首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY Development of the free-living stages of strongylid nematodes of the horse to the infective stage occurred in faeces in all months of the year in southern Queensland, at a rate which depended on the season. Most rapid development to the infective stage occurred in the warmer months, with the hatching of strongyle eggs being completed in 2 days in summer. During the winter, egg hatching continued for over 2 weeks. Larval moults proceeded at a faster rate in summer—all larvae were infective in 7 days during the hottest months, but it was as long as 5 weeks before all were infective in winter. However, even though development was rapid in summer, survival rates varied from 1 to 10%, in contrast to the spring and autumn, when over 80% reached the infective stage. One percent of larvae in faeces survived for up to 20 weeks in autumn and winter, but for only 4 weeks in summer. These results highlight the inadequacy of short-term pasture spelling for all but the hottest months. Infective larvae were found on herbage in all months of the year, but greatest numbers were recovered in spring and early summer, and in autumn and early winter. The relationship of pasture infestation to migration of larvae from Paecal reservoirs in response to rain was clearly shown. Most infective larvae were found within 30 cm of faecal masses, and in fact 89% of all larvae isolated from herbage in this study were found within 15 cm of faeces. Migration of larvae from faeces to herbage occurred with falls of rain as small as 25 mm. Horse faecal masses dried out completely in 6–8 days in summer and in 14–16 days in winter. Strongyle larvae developed to the infective stage in faeces in the absence of rain, although many remained in the pre-infective stage and completed their development when rain fell. This study shows that massive contamination of pastures with the eggs of strongylid nematodes must be prevented in spring and autumn if susceptible young horses are not to be at serious risk.  相似文献   

2.
A study was carried out on a ranch in the semi-arid area of Kajiado District in Kenya during the period July 2000 to June 2001 to determine the seasonal patterns of development and survival of gastrointestinal nematodes of sheep on pastures. A series of plots were contaminated with sheep faeces every month and pasture samples were collected weekly for the recovery and identification of larvae. The availability of infective larvae on naturally contaminated pastures was also monitored on the paddocks grazed by sheep and around the night pen and the watering point every month from July 2000 to June 2001. The results from the examination of the pasture samples indicated that rainfall distribution was the major factor governing the development and survival of the pre-parasitic stages. No parasitic larvae were detected from the plots contaminated during the dry months from July to October 2000, but development and translocation of infective larvae on pastures occurred on plots contaminated during the rainy seasons and soon after when relatively high moisture was present in the herbage (November 2000 to June 2001). During this period, peak larval counts occurred between the first and the second week post contamination, then declined to undetectable levels between week 4 and 16 post contamination. The lack of development of infective larvae during the dry season and the relatively rapid decline of their population during the wet season presents an opportunity for the use of pasture spelling as a means of helminth control in the study area. The availability of infective larvae on naturally contaminated pastures, around the night pen and around the watering point also followed the rainfall distribution pattern. Infective larvae were consistently recovered around the watering point throughout the study period. This indicated that the point is an important source of infection for sheep, especially during the dry season when other pastures are non-infective.  相似文献   

3.
In studies on the control of parasitic gastroenteritis in calves and sheep, involving an annual rotation of pastures grazed by these host species, it was shown that young cattle could play an important role in the epidemiology of Nematodirus battus, a species usually regarded as a parasite of lambs. Thus, young cattle readily acquired heavy burdens of N battus in spring and the contamination of pastures with eggs from these infections resulted in significant populations of larvae on the herbage, which were infective to both calves and lambs grazed on these pastures in the following year. Although the majority of the N battus eggs hatched in the spring, some hatched in the autumn. The calves developed a strong immunity to N battus during the grazing season as demonstrated by the absence of worms at necropsy in the autumn, despite the presence of infective larvae on the pasture.  相似文献   

4.
On the basis of the hypothesis that the peak numbers of infective nematode third-stage larvae (L3) on herbage in winter months results from fall contamination of pastures, 2 methods to reduce fall contamination were tested. In trial 1, morantal sustained-release boluses were administered to 15 fall-calving cows on Sept 7, 1982. Fifteen untreated cows (controls) were placed on separate pastures. Numbers of L3 on herbage during the winter and spring were assessed by use of worm-free tracer calves. In trial 2, 19 cattle due to calve in the fall were administered 200 micrograms of invermectin/kg of body weight, SC, on Sept 2, 1983. Also, 17 cattle similarly were given a placebo injection and served as control animals. Treated cattle were placed on the pasture used by control cattle in trial 1 and control cattle on the pasture used by treated cattle in trial 1. Worm-free tracer calves were again used to assess numbers of L3 on herbage. In trial 1, tracer calves grazing the control animal pasture from January 14 to 28 acquired 37 times as many nematodes as did those grazing the treated animal pasture. In trial 2, the greatest difference observed was a 10-fold increase of nematodes in calves grazing control animal pastures, compared with worm numbers in tracer calves grazing the treated animal pasture.  相似文献   

5.
Gastrointestinal nematode (GIN) parasites present an important limitation to ruminant production worldwide. Methods for quantifying infective larvae of GIN on pastures are generally tedious, time-consuming, and require bulky equipment set-ups. This limitation to expedient data collection is a bottleneck in development of pasture management practices that might reduce pasture infectivity. We modified a soil elutriator concept for extracting GIN larvae from fresh herbage samples. Elutriators were constructed from readily available parts and compared to the Baermann funnel sedimentation method for larvae extraction. More samples could be extracted per day in the elutriator than in a Baermann unit with extraction times of 8 min versus 24h, respectively. Accuracy, measured as maximum recovery of larvae seeded onto herbage samples, did not differ between extraction methods (62.3 vs. 69.8% for elutriator and Baermann, respectively, P>0.05). Larvae recovery from herbage in elutriators showed a strong log(e) relationship with extraction time (r(2)>0.98), which will allow development of accurate correction factors for specific herbages to predict total larvae densities at extraction times less than those needed for maximum recovery. An extraction time of 8 min per sample gave the best compromise of speed, accuracy, and precision as measured by regression confidence bands and root mean square error of analysis of variance. Precision of the elutriator extraction for pasture samples was comparable to published methods and was not affected by forage species or canopy strata. The elutriator method was sensitive enough to detect differences in larvae density as small as 8 larvae g(-1) DM among pasture treatments. Elutriators extracted nematode larvae from herbage samples with accuracy and precision similar to existing methods, but did it much faster. Elutriation shows promise as a rapid method for extracting infective GIN larvae from pasture herbage.  相似文献   

6.
The survival of Haemonchus contortus infective larvae on pasture and soil was studied over a period of 12 months in the Baghdad area. Infective larvae were found on herbage and soil at all times except in the summer months. During autumn and winter infective larvae in pasture survived for periods of up to 32 weeks. Little larval migration into soil was observed during this study and larvae did not survive for long in the faecal pellets during the summer.  相似文献   

7.
In the West of Scotland the epidemiology of parasitic bronchitis in grazing calves was studied over a two year period with the aid of tracer calves and herbage examinations for Dictyocaulus viviparus larvae. The observations of both years emphasised the importance of overwintered lungworm larvae as a source of disease. In the first year it was shown that the ingestion and development of these overwintered larvae were, by themselves, directly responsible for severe morbidity, high faecal larval counts and deaths. In the second year it was shown that pasture ungrazed during the winter and spring and from which a hay crop was removed in mid-summer was still capable of producing clinical parasitic bronchitis in susceptible calves within three to four weeks of their introduction in later summer. In both years there was some evidence that the outbreaks appeared to be associated with the sudden availability of infective larvae on the herbage. The possibility that such larvae may have survived for many months in the soil is discussed. Despite the heavy challenge with lungworm larvae experienced by the grazing calves in the first year those vaccinated with lungworm vaccine survived, their clinical signs were mild and of short duration and their faecal larval output was greatly reduced.  相似文献   

8.
The development and survival of the eggs of Haemonchus contortus on pasture at Vom were studied by depositing faecal pellets on grass plots over a period of 12 months. Development and survival to the infective larvae occurred throughout the study except during the dry season months of December to April. More infective larvae were recovered from the herbage in June, July and August than in other months. The survival time of the infective larvae ranged from 2 weeks in October to 10 weeks in June, July and August. Rainfall was the most important epizootiological factor influencing the development and survival of the infective larvae. Temperature was not a limiting factor.  相似文献   

9.
Abstract

AIMS: To measure the development of Teladorsagia (=Ostertagia) circumcincta and Trichostrongylus colubriformis eggs to third-stage infective larvae (L3) at different times of the year. Also, to measure the spatial distribution of L3 across herbage, soil and faeces, in order to assess whether spatial issues could be important in larval dynamics on pasture.

METHODS: Field plots were contaminated with sheep faeces containing approximately 20,000 eggs of each of T. circumcincta and T. colubriformis on five separate occasions, viz 01 December 1996 (summer), 18 March 1998 (autumn), 17 June 1998 (winter), 15 October 1998 (spring), and 23 July 1999 (winter). Replicate plots (n=10) were harvested at intervals for up to 12 months after deposition of faeces, and the number and distribution of L3 were measured. Larvae were sampled from faeces (where these remained), herbage, and three soil zones to a depth of 145 mm.

RESULTS: There were large differences between contamination dates in the percentage of eggs that developed to L3. For both species the highest percentage development was for eggs deposited in December (7.8% and 25.9% for T. circumcincta and T. colubriformis, respectively) and the lowest for June (0.4% and 0.03% T. circumcincta and T. colubriformis, respectively). Development in winter was often delayed, and this was always associated with a low yield of larvae, probably due to compounding mortalities associated with long periods of exposure to low temperatures.

The relative distribution of L3 present on herbage, in faeces or in the soil varied between sampling times. However, overall the most L3 were recovered from soil (74% and 66% for T.circumcincta and T. colubriformis, respectively, averaged over all samples), and the lowest recoveries were from the herbage.

CONCLUSIONS: Although the data are limited, the results indicated that the highest percentage of eggs developed to infective larvae in summer and only minimal development occurred in winter. The data do not support the view that substantial contamination of pastures with sheep parasites occurs over winter. Large numbers of larvae were recovered from soil, which indicates that, assuming they can subsequently migrate onto herbage, soil is a potentially important reservoir ofinfective larvae in New Zealand. Therefore, the spatial distribution of L3 on pasture may affect both the dynamics and transmission of parasite populations. Further work on both these issues is warranted.  相似文献   

10.
The seasonal changes in longevity on herbage of the infective larvae of strongylid nematodes of the horse were studied. During the summer months, 1% of the larvae survived on herbage for 2-3 weeks, with 0.2% still viable for a further 2-3 weeks. Equivalent survival periods in winter were 7-11 weeks and over 11 weeks respectively. During spring and autumn, larvae survived for periods varying from 3-8 weeks. On Rhodes grass (Chloris gayana) growing vigorously in the summer of 1976, the majority of larvae remained in the lowest layers of the pasture, within 10 cm of the soil surface. Very few reached the highest fraction of grass sampled, above 40 cm from the soil. More larvae were recovered higher on the pasture in a period when less torrential rain had occurred. It was concluded that the parasitological benefits to be gained from short-term mixed grazing with horses and cattle may be minimal, in view of the tendency of cattle to eat only the upper layers of the pasture initially, with a consequent increase in the number of infective larvae per unit weight of herbage remaining.  相似文献   

11.
Larval counts were made on herbage samples collected from 14 calf pastures and 14 cow pastures at each of three different localities in Lower Saxony, Western Germany, in September 1974. Significantly higher numbers of larvae of the genera Ostertagia, Cooperia and Nematodirus were demonstrated on calf pastures than on cow pastures in all three areas. The results suggest that, in the absence of available “clean” pasture, improved control of trichostrongyle infection during late summer and autumn might be achieved by the transfer of calves to cow pastures at that time.  相似文献   

12.
The type and level of infective strongylid nematode larvae on pasture were monitored fortnightly from July 1995 to June 1996 in the central highlands of Kenya. The number of larvae on pasture was moderate, reaching > 1,200 kg(-1) dry matter of grass during the period of, and soon after, the rains, and remained low in the dry seasons. The number of larvae on pasture was directly related to the rain-fall pattern which was found to be the most important factor for the development of eggs and free-living stages. Haemonchus was the predominant genus, followed in decreasing order by Trichostrongylus, Cooperia, Oesophagostomum and Bunostomum. The mean total adult worm burdens of tracer calves released at monthly intervals were related to the levels of herbage larvae and there was a positive correlation between faecal worm egg counts and worm burdens (r = 0.58) during the study period. These results indicate that a reduction in the contamination of pasture with nematode eggs before the rains could result in pastures carrying fewer larvae and thus form the basis of effective worm control programmes for cattle.  相似文献   

13.
The excretion of Dictyocaulus filaria larvae in the faeces of Blackface sheep on a heavily stocked lowland farm in south east Scotland, showed considerable individual, week to week and year to year variation. Patent infections were first observed in lambs in May or June but the heaviest and most prevalent infections occurred in the autumn. Infection levels were generally low but infections tended to be prolonged and reinfection occurred following anthelmintic treatment until the late autumn or winter. Only a few very light, short-lived, patent infections were observed in yearlings or adult ewes. Pasture sampling and the use of tracer animals showed that the numbers of infective larvae on the pasture were minimal during the summer months but reached a low peak in the autumn.  相似文献   

14.
As part of a study on the epidemiology of Nematodirus species of sheep in subarctic Greenland, the development and persistence of eggs and larvae were investigated by experimentally contaminating plots of pasture with infected faeces and by placing tubes containing a suspension of eggs on to or into the soil. Despite low ambient temperatures, infective larvae appeared within a month during the summer. The greatest numbers of larvae were recovered from herbage in August and September. Eggs did not develop synchronously as development beyond the morula stage could be delayed for up to two years. Larvae were found on herbage for up to 37 months after faecal deposition. In the sheep rearing area of Greenland, therefore, Nematodirus species larvae can be present on herbage throughout the whole summer but peak numbers occur late in the grazing season.  相似文献   

15.
Observations were made on the abundance and survival of Haemonchus placei, Cooperia punctata and Oesophagostomum radiatum infective larvae from cattle faecal pats exposed at various times of the year in north Queensland wet tropics. Pats exposed in the hot, wet season yielded abundant larvae on herbage. In the dry season, although low numbers of infective larvae were usual, considerable numbers were produced under conditions of heavy dews on dense herbage. Irrespective of season of deposition of pats, the resulting larvae persisted generally for not longer than 10 to 12 weeks, and in large numbers for only 2 to 6 weeks. The findings suggest that prevention of contamination in the wet season, and in the dry season when light rainfalls are accompanied by heavy dews on dense herbage, will result in low levels of larval infestation on herbage. Rotational grazing in the area is suggested as a means of worm control.  相似文献   

16.
This study investigated the overwintering survival and infectivity of free-living gastrointestinal nematode (GIN) stages on pasture. The presence of GIN larvae was assessed on 3 sheep farms in Ontario with a reported history of clinical haemonchosis, by collecting monthly pasture samples over the winter months of 2009/2010. The infectivity of GIN larvae on spring pastures was evaluated using 16 tracer lambs. Air and soil temperature and moisture were recorded hourly. Free-living stages of Trichostrongylus spp. and Nematodirus spp. were isolated from herbage samples. Gastrointestinal nematodes were recovered from all tracer lambs on all farms; Teladorsagia sp. was the predominant species. Very low levels of Haemonchus contortus were recovered from 1 animal on 1 farm. The results suggest that Haemonchus larvae do not survive well on pasture, while Teladorsagia sp., Trichostrongylus spp. and Nematodirus spp. are able to overwinter on pasture in Ontario and are still infective for sheep in the spring.  相似文献   

17.
Two worm-free grass paddocks, P1 and P2, were artificially contaminated in March and April-May, respectively, with bovine faeces containing known numbers of trichostrongyle (mainly Cooperia, Haemonchus and Trichostrongylus spp.) eggs in order to determine the relative contributions of late dry-season and early rains pasture contaminations to the wet-season herbage larval infestation in Nsukka, eastern Nigeria. The resulting herbage infestation was assessed by means of larval counts and tracer studies. A sudden rise in herbage infestation occurred simultaneously in both paddocks in late April, this apparently being determined by the onset of the first substantial rainfall of the wet season. Peak infestations in both paddocks also occurred simultaneously in May. The infestation in P1 was much larger, and the larval population persisted longer, than that in P2 and later gave rise to a second smaller peak in June. No L3 were recovered in herbage samples from either of the paddocks after the third week of July. Both paddocks were infective to goats in May-June, while P2 was also infective in July-August. The results suggest that in the Nigerian derived savanna the initial wet-season herbage infestation in pastures grazed by infected cattle during the dry and wet seasons will consist of L3 from late dry-season and early rains pasture contaminations, the former being the major contributor to the infestation. Consequently, pastures contaminated during the late dry season may not be safe for susceptible animals to graze at the start of the succeeding rainy season.  相似文献   

18.
The seasonal changes in the populations of trichostrongylid infective larvae (L3) on herbage and in soil samples collected from pastures grazed by beef cattle were studied at Nsukka, eastern Nigeria, from April 1980 to July 1981. Large numbers of L3 were recovered from all samples collected during the rainy season (April to October). The rainy season herbage infestation was characterised by three clearly defined peaks. The first, which followed an 'early rains' (April) rise, occurred in the second half of May while the larger second and third peaks occurred in late July and October respectively. It is suggested that each of these peaks represented a distinct wave of infestation by a separate generation consisting of the three trichostrongylids concerned, namely Cooperia, Haemonchus and Trichostrongylus species. Although there was a sharp fall in pasture infestation following the onset of the dry season, appreciable numbers of L3 were still present on herbage in early December. The implications of these findings have been discussed in relation to the choice of effective strategic anthelmintic programmes for the prophylaxis and control of bovine parasitic gastroenteritis in the Nsukka area.  相似文献   

19.
Assessment on the development and survival of Haemonchus contortus larvae was made to evaluate the influence of microclimatic variables viz., relative humidity (%), temperature (°C), rainfall (mm) and intensity of sunlight (hrs). Pasture plots in a sub-tropical area, Pakistan were contaminated with H. contortus eggs at the start of every month. The plots were sampled on fortnightly basis after contamination for three consecutive months. The overall pattern indicated the most favorable conditions for survival, development and translation to herbage was during the wet season from July to October and the least favorable was during the dry season from April to June. Peak infective larvae (L3) recovery was during the 15–45 day interval for each plot and the lowest number was during the 75–90 day interval. Herbage was collected in the morning, afternoon and evening and greatest recovery of L3 was in the morning time and least in the afternoon. The number of L3 on pasture was directly related to the pattern of rainfall and relative humidity with a significant (P < 0.05) positive correlation and temperature and intensity of sunshine were negatively correlated (P < 0.05). The results suggest that pastures can remain infective for up to 2 months and become relatively clean by 90 days after contamination. Thus, long pasture rest periods, especially during the high risk wet season, may be a helpful strategy to reduce the infection levels.  相似文献   

20.
Development and survival of Haemonchus contortus larvae were studied from December 1987 to November 1988 during three different periods (dry season, first and second rainy seasons) on an experimentally infected pasture at Bunia (Ituri, Za?re). Whatever the season, eggs developed into infective larvae within six days and the largest number of larvae on the herbage occurred between the 12th and the 18th day post deposition. However, the two rainy seasons were the most favourable for transmission because of the high number of larvae on the pasture and the increased survival of these larvae after 4 weeks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号