首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sequential injection system for the automatic determination of glycerol in wine and beer was developed. The method is based on the rate of formation of NADH from the reaction of glycerol and NAD+ catalyzed by the enzyme glycerol dehydrogenase in solution. The determination of glycerol was performed between 0.3 and 3.0 mmol L(-1) (0.028 and 0.276 g L(-1)), and good repeatability was attained (rsd < 3.6%, n = 5) for all samples tested. The determination rate was 54 h(-1), the reagent consumption was only 0.75 micromol of NAD+ and 5.4 ng of enzyme per assay, and the waste production was 2.12 mL per assay. Results obtained for samples were in agreement with those obtained with the batch enzymatic method.  相似文献   

2.
An automatic flow procedure based on the multicommutation concept, comprising three-way solenoid valves, for the spectrophotometric determination of 3-hydroxybutyrate in animal serum and plasma is proposed. The 3-hydroxybutyrate was enzymatically converted to acetoacetate with the reduction of NAD+ to NADH monitored at 340 nm. It was possible to carry out up to 600 determinations without a significant decrease in the analytical signal, with 5 mg of 3-hydroxybutyrate dehydrogenase immobilized on porous silica beads and packed in a column. The system enabled 60 determinations/h of 3-hydroxybutyrate in the range of 10-150 mg L(-1), with a consumption of 0.9 mg of NAD+ and 200 microL of sample per determination. A detection limit of 2 mg L(-1) for both animal serum and plasma and coefficients of variation of 1.4% and 1.2% (n = 17), respectively, were determined. Animal serum and plasma samples were analyzed without previous treatment, the results of which agreed with those obtained using the conventional method (UV kit, Sigma).  相似文献   

3.
A flow injection spectrophotometric procedure with enzymatic hydrolysis was developed for determination of orthophosphate, phytate and total phosphorus in cereal samples. Phosphorus species were extracted from cereals with 0.05 mol L(-1) potassium hydrogen phthalate buffer solution at pH 5.7. Orthophosphate was directly determined in the extracts by molybdenum blue spectrophotometric method. The phytate was hydrolyzed by the enzyme phytase coupled to a solid phase packed into an enzymatic reactor, and the resulting hydrolyzed orthophosphate was also determined by spectrophotometry at 650 nm. After optimization for phosphorus species extraction and enzymatic hydrolysis, a linear calibration graph was obtained up to 196 x 10(-6) mol L(-1) orthophosphate (P conc = -2.67 + 0.52x, r = 0.9998). Measurements are characterized by relative standard deviation of 1.6% for a standard of 72 x 10(-6) mol L(-1) orthophosphate and no baseline drift was observed during 4 h operation periods. It provides 72 measurements per hour, with 2.4 x 10(-)6) mol L(-1) and 7.9 x 10(-6) mol L(-1) as detection and quantification limits, respectively.  相似文献   

4.
A new method for the quantitative determination of 49 kinds of organophosphorus pesticide residues and their metabolites in fish, egg, and milk by dual gas chromatography-dual pulse flame photometric detection was developed. Homogenized samples were extracted with acetone and methylene chloride (1 + 1, v/v), and then the extracts were cleaned up by gel permeation chromatography (GPC). The response of each organophosphorus pesticide showed a good linearity with its concentration; the linearity correlation was not less than 0.99. The detection limits (S/N = 3) of pesticides were in the range of 0.001-0.025 mg kg?1. The recovery experiments were performed by blank sample spiked at low, medium, and high fortification levels. The recoveries for fish, egg, and milk were 50.9-142.2, 53.3-137.2, and 50.3-139.4% with relative standard deviations (RSD, n = 6) of 2.3-24.9, 4.3-26.7, and 2.8-32.2%, respectively. The method was applied to detect organophosphorus pesticides in samples collected from the market, and satisfactory results were obtained. This quantitative method was highly sensitive and exact and could be applied to the accurate determination of organophosphorus contaminants in fish, egg, and milk.  相似文献   

5.
A new Fourier transform infrared (FTIR) spectroscopic method based on single-bounce attenuated total reflectance (SB-ATR) spectroscopy was developed for the analysis of distilled liquors and wines. For distilled liquors, a partial least-squares (PLS) calibration was developed for alcohol determination based on the SB-ATR/FTIR spectra of mixtures of ethanol and distilled water. An independent set of 12 different distilled liquor samples was predicted from the PLS calibration, and a standard deviation of the differences for accuracy (SDD(a)) between actual and predicted values of 0.142% (v/v) was obtained. The potential utility of SB-ATR/FTIR spectroscopy for the analysis of wines was initially evaluated based on a comparison with Fourier transform near-infrared (FT-NIR) spectroscopy and FTIR spectroscopy using a flow-through transmission cell. PLS calibrations for alcohol, total reducing sugars, total acidity and pH were developed using pre-analyzed wine samples (n = 28), and for SB-ATR/FTIR spectroscopy, the SDD(a) for the leave-one-out cross-validation statistics were of the order of 0.100% (v/v), 0.707 g L(-1), 0.189 g L(-1) (H2SO4), and 0.230, respectively. Overall, the SB-ATR/FTIR results were better than those obtained using FT-NIR spectroscopy and comparable to those obtained with transmission FTIR spectroscopy. A PLS calibration based on preanalyzed wine samples (n = 72) for the prediction of 11 different components and parameters in wines by SB-ATR/FTIR spectroscopy was subsequently developed and validated using an independent sample set (n = 77). Good coefficients of correlation between the reference and predicted values for the validation set were obtained for most of the components and parameters except citric acid, volatile acids, and total SO2. The results of this study demonstrate the suitability of SB-ATR/FTIR spectroscopy for the routine analysis of distilled liquors and wines.  相似文献   

6.
Despite the wide availability of liquid herbal extracts using mixtures of alcohol, glycerin, and water, or glycerin and water as solvents, no data on the chemical composition of such extracts is readily available. In this study, the amount and the stability of the major saponins in Panax quinquefolius root extracts, made either with 50% (v/v) aqueous ethanol, a mixture (v/v/v) of 20% ethanol, 40% glycerin, and 40% water, or with 65% (v/v) aqueous glycerin, were evaluated by HPLC-UV analysis. The amount of total saponins was highest in the 50% aqueous ethanol extract (61.7 +/- 0.1 mg/g dry root), although similar to the ethanol-glycerin-water extract (59.4 +/- 0.5 mg/g dry root). Saponins were significantly lower in the 65% aqueous glycerin extract (51.5 +/- 0.2 mg/g dry root). Interestingly, the amounts of individual saponins were quite variable depending on the solvent. This is in part due to enzymatic cleavage of ginsenosides in the glycerin containing extracts during the maceration process. Storage of the extracts at 25 degrees C over the period of a year led to a 13-15% loss of saponins with all three types of extractions.  相似文献   

7.
Sorghum bran has potential to serve as a low‐cost feedstock for production of fuel ethanol. Sorghum bran from a decortication process (10%) was used for this study. The approximate chemical composition of sorghum bran was 30% starch, 18% hemicellulose, 11% cellulose, 11% protein, 10% crude fat, and 3% ash. The objective of this research was to evaluate the effectiveness of selected pretreatment methods such as hot water, starch degradation, dilute acid hydrolysis, and combination of those methods on enzymatic hydrolysis of sorghum bran. Methods for pretreatment and enzymatic hydrolysis of sorghum bran involved hot water treatment (10% solid, w/v) at 130°C for 20 min, acid hydrolysis (H2SO4), starch degradation, and enzymatic hydrolysis (60 hr, 50°C, 0.9%, v/v) with commercial cellulase and hemicellulose enzymes. Total sugar yield by using enzymatic hydrolysis alone was 9%, obtained from 60 hr of enzyme hydrolysis. Hot water treatment facilitated and increased access of the enzymes to hemicellulose and cellulose, improving total sugar yield up to 34%. Using a combination of starch degradation, optimum hot water treatment, and optimum enzymatic hydrolysis resulted in maximum total sugar yield of up to 75%.  相似文献   

8.
A new low temperature liquefaction and saccharification enzyme STARGEN 001 (Genencor International, Palo Alto, CA) with high granular starch hydrolyzing activity was used in enzymatic dry‐grind corn process to improve recovery of germ and pericarp fiber before fermentation. Enzymatic dry‐grind corn process was compared with conventional dry‐grind corn process using STARGEN 001 with same process parameters of dry solid content, pH, temperature, enzyme and yeast usage, and time. Sugar, ethanol, glycerol and organic acid profiles, fermentation rate, ethanol and coproducts yields were investigated. Final ethanol concentration of enzymatic dry‐grind corn process was 15.5 ± 0.2% (v/v), which was 9.2% higher than conventional process. Fermentation rate was also higher for enzymatic dry‐grind corn process. Ethanol yields of enzymatic and conventional dry‐grind corn processes were 0.395 ± 0.006 and 0.417 ± 0.002 L/kg (2.65 ± 0.04 and 2.80 ± 0.01 gal/bu), respectively. Three additional coproducts, germ 8.0 ± 0.4% (db), pericarp fiber 7.7 ± 0.4% (db), and endosperm fiber 5.2 ± 0.6% (db) were produced in addition to DDGS with enzymatic dry‐grind corn process. DDGS generated from enzymatic dry‐grind corn process was 66% less than conventional process.  相似文献   

9.
Glucovanillin was extracted from green pods and simultaneously transformed to vanillin by a combination of enzyme activities involving cell wall degradation and glucovanillin hydrolysis. The reaction is best carried out with 47.5% v/v aqueous ethanol solution during 8 h at 70 degrees C, in a two-step enzymatic reaction using Viscozyme followed by Celluclast, two commercial enzymatic products containing mainly pectinase and cellulase activities, respectively. The extractive reaction proceeded with high efficiency with an amount of extracted vanillin 3.13 times higher than the one obtained with the Soxhlet method. The classical curing/extraction process results in 1.1-1.8 g of vanillin/100 g of dry pods. It is concluded that the enzymatic reaction may substitute the microbial process involved in tissue fermentation previous to vanillin extraction with the simultaneous hydrolysis of glucovanillin.  相似文献   

10.
A flow injection spectrophotometric system is proposed for phosphite determination in fertilizers by the molybdenum blue method after the processing of each sample two times on-line without and with an oxidizing step. The flow system was designed to add sulfuric acid or permanganate solutions alternately into the system by simply displacing the injector-commutator from one resting position to another, allowing the determination of phosphate and total phosphate, respectively. The concentration of phosphite is obtained then by difference between the two measurents. The influence of flow rates, sample volume, and dimension of flow line connecting the injector-commutator to the main analytical channel was evaluated. The proposed method was applied to phosphite determination in commercial liquid fertilizers. Results obtained with the proposed FIA system were not statistically different from those obtained by titrimetry at the 95% confidence level. In addition, recoveries within 94 and 100% of spiked fertilizers were found. The relative standard deviation (n = 12) related to the phosphite-converted-phosphate peak alone was 相似文献   

11.
A method has been developed for determination of bisphenol A diglycidyl ether (BADGE) in 3 aqueous-based food simulants: water, 15% (v/v) ethanol, and 3% (w/v) acetic acid. BADGE is extracted with C18 cartridges and the extract is concentrated under a stream of nitrogen. BADGE is quantitated by reversed-phase liquid chromatography with fluorescence detection. Relative precision at 200 micrograms/L was 3.4%, the detection limit of the method was 0.1 micrograms/L, and recoveries of spiking concentrations from 1 to 8 micrograms/L were nearly 100%. Relative standard deviations for the method ranged from 3.5 to 5.9%, depending on the identity of the spiked aqueous-based food simulant.  相似文献   

12.
Soil lipid content is an important characteristic of the soil organic matter. One of the commonly used extractants for the determination of soil lipid is benzene/ethanol 1:1(v/v). In this study the toxic solvent mixture benzene/ethanol was substituted with the less harmful one toluene/ethanol 1:2.3 (v/v). Both solvent mixtures give a comparably high recovery of soil lipid and the composition of both lipid fractions are very similar according to their thin layer chromatography (TLC). Further investigations with NMR-spectroscopy confirmed that the extracted lipid fraction consists mainly (7gt;90%) of structure elements of aliphatic hydrocarbons.  相似文献   

13.
A method that uses urea and enzymes for determination of total dietary fiber (TDF) in foods has been developed and compared with the AOAC enzymatic-gravimetric method (43.A14-43.A20). In the evaluation, results for crude protein and ash contamination were higher by the AOAC method, particularly for samples that form gels during ethanol precipitation. The new urea enzymatic dialysis (UED) method quantitatively recovered, with less variation, more of the purified and semipurified dietary fiber products. TDF recoveries for carboxymethylcellulose and locust bean gum were 98% (SD 3.3) and 95% (SD 6.1) by the AOAC method and 99% (SD 1.0) and 100% (SD 0.6) by the UED method, respectively. The UED method was the more effective in removing starch. For kale samples, starch recovery was 3.5 and 0.2% from TDF residues obtained using the AOAC and UED methods, respectively. Differences were not significant among replicate values for determination of TDF in foods by the UED method (P greater than 0.01). Preliminary studies suggest that the new method can separately determine soluble and insoluble dietary fiber. The data indicate that the UED method is more precise and accurate than the AOAC method.  相似文献   

14.
A nondestructive analytical method based on NMR spectroscopy was developed for the determination of phospholipids in olive oil. The phospholipids extracted from virgin olive oil with a mixture of ethanol/water (2:1 v/v) were identified and quantified by high resolution (31)P NMR spectroscopy. The main phospholipids found in olive oil were phosphatidic acid, lyso-phosphatidic acid, and phosphatidylinositol. Validation of the (31)P NMR methodology for quantitative analysis of phospholipids in olive oil was performed. Sensitivity was satisfactory with detection limits of 0.25-1.24 mumol /mL. In addition, the composition of fatty acids in phospholipids model compounds and those in olive oil samples was estimated by employing one- and two-dimensional (1)H NMR. The results indicated that the fatty acid composition in phospholipids and triacylglycerols of olive oil was similar.  相似文献   

15.
小叶女贞果实花青素组分鉴定及色谱纯化技术   总被引:2,自引:1,他引:1  
为提高小叶女贞果实的食用、药用价值,该文系统研究了果实中花青素种类构成及提取物的制备技术。试验采用紫外可见光谱法、高效液相色谱-质谱串联法、酸水解制备苷元等技术对小叶女贞果实花青素含量、单体种类进行了测定,并借助提取、萃取、柱层析等技术研究了花青素提取物的分离纯化过程。研究结果如下:测得每100 g小叶女贞果实中含花青素总量为(499±18.42)mg,从中鉴定出2种花青素单体,分别为矢车菊素-3-O-葡萄糖苷和牵牛花色素-3-O-葡萄糖苷,并以后者为主要存在形式;获得了纯天然、简单易行的花青素提取物制备技术,主要包括酸化乙醇提取、乙酸乙脂萃取、Amberlite XAD-7HP大孔树脂层析分离步骤,最终制得的花青素提取物纯度为35%、得率为0.6%。该研究为后期制备高纯度牵牛花素-3-O-葡萄糖苷单体提供了良好原料基础,为深入研究小叶女贞果实花青素功能活性及其在食品、药品领域潜在应用提供了参考。  相似文献   

16.
Contact of wheat flour with aqueous ethanol may enrich protein by starch displacement or deplete protein by extraction depending on 1) extraction conditions and 2) the form of the substrate. Extraction at subambient temperatures has not been described for specific gliadins for either dry flour with the protein in native configurations or for wet, developed batter or dough. This limits the ability to interpret technologies such as the cold-ethanol method. Here, we describe specific albumin and gliadin composition of flour extracts by capillary zone electrophoresis CZE in 0–100% (v/v) ethanol from –12 to 22°C. Extraction was reduced for albumin and gliadin protein as the temperature was reduced and the concentration range for extraction narrowed. Extraction dropped precipitously between 0 and –7°C for both albumins and gliadins. Electrophoretically defined gliadins extracted in constant proportion at 22°C and 30–80%(v/v) ethanol, but at lower temperature, the α-gliadins were enriched and β-gliadins depleted in the 30–55% (v/v) range. For extracts from wheat flour batter, depletion of α and β and enrichment of γ relative to the dry flour contact suggested that the electrophoretically slow migrating γ- and ω-proteins are less well incorporated to the dough matrix than electrophoretically fast migrating α and β types.  相似文献   

17.
The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.  相似文献   

18.
Starch from bamboo Phyllostachys bambusoides f. shouzhu Yi evaluated by means of solid-state 13C CP/MAS NMR and X-ray diffraction showed a typical B-type pattern with a very low degree of crystallinity (10.9%). In addition to starch, alkali-soluble hemicelluloses were further fractionated by graded precipitation at ethanol concentrations of 0 (HA), 15, 30, 45, 60, and 75% (v/v). Chemical composition and structural features of the six hemicellulosic subfractions were investigated by a combination of sugar analysis, GPC, FT-IR, GC-MS, 1D (1H and 13C) and 2D (HSQC) NMR spectra, and thermal analysis. The results showed that the bamboo hemicelluloses were O-acetylated 4-O-methyl-glucuronoarabinoxylans (GAX) consisting of a linear (1→4)-β-D-xylopyranosyl backbone decorated with branches at O-3 of α-L-arabinofuranosyl (5-12 mol%) or at O-2 of 4-O-methylglucuronic acid units and acetyl groups (0.8-11 mol%). The molecular weights of these polysaccharides ranged between 13400 and 67500 g/mol, and the molar ratios of A/X and G/X increased with ascending ethanol concentrations. Moreover, xylo-oligosaccharides (XOS) with DP 1-6 were produced by enzymatic hydrolysis of hemicelluloses and the total yields of XOS were range of 21.5 to 40.6%. The structure-property relationships were also established in order to improve enzyme accessibility.  相似文献   

19.
Candida tropicalis XY-19是一株具有优良乙醇发酵性能的发酵木糖酵母,其发酵葡萄糖产乙醇性能与目前酒精工业生产菌种--安琪酒精酵母相近,但XY-19的耐乙醇性能远比安琪酒精酵母差,XY-19在含有超过7%(v/v)乙醇的培养基中不能生长。以XY-19为出发菌株,经紫外线诱变获得了5株能在7.5%(v/v)乙醇的培养基中旺盛生长的突变株,经Co-60诱变获得了8株能在含8%(v/v)乙醇的培养基中旺盛生长的突变株。然后,以紫外线诱变得到的5株菌和Co-60诱变得到的8株菌及耐乙醇性能较好的酿酒酵母(S.cerevisae Angel,S.cerevisae4608和S.cerevisae172)为出发菌株,经过4轮Genome shuffling结合木糖乙醇梯度平板的筛选,获得了4株(G3-13,G3-18,G3-57和G3-60)能够在12%乙醇平板上生长的菌株,其乙醇耐受性比野生菌株XY-19提高了71%,为将XY-19进一步开发成纤维质乙醇发酵的生产菌种奠定基础。本研究结果进一步体现了Genome shuffling技术在改良如乙醇耐受性等多基因控制性状上的突出优势,为工业生产菌种的快速有效改良提供了一种有效的方法。  相似文献   

20.
A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号