首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Current research was carried out on hydrophilic wool fibers at three different humidity conditions through atmospheric pressure plasma jet (APPJ). Samples were taken to evaluate surface microscopic morphology, surface roughness, directional friction effect (DFE), and surface chemical composition. The scanning electron microscope (SEM) and fiber friction coefficient test (FFT) results show that wetting pretreatment has significant effect on surface etching and DFE, but very limited effect on surface roughness. Allwörden reaction and X-ray photoelectron spectroscopy (XPS) results reveal that extra moisture changes C, O, N, S contents and their related characteristic functional groups, therefore increases etching degree on wool fiber surface scales. It was concluded that APPJ treatment is effective in processing wool fiber with high moisture contents.  相似文献   

3.
The paper reports modification and characterization of wool fabrics achieved through thiol-epoxy click chemistry. A pretreatment with tris (2-carboxyethyl) phosphine (TCEP) as an effective reducing agent was carried out to produce thiol groups on wool surface. Glycidyl trimethyl ammonium chloride (GTAC) was later covalently bonded with wool fibers via thiol-epoxy reaction. The reaction was confirmed by SEM, FTIR, Raman and TG analysis. Antibacterial activity, antistatic property, hydrophilicity and dyeability of treated wool fabric were assessed. The results demonstrated that TCEP-GTAC treatment can endow wool fabric good antibacterial and antistatic properties as well as improved hydrophilicity. Tensile strength studies indicated fiber strength loss of ~12 % on modification.  相似文献   

4.
The fuzzing and pilling of untreated, chlorinated and oxidized wool knitted fabrics were compared with frictional coefficients measured by capstan method, surface modification observed by scanning electron microscopy (SEM), the surface roughness and the scale height assessed by atomic force microscopy (AFM), and hairiness imaged on the three-dimensional rotational microscopy. The pilling comparative experiments of the corresponding knitted fabrics were conducted by means of Pillbox method. Experimental results showed that some scales on the oxidized fiber surface were partially cleaved and some grooves generated. With oxidization treatment, the anti- and with-scale of friction coefficient increase with decreasing the thickness of scales and the yarn hairiness. There is good correlation between the result of AFM and the change in frictional coefficients. The pilling grade of knitted fabric comprised of oxidization wool is 2.5, and the average numbers of pills per 25 cm2 is 25. It is postulated that the surface topography, the frictional properties of oxidized wool fibers and surface hairs of corresponding yarns may limit the ability of those surface fibers to form fuzz and of those fuzz for pill formation.  相似文献   

5.
The comfort of textiles is important and one area under evaluation is the development and application of Phase Change Materials, PCMs, in order to impart thermal adaptability. PCMs research for textiles has also focused on the use of polyethylene glycol (PEG). While there is a good adhesion between fibre and PEG polymer for cotton and polyester fibres, polymer adhesion to wool fibres appears poor and loosely bound within the yarn and had dislodged and crumbled. Therefore in this paper, the effect of changing the wool fibre surface energy and surface charge, shrinkproofing, on performance properties of thermally adaptable wool fabrics were studied. Untreated, gaseous fluorinated, as well as Chlorine-Hercosett treated 100 % wool fabrics have been evaluated to obtain highly cross-linked PEG with acceptable fastness properties. The surface interface was effectively probed by XPS & ToF-SIMS and characterised the loss of surface lipids, the nature of the fibre oxidation and deposition of Hercosett polymer on the wool fibre. The results indicate the necessity of having high surface energy in order to obtain appropriate adhesion and binding higher amount of solid polymer to wool fibres which results in superior thermal activity, better durability, and enhancement in felting performance.  相似文献   

6.
Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yarns and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.  相似文献   

7.
Single walled carbon nanotubes (SWNTs) are considered as a highly potential reinforcement material for the epoxy composites. Dispersion of SWNTs in epoxy and poor interfacial strain transfer are two major challenges. Surface functionalization is one efficient way to change the dispersion and interfacial properties of SWNTs. In this study, five different modification methods of SWNTs were used, and the functional groups on the SWNTs were tested by X-ray photoelectron spectroscopy and Raman spectroscopy. The SWNTs/epoxy composite were prepared using dimethylformamide (DMF) as the solvent. SWNTs at two concentration levels of 0.05 wt% and 0.5 wt% and with five different surface modifications were filled in to epoxy resins. The dispersion of the nanotubes in epoxy resin was evaluated by light optical microscope (LOM), with high content of SWNTs more aggregates appear. The interfacial strain transfer was tested by Raman shift of the 2D band when applying a strain on the epoxy composite sample. With equal strain levels in the composite more strain was transferred from epoxy matrix to SWNTs with 0.05 wt% of SWNTs than the 0.5 wt% of SWNTs filled epoxy resin. Mechanical properties were influenced by the strain transfer efficiency and the curing degree of the samples.  相似文献   

8.
Two proteolytic enzymes were used as auxiliaries in the dyeing of wool fabrics with acid dyes. The effect of the enzymes on dye exhaustion (%E) and dye uptake (K/S) was studied at 70, 85, and 98 °C and compared to the corresponding values obtained for the control samples which were dyed without enzymes under the same conditions. Two commercially available dyeing auxiliaries commonly used for the dyeing of wool at low temperatures were also used under the same conditions and compared with the dyeings made with and without enzymes. Treatment with transglutaminase was done in order to compensate the damaging effects of protease. The study shows that the enzymes could be used as auxiliaries in the dyeing of wool at lower temperatures.  相似文献   

9.
Lignosulfonates (LS) were used to modify the surface of a mica substrate using Cu2+ as the binding agent through layer-by-layer (LbL) self-assembly. The average thickness and roughness of the self-assembled multilayer of LS–Cu2+ complexes increased with the number of layers as revealed by atomic force microscopy. The hydrophilicity of the modified surface decreased with the increase in the number of layers. The contact angle was increased from 6.5° to 86° after the mica surface was coated with 18 layers of LS–Cu2+ complexes. This suggests that surface hydrophilicity can be modified in a controllable manner via LbL assembly of lignosulfonates.  相似文献   

10.
In this study a newly laser treatment method for surface modification of nanofibers is introduced. The new method is based on different infrared absorption of materials. Surface modification of Clay-PAN composite nanofibers was performed using selective laser etching approach with CO2 pulsed laser in order to increase surface area of nanofibers. The surface structure of resulted nanofibers is characterized using field emission scanning electron microscope and the results show characteristic modification of the surface topography of laser treated nanofibers. The modified surface structure of nanofibers was studied and analyzed for different laser pulse numbers and laser fluence. The results show that nanofiber surface modification strongly depends on the number of CO2 laser pulses and frequency of modified sites on the surface of nanofibers increasing with increasing the pulse fluence. This new technique is highly selective and can also compete with conventional techniques for nanofibers surface modification.  相似文献   

11.
The effect of knot density, pile height, number of ply in pile yarn and pile yarn twist on abrasion resistance of Persian handmade wool carpets has been studied. The interaction between the process variables has been analyzed by using response surface methodology based on the Box-Behnken design of experiment. Knot density, pile height, interactions between knot density and pile height; pile height and pile yarn twist; as well as squares of the knot density, pile height and number of ply in pile yarn are significant process variables. The minimum abrasion loss occurs at the combination(s) of medium values of knot density (six knots per inch) and number of ply in pile yarn (three ply) as well as lower values of pile height (ten mm) and pile yarn twist (three and a half twists per inch).  相似文献   

12.
Chemical mordants are generally used during the dyeing process, to increase the uptake of natural dyes. Traditional mordants include metal salts, such as copper, iron, aluminum, chromium, and other metal ions. Continuous developments in bio-engineering technology focus on methods that lower the impact on the environment. In this regard, enzymatic processes show great promise in textile field, due to their efficacy, mild conditions, and environment friendly nature. Laccase is a multicopper oxidoreductase that catalyzes in-situ polymerization of small phenolic monomers to form a colorful polymer. In this study, effects of laccase treatment on the dyeing properties of wool fabrics, dyed with natural dyes (turmeric, grape seed extract, and Chinese gallnut), were investigated. The dyeing properties of the dyed wool fabrics were evaluated under different conditions, including laccase stoichiometry, temperature, pH, and reaction time. The structural changes of natural dyes, due to laccase catalyst were also examined by FT-IR. The results showed that laccase greatly influenced the dyeing performance of Chinese gallnut. Moreover, dyeing effects of the samples using post-mordanting method was better than the other two methods, under the same conditions. After laccase treatment, the dyeing properties of Chinese gallnut improved. Finally, factors affecting the dyeing process with Chinese gallnut were studied and the optimized conditions were determined through single-factor experiments.  相似文献   

13.
The wool scale present on the fibre surface gives rise to certain unwanted effects such as felting and poor wettability in textile wet processing. In general practice, the removal of scale was done either by surface modification through physical/chemical degradation of scale or by deposition of a polymer on the scale. In modern treatment, combination of both methods is usually carried out. Since the deposition of a polymer on the fibre surface depends much on the surface characteristic of the fibre, therefore, the surface property of modified fibre is an important factor for polymer application. On the other hand, the surface modification methods may also result in improved hydrophilicity of fibre. The present paper investigated the surface physico-chemical properties of wool fibre under the influence of different surface modification treatments: (i) low temperature plasma (LTP) treatment with nitrogen gas and (ii) chlorination. The surface physico-chemical properties of the LTP-treated and chlorinated wool fibres were studied which included contact angle measurement with different solvents, determination of critical surface tension and surface free energy. Experimental results showed that these selected properties were altered after the surface modification treatments. In addition, a polymer was deposited in the treated wool fabrics and scanning electron microscope was used for assessing the surface morphology.  相似文献   

14.
Polyacrylonitrile (PAN) fiber was grafted with casein after alkaline hydrolysis and chlorination reactions of the original fiber. The structures and morphologies of the casein grafted fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Moisture absorption, specific electric resistance, water retention value, and mechanical properties were also investigated. The results showed that casein was grafted onto the surface of the PAN fiber and the grafted PAN fiber presented better hygroscopicity compared with the untreated fiber. With proper tensile strength, the modified fiber could still meet the requirement for wearing. A mechanism was proposed to explain the deposit of casein on the synthetic acrylic fiber.  相似文献   

15.
The influence of the surface treatments on the performance of the hemp/PP (polypropylene) composite was investigated. The composites were prepared from the fiber modified by the alkalis and the oil under various conditions. The mechanical properties of the composites were measured using the tensile test, and the service time of the composite was assessed under accelerated condition by the stepped isothermal method. The alkaline treatment removed the lignin successfully and resulted in better fibrillation. The oil treatment improved the mechanical properties of the composites and extended the service life time of the composites.  相似文献   

16.
The physical and mechanical characteristics of hollow polyester fibres were compared with solid polyester fibres in order to establish their processing behaviour and performance characteristics. The effects of hollow fibres on fabric properties were investigated by using microscopy and tests of tensile and bursting strength, pilling, abrasion resistance, water vapour permeability, and handle. The results show that tensile strength of hollow polyester fibres and yarns are negatively affected by the cavity inside the fibre. Hollow fibres also have higher stiffness and resistance to bending at relaxed state. Fabrics made from hollow polyester/wool blends and pure wool fabrics show three distinguishable steps in pilling. During pilling, hollow fibres break before being pulled fully out of the structure, leading to shorter protruding fibres. Microscopy studies showed that the breakdown of hollow fibres started during entanglement by splitting along the helical lines between fibrils. KES results showed that the friction between fibres and the fibre shape are the most important parameters that determine the fabric low stress mechanical properties. However, in some aspects, the hollow structure of the fibre does not have a significant effect.  相似文献   

17.
Knitted wool and wool/nylon blend dyed fabrics were treated with low temperature plasma (LTP) to achieve optimum shrink-resistance without impairing surface topography, colour or fastness to washing of the fabrics. As LTP tends to impair handle of the fabrics, both wool and wool/nylon blend fabrics were submitted to industrial softening and/or biopolymer treatments after LTP treatment, leading to hydrophilic wool and wool/nylon blend fabrics with improved shrink-resistance without any colour changes and good fastness to washing. The results obtained were compared with those obtained by an industrial shrink-resist treatment.  相似文献   

18.
In order to improve the interfacial adhesion property between Poly(p-phenylene benzobisoxazole) (PBO) fiber and epoxy, the surface modification effects of PBO fiber under dielectric barrier discharge treatments in different time were investigated. The samples were tested for surface morphology, functional groups, surface wettability and interfacial shear strengths (IFSS) in epoxy using scanning electron microscope, Fourier transform infrared spectroscopy, water contact angle measurements and Micro-bond pull out tests, respectively. The results indicated that fiber surface morphology after plasma treatment was rougher than untreated one. Some polar groups were introduced on fiber surface in plasma treatment. Moreover, surface wettability and the IFSS between fiber and epoxy had much improvement after plasma treatment, the contact angle decreased with the treatment time increasing and reached the lowest value when the treated time was 60 s, and the IFSS was improved by 117.3 %. On the other hand, no significant difference in single fiber tensile test was observed between treated and untreated fibers when the processing time was shorter than 75 s, but the tensile strength declined by more than 10 % after 75 s treatment as a result of the excessive plasma etching.  相似文献   

19.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

20.
In the field of textiles, introducing pH-sensitive dyes onto fibrous materials is a promising approach for the development of flexible sensor. In this study, poly(ethylene terephthalate) (PET) textile surface with halochromic properties was fabricated by plasma-assisted sol-gel coating, followed by immobilization of two different azo pH-indicator dyes; namely Brilliant yellow and Congo red by conventional printing technique of fabrics. 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent for attaching the pH-sensitive dyes through its terminal amines. The surface immobilization of APTES on PET fabric was conducted by the pad-dry-cure method. Moreover, the influence of oxygen plasma pre-treatment and the method of post-treatment either by oxygen plasma or by thermal treatment on the stability of sol-gel based matrix was investigated. The morphology and chemistry of 3-aminopropyltriethoxysilane coated PET surfaces were examined by using surface sensitive methods including electrokinetic and time-dependent contact angle measurements as well as X-ray photoelectron spectroscopy (XPS). In addition, fastness tests of the printed fabrics and color strength were carried out to assess the effectiveness of the fabric surface modification. Results indicate that sol-gel matrix exhibited a more stability by thermal post-treatment at 150 C for 5 min. Also, the results revealed that the printed fabrics with halochromic properties demonstrated sufficient stability against leaching by washing. The current work opens up a novel opportunity to develop flexible sensors based on fibrous materials, which have the potential to be employed in variable industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号