condition such as problems for rotor spinning machine. In these methods the preferences of the producer about yarn characteristics to achieve the desired end product properties have not been taken into consideration. However, machine parameters selection from possible alternatives with different performance levels about yarn quality is difficult task and is inherently a multi-criteria decision making problem. In the present study, valuable assistance in reaching acceptable solutions in order to select the appropriate doffing tube and its adjustment for 30 Ne rotor yarn spun to raise efficiency of weft knitting machine will be provided by technique for order preference by similarity ideal solution (TOPSIS) approach. In experimental part 30 Ne rotor yarn samples were spun by considering one quantitative variable, i.e., two different distances between the nozzle and rotor, and also two qualitative variables, i.e., nozzles in 4 different shapes and a draw-off tube with and without a torque stop. Then quality parameters of the yarns were analyzed with TOPSIS.  相似文献   

9.
In this study, an artificial neural network (ANN) and a statistical model are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. A back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model (simplex lattice design) with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Both ANN and simplex lattice design have given satisfactory predictions, however, the predictions of statistical models gave more reliable results than ANN.  相似文献   

10.
Microorganisms can lead to functional, hygienic and aesthetic (e.g. deterioration, staining) problems on textile products. Natural fibers especially cotton are more easily affected by microorganisms. Blending of cotton fibers with antimicrobial fibers can enhance the protective properties of products against microorganisms. Demand of antimicrobial performance from the products changes depending on the application area. Therefore determination of suitable antimicrobial fiber quantity for the desired application is important. In this study the spinning performance of SeaCell Active/cotton blended open end rotor yarns and antibacterial activities of fabrics produced by these blended yarns were investigated. Five different cotton/SeaCell Active blended slivers with SeaCell Active content from 3 % up to 53 % were prepared on drawframe machine and all slivers were spun into yarns on open end rotor spinning machine at a yarn count of 20 tex with αTt=3827 twist coefficient. The effects of rotor speed, opening roller speed, rotor, opening roller and navel type on the quality parameters of SeaCell Active/cotton blended yarns were investigated. Tensile properties, hairiness, unevenness and IPI values of the yarns were reported. All types of cotton/SeaCell Active blended yarns were knitted on a circular knitting machine. Antibacterial activity of the fabrics was analyzed quantitatively. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3 % of SeaCell Active fibers in fabrics.  相似文献   

11.
The moisture transport expressed with wicking is one of the most important aspects in clothing science and strongly effects on the quality of clothes. Wicking is a spontaneous transport of liquid driven into a porous system by capillary forces. Furthermore, the packing density has a direct relation with the yarn structure. At the present work, the effects of yarn count and twist factor on the wicking height and packing density of lyocell ring-spun yarns was investigated. Achieving the objectives of this research, an image processing method was developed to determine the packing density of samples. Experimental results were also used to develop a regression model to predict the wicking height based on the packing density, yarn count, twist factor and rising time. The results demonstrated that the correlation coefficient between the predicted and measured wicking height was 0.98 indicating the capability of the presented model to predict the wicking height of lyocell ring-spun yarns.  相似文献   

12.
Dimensional constants (k values) of single jersey fabrics made from LincLITE® and conventional yarns are calculated under dry, steam, full relaxation treatments. Fabrics were made under different tightness factors such as high, medium and low with different twist factors, twist directions and feeder blending. LincLITE® yarns made to get soft and bulkier effects with yarn count of 39 tex and conventional yarns made into 39 tex and 48 tex yarn counts. Various effects on K values are analysed using correlation coefficients. K-values are increased with relaxation progression and have shown some differences between in LincLITE® and conventional fabrics, and feeder blended fabrics. Loop shape factor is highly affected by tightness factor, relaxation and feeder blending in LincLITE® fabrics, whereas twist factor not significantly effects on loop shape factor in conventional fabrics. Stitch density significantly increases with relaxation in conventional fabrics and no significant effect shows with LincLITE® fabrics.  相似文献   

13.
The present work relates to the occurrence of fibre rupture during fibre separation in rotor spinning and also discusses the mechanism of such rupture. The reduction in fibre length during opening has been studied at different span lengths. A correlation has been drawn showing the influence of combing roller action on yarn tenacity and elongation. Fibre rupture has direct relationship with opening roller speed. Fibre rupture and surface damage occurring due to action of opening roller together are found to mar the yarn quality index.  相似文献   

14.
The effect of knot density, pile height, number of ply in pile yarn and pile yarn twist on abrasion resistance of Persian handmade wool carpets has been studied. The interaction between the process variables has been analyzed by using response surface methodology based on the Box-Behnken design of experiment. Knot density, pile height, interactions between knot density and pile height; pile height and pile yarn twist; as well as squares of the knot density, pile height and number of ply in pile yarn are significant process variables. The minimum abrasion loss occurs at the combination(s) of medium values of knot density (six knots per inch) and number of ply in pile yarn (three ply) as well as lower values of pile height (ten mm) and pile yarn twist (three and a half twists per inch).  相似文献   

15.
In order to fabricate continuously twisted nanofiber yarns, double conjugate electrospinning had been developed using two pairs of oppositely charged electrospinning nozzles. The principle and process of this novel yarn spinning method were analyzed, and the effect of applied voltage, nozzle distance between positive and negative, solution flow rate and funnel rotating speed on the diameters, twist level and mechanical properties of resultant PAN nanofiber yarns were investigated in this paper. The results indicated that electrospun nanofibers aggregated stably and bundled continuously at the applied voltage of 18 kV, the nozzle distance of 17.5 cm between positive and negative, the overall flow rate of 3.2 ml/h and the flow ratio of 5/3 for positive and negative nozzles. The resultant nanofiber yarns had favorable orientation and uniform twist distribution, and the twist level of nanofiber yarns increased with the increase of the ratio of funnel rotating speed and winding speed. The diameters and mechanical properties of nanofiber yarns depended on their twist level. The diameters of prepared PAN nanofiber yarns ranged from 50 µm to 200 µm, and the strength and elongation of PAN nanofiber yarns at break were 55.70 MPa and 41.31%, respectively, at the twist angle of 41.8 °. This method can be also used to produce multifunctional composite yarns with two or more components.  相似文献   

16.
Yarn structure plays an important role in determining the properties of spun yarns. Recently, a modified spinning technique has been developed for producing a low torque and soft handle singles yarn by modifying the fiber arrangement in a yarn. Comparative studies revealed that the finer modified yarns possess significantly higher strength and lower hairiness over the conventional yarns of the same twist level, implying a different structure of finer modified yarn. Thus this paper aims to quantitatively study the structures of the finer conventional and modified cotton yarn (80 Ne) produced at the same twist level. Various measuring techniques, namely the Scanning Electron Microscope (SEM), cross section technique and tracer fiber technique, are adopted to analyze their structural characteristics, including fiber configuration, fiber spatial orientation angle, fiber packing density, yarn surface appearance, and fiber migration behavior. Results showed that finer modified yarns exhibit a smoother surface and much more compact structure with less hairiness. The fibers in the finer modified yarn have a complicated fiber path with relatively lower fiber radial position, larger migration frequency and magnitudes. In addition, it was noted that 73% of fibers in the finer conventional yarn follow concentric conical helix, which is contrary to those in the coarser conventional yarn. The analyses conducted in this paper provide deep insights into the mechanism of modified spinning technique and evidential explanations on the difference of properties between the finer conventional and modified yarns.  相似文献   

17.
Hanji (Korean traditional paper) yarn displays excellent humidity control, air permeability, and absorbency as well as pleasantness to the touch due to its structural characteristics, and thus, it has been developed as a new eco-friendly fibrous materials. In this study, Hanji, having a basis weight of 8 and 10 g/m2, was prepared using mulberry fibers. The prepared Hanji was cut into Hanji tape of 5–10 mm in width using a rotary slitter and then the tape was twisted to manufacture Hanji yarn. To ensure a uniform twist of Hanji yarn and a smooth twisting process, a water supply system was designed to provide water directly at the twisting zone. At a fixed spindle speed, the feeding speed of the delivery roller was varied to provide different twist numbers for the Hanji yarn. The Hanji yarn manufactured with water treatment has higher tensile properties and a softer touch than the Hanji yarn prepared without water treatment. The Hanji yarns have count numbers of 7–11 Ne and tensile strengths of 1.0–1.2 gf/d. Moreover, the fabric from Hanji yarn shows an excellent color fastness of 4.0 grade, staining of 4–5 to washing, and 4–5 grade to dry cleaning.  相似文献   

18.
The impact of fiber friction, yarn twist, and splicing air pressure on mechanical and structural properties of spliced portion have been reported in the present paper. The mechanical properties include the tensile and bending related properties and, in the structural properties, the diameter and packing density of the splices are studied. A three variable three level factorial design approach proposed by Box and Behnken has been used to design the experiment. The results indicate that there is a strong correlation between retained spliced strength (RSS) and retained splice elongation (RSE) with all the experimental variables. It has been observed that RSS increases with the increase in splice air pressure and after certain level it drops, whereas it consistently increases with the increase in yarn twist. The RSE increases with the increase in both fiber friction and yarn twist. It has also been observed that the yarn twist and splicing air pressure have significant influence on splice diameter, percent increase in diameter and retained packing coefficient, but the fiber friction has negligible influence on these parameters. Yarn twist and splicing air pressure has a strong correlation with splice flexural rigidity, where as poor correlation with retained flexural rigidity.  相似文献   

19.
20.
Dimensional changes of single jersey fabrics made from LincLITE® and conventional yarns (39 tex and 48 tex) with different twist factors and fabric tightness factors are investigated under dry-, steam- and full- relaxation treatments. Results showed that linear and area shrinkages, fabric density and stitch density values were affected by tightness factors, relaxation treatment, yarn twist and feeder blending. Generally, higher length shrinkages and width increases were reported with LincLITE® and conventional fabrics. Tightness factors and twist factors significantly affected LincLITE® and insignificantly affected conventional fabrics in concern of change of shape and area shrinkages. Thus, fabric density values and reciprocal of stitch lengths showed linear correlations with intercepts, which decreased on full relaxation. Also, it showed higher regression correlation coefficient factors from LincLITE® and conventional fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号